urb-597 and arachidonyl-2-chloroethylamide

urb-597 has been researched along with arachidonyl-2-chloroethylamide* in 3 studies

Other Studies

3 other study(ies) available for urb-597 and arachidonyl-2-chloroethylamide

ArticleYear
Hypothalamic endocannabinoid signalling modulates aversive responses related to panic attacks.
    Neuropharmacology, 2019, Volume: 148

    Recurrent panic attacks, comprising emotional and cardiovascular aversive responses, are common features in panic disorder, a subtype of anxiety disorder. The underlying brain circuitry includes nuclei of the hypothalamus, such as the dorsomedial hypothalamus (DMH). The endocannabinoid system has been proposed to modulate several biological processes in the hypothalamus. Thus, we tested the hypothesis that hypothalamic endocannabinoid signalling controls aversive responses in an animal model of panic attacks. Local infusion of NMDA into the DMH of rats induced panic-like behaviour. This effect was prevented by local, but not intraperitoneal, injection of a 2-arachidonoylglycerol (2-AG) hydrolysis inhibitor (MAGL inhibitor, URB602). The anandamide hydrolysis inhibitor (FAAH inhibitor), URB597, was ineffective. The anti-aversive action of URB602 was reversed by CB

    Topics: Animals; Arachidonic Acids; Benzamides; Biphenyl Compounds; Blood Pressure; Cannabinoids; Carbamates; Corticosterone; Dorsomedial Hypothalamic Nucleus; Endocannabinoids; Indoles; Male; Microinjections; N-Methylaspartate; Panic Disorder; Piperidines; Pyrazoles; Rats

2019
Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats.
    Psychopharmacology, 2015, Volume: 232, Issue:9

    Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli.. The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks.. All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry.. The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG.. The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.

    Topics: Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Male; N-Methylaspartate; Panic Disorder; Periaqueductal Gray; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1

2015
Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses.
    Journal of psychopharmacology (Oxford, England), 2015, Volume: 29, Issue:3

    Panic attacks, a major feature of panic disorder, can be modelled in rats by exposing animals to stimuli that induce escape reactions, such as the elevated T-maze or the activation of the dorsolateral periaqueductal grey. Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats. Local injection of the CB1 agonist, arachidonoyl 2-Chloroethylamide (0.005-0.5 pmol), attenuated the escape response from the open arm of the elevated T-maze, a panicolytic effect. The anandamide hydrolysis inhibitor, URB597 (0.3-3 nmol), did not induce consistent results. In the test of dorsolateral periaqueductal grey stimulation with d,l-homocysteic acid, arachidonoyl 2-Chloroethylamide, at the lowest dose, attenuated the escape reaction. The highest dose of URB597 also inhibited this response, contrary to the result obtained in the elevated T-maze. This effect was reversed by the CB1 antagonist, AM251 (100 pmol). The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey. The effect of the anandamide hydrolysis inhibitor, however, could be detected only in a model employing direct stimulation of this structure. Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.

    Topics: Animals; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Escape Reaction; Male; Maze Learning; Panic Disorder; Periaqueductal Gray; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Signal Transduction

2015