urb-597 and arachidonoylserotonin

urb-597 has been researched along with arachidonoylserotonin* in 9 studies

Other Studies

9 other study(ies) available for urb-597 and arachidonoylserotonin

ArticleYear
Effects of alprazolam and cannabinoid-related compounds in an animal model of panic attack.
    Behavioural brain research, 2017, 01-15, Volume: 317

    Selective stimulation of carotid chemoreceptors by intravenous infusion of low doses of potassium cyanide (KCN) produces short-lasting escape responses that have been proposed as a model of panic attack. In turn, preclinical studies suggest that facilitation of the endocannabinoid system attenuate panic-like responses. Here, we compared the effects of cannabinoid-related compounds to those of alprazolam, a clinically effective panicolytic, on the duration of the escape reaction induced by intravenous infusion of KCN (80μg) in rats. Alprazolam (1, 2, 4mg/kg) decreased escape duration at doses that did not alter basal locomotor activity. URB597 (0.1, 0.3, 1mg/kg; inhibitor of anandamide hydrolysis), WIN55,212-2 (0.1, 0.3, 1mg/kg; synthetic cannabinoid), arachidonoyl-serotonin (1, 2.5, 5mg/kg; dual TRPV1 and anandamide hydrolysis inhibitor), and cannabidiol (5, 10, 20, 40mg/kg; a phytocannabinoid) did not decrease escape duration. Alprazolam also prevented the increase in arterial pressure evoked by KCN, while bradycardia was unchanged. This study reinforces the validity of the KCN-evoked escape as a model of panic attack. However, it does not support a role for the endocannabinoid system in this behavioral response. These results might have implications for the screening of novel treatments for panic disorder.

    Topics: Alprazolam; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoxazines; Blood Pressure; Cannabinoids; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Escape Reaction; Heart Rate; Hypnotics and Sedatives; Locomotion; Male; Mice; Morpholines; Naphthalenes; Panic Disorder; Potassium Cyanide; Rats, Wistar; Serotonin

2017
Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells.
    Oncotarget, 2016, Mar-22, Volume: 7, Issue:12

    Inhibition of endocannabinoid degradation has been suggested as tool for activation of endogenous tumor defense. One of these strategies lies in blockade of fatty acid amide hydrolase (FAAH) which catalyzes the degradation of endocannabinoids (anandamide [AEA], 2-arachidonoylglycerol [2-AG]) and endocannabinoid-like substances (N-oleoylethanolamine [OEA], N-palmitoylethanolamine [PEA]). This study addressed the impact of two FAAH inhibitors (arachidonoyl serotonin [AA-5HT], URB597) on A549 lung cancer cell metastasis and invasion. LC-MS analyses revealed increased levels of FAAH substrates (AEA, 2-AG, OEA, PEA) in cells incubated with either FAAH inhibitor. In athymic nude mice FAAH inhibitors were shown to elicit a dose-dependent antimetastatic action yielding a 67% and 62% inhibition of metastatic lung nodules following repeated administration of 15 mg/kg AA-5HT and 5 mg/kg URB597, respectively. In vitro, a concentration-dependent anti-invasive action of either FAAH inhibitor was demonstrated, accompanied with upregulation of tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). Using siRNA approaches, a causal link between the TIMP-1-upregulating and anti-invasive action of FAAH inhibitors was confirmed. Moreover, knockdown of FAAH by siRNA was shown to confer decreased cancer cell invasiveness and increased TIMP-1 expression. Inhibitor experiments point toward a role of CB2 and transient receptor potential vanilloid 1 in conferring anti-invasive effects of FAAH inhibitors and FAAH siRNA. Finally, antimetastatic and anti-invasive effects were confirmed for all FAAH substrates with AEA and OEA causing a TIMP-1-dependent anti-invasive action. Collectively, the present study provides first-time proof for an antimetastatic action of FAAH inhibitors. As mechanism of its anti-invasive properties an upregulation of TIMP-1 was identified.

    Topics: Aged; Amidohydrolases; Animals; Apoptosis; Arachidonic Acids; Benzamides; Biomarkers, Tumor; Brain Neoplasms; Carbamates; Carcinoma, Non-Small-Cell Lung; Cell Movement; Cell Proliferation; Female; Gene Expression Regulation, Enzymologic; Humans; Lung Neoplasms; Male; Mice; Mice, Nude; Neoplasm Invasiveness; Receptor, Cannabinoid, CB2; Serotonin; Tissue Inhibitor of Metalloproteinase-1; Tumor Cells, Cultured; Xenograft Model Antitumor Assays

2016
Inhibition of FAAH confers increased stem cell migration via PPARα.
    Journal of lipid research, 2015, Volume: 56, Issue:10

    Regenerative activity in tissues of mesenchymal origin depends on the migratory potential of mesenchymal stem cells (MSCs). The present study focused on inhibitors of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the degradation of endocannabinoids (anandamide, 2-arachidonoylglycerol) and endocannabinoid-like substances (N-oleoylethanolamine, N-palmitoylethanolamine). Boyden chamber assays, the FAAH inhibitors, URB597 and arachidonoyl serotonin (AA-5HT), were found to increase the migration of human adipose-derived MSCs. LC-MS analyses revealed increased levels of all four aforementioned FAAH substrates in MSCs incubated with either FAAH inhibitor. Following addition to MSCs, all FAAH substrates mimicked the promigratory action of FAAH inhibitors. Promigratory effects of FAAH inhibitors and substrates were causally linked to activation of p42/44 MAPKs, as well as to cytosol-to-nucleus translocation of the transcription factor, PPARα. Whereas PPARα activation by FAAH inhibitors and substrates became reversed upon inhibition of p42/44 MAPK activation, a blockade of PPARα left p42/44 MAPK phosphorylation unaltered. Collectively, these data demonstrate FAAH inhibitors and substrates to cause p42/44 MAPK phosphorylation, which subsequently activates PPARα to confer increased migration of MSCs. This novel pathway may be involved in regenerative effects of endocannabinoids whose degradation could be a target of pharmacological intervention by FAAH inhibitors.

    Topics: Adipose Tissue; Amides; Amidohydrolases; Arachidonic Acids; Benzamides; Carbamates; Cell Movement; Cells, Cultured; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Mesenchymal Stem Cells; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; PPAR alpha; Receptor, Cannabinoid, CB1; Serotonin

2015
N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze.
    Behavioural brain research, 2012, Aug-01, Volume: 233, Issue:2

    CB(1) receptors in the amygdala have been shown to mediate learned and unlearned anxiety states, however, the role of amygdalar TRPV1 receptors remains unclear. In the present study we investigated the potential anxiolytic action of intra-basolateral amygdala (BLA) infusion of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH), and a TRPV1 antagonist. Varying doses of AA-5-HT (0-0.5 nmol) were administered into the BLA prior to elevated plus maze testing. AA-5-HT significantly increased both time spent and number of entries into the open arms. Next, to determine whether the anxiolytic effects were the result of blocking FAAH, TRPV1, or whether a combined action was required, rats were given intra-BLA infusions of either 0.25 nmol AA-5-HT, 1.0 nmol capsazepine (CZP, a TRPV1 antagonist), 0.01 μg URB597 (a selective FAAH inhibitor), or vehicle. Again, AA-5-HT increased the time spent in the open arms as well as the number of open arm entries. In contrast, CZP and URB597 did not reliably alter plus maze performance. We then investigated the effects of co-administration of CZP (1.0 or 10.0 nmol) and URB597 (0.01 or 0.1 μg). At lower doses, co-injections significantly increased both open arm entries as well as the time spent in the open arms, compared to vehicle or either compound alone. While co-administration of the higher doses had no significant effect when compared to either vehicle or CZP treatment, we did observe that open arm activity was elevated in rats receiving combined CZP-URB597 treatment compared to URB597 alone. Overall, our findings indicate that simultaneous FAAH activity and TRPV1 activation are important with respect to the expression of unconditioned fear as mediated within the BLA.

    Topics: Amygdala; Analysis of Variance; Animals; Anxiety Disorders; Arachidonic Acids; Benzamides; Capsaicin; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Exploratory Behavior; Male; Maze Learning; Rats; Rats, Sprague-Dawley; Serotonin; TRPV Cation Channels

2012
The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats.
    Molecular pain, 2011, Jan-17, Volume: 7

    Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA) can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC) are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1) and the catabolic enzyme fatty acid amide hydrolase (FAAH) in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL) cortex in neuropathic rats.. The effect of N-arachidonoyl-serotonin (AA-5-HT), a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI) rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively.. These data suggest a possible involvement of endovanilloids in the cortical plastic changes associated with peripheral nerve injury and indicate that therapies able to normalize endovanilloid transmission may prove useful in ameliorating the symptoms and central sequelae associated with neuropathic pain.

    Topics: Amidohydrolases; Amygdala; Animals; Arachidonic Acids; Benzamides; Carbamates; Electric Stimulation; Electrodes; Electrophysiological Phenomena; Male; Microdialysis; Microinjections; Mononeuropathies; Neurons; Nociceptors; Piperidines; Prefrontal Cortex; Pyrazoles; Rats; Rats, Wistar; RNA, Messenger; Serotonin; TRPV Cation Channels

2011
The dual fatty acid amide hydrolase/TRPV1 blocker, N-arachidonoyl-serotonin, relieves carrageenan-induced inflammation and hyperalgesia in mice.
    Pharmacological research, 2010, Volume: 61, Issue:6

    Given that the pharmacological or genetic inactivation of fatty acid amide hydrolase (FAAH) counteracts pain and inflammation, and on the basis of the established involvement of transient receptor potential vanilloid type-1 (TRPV1) channels in inflammatory pain, we tested the capability of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT), to relieve oedema and pain in a model of acute inflammation, and compared its efficacy with that of a single FAAH inhibitor (URB597) or TRPV1 antagonist (capsazepine). Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice and the anti-inflammatory and anti-nociceptive actions of AA-5-HT were assessed at different doses, time points and treatment schedule. In addition, endocannabinoid levels were measured in paw skin and spinal cord. Systemic administration of AA-5-HT elicited dose-dependent anti-oedemigen and anti-nociceptive effects, whereas it was devoid of efficacy when given locally. When tested in a therapeutic regimen, the compound retained comparable anti-inflammatory effects. TRPV1 receptor mediated the anti-inflammatory property of AA-5-HT, whereas both CB(1) and TRPV1 receptors were involved in its anti-hyperalgesic activity. These effects were accompanied by an increase of the levels of the endocannabinoid anandamide (AEA) in both inflamed paw and spinal cord. AA-5-HT was more potent than capsazepine as anti-oedemigen and anti-hyperalgesic drug, whereas it shows an anti-oedemigen property similar to URB597, which was, however, devoid of the anti-nociceptive effect. AA-5-HT did not induce unwanted effects on locomotion and body temperature. In conclusion AA-5-HT has both anti-inflammatory and anti-hyperalgesic properties and its employment offers advantages, in terms of efficacy and lack of adverse effects, deriving from its dual activity.

    Topics: Amidohydrolases; Analgesics; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Benzamides; Capsaicin; Carbamates; Carrageenan; Hyperalgesia; Inflammation; Mice; Receptor, Cannabinoid, CB1; Serotonin; TRPV Cation Channels

2010
Anxiolytic effects in mice of a dual blocker of fatty acid amide hydrolase and transient receptor potential vanilloid type-1 channels.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2009, Volume: 34, Issue:3

    The endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH), and the transient receptor potential vanilloid type-1 (TRPV1) channel are new targets for the development of anxiolytic drugs. We studied the effect on anxiety-like behavior in the elevated plus maze of a dual FAAH/TRPV1 blocker, N-arachidonoyl-serotonin (AA-5-HT). In male C57BL/6J mice, acute intraperitoneal administration of AA-5-HT (0.1-2.5 mg/kg) increased both the time spent and the number of entries in the open arm, while being inactive at the highest dose tested (5 mg/kg). AA-5-HT was more potent than selective blockers of FAAH or TRPV1 (URB597 and SB366791, respectively). In male Swiss mice, AA-5-HT had to be administered chronically to observe an anxiolytic effect at an intermediate dose (2.5 mg/kg), the highest dose (5 mg/kg) being anxiogenic, and 1 mg/kg being ineffective. In both strains, the anxiolytic effects of AA-5-HT were paralleled by elevation of brain endocannabinoid levels and were reversed by per se inactive doses of the cannabinoid receptors of type-1 (CB(1)) receptor antagonist AM251, or the TRPV1 agonist, olvanil. Immunohistochemical localization of CB(1) and TRPV1 receptors was observed in mouse prefrontal cortex, nucleus accumbens, amygdala, and hippocampus. Simultaneous 'indirect' activation of CB(1) receptors following FAAH inhibition, and antagonism at TRPV1 receptors might represent a new therapeutic strategy against anxiety.

    Topics: Amidohydrolases; Anilides; Animals; Anti-Anxiety Agents; Anxiety; Arachidonic Acids; Benzamides; Brain; Cannabinoid Receptor Modulators; Capsaicin; Carbamates; Cinnamates; Diazepam; Exploratory Behavior; Male; Mice; Mice, Inbred C57BL; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Serotonin; TRPV Cation Channels

2009
Endocannabinoids at the spinal level regulate, but do not mediate, nonopioid stress-induced analgesia.
    Neuropharmacology, 2006, Volume: 50, Issue:3

    Recent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endogenous cannabinoids [Hohmann et al., 2005. Nature 435, 1108]. Non-opioid SIA, induced by a 3-min continuous foot shock, is characterized by the mobilization of two endocannabinoid lipids--2-arachidonoylglycerol (2-AG) and anandamide--in the midbrain periaqueductal gray (PAG). The present studies were conducted to examine the contributions of spinal endocannabinoids to nonopioid SIA. Time-dependent increases in levels of 2-AG, but not anandamide, were observed in lumbar spinal cord extracts derived from shocked relative to non-shocked rats. Notably, 2-AG accumulation was of smaller magnitude than that observed previously in the dorsal midbrain following foot shock. 2-AG is preferentially degraded by monoacylglycerol lipase (MGL), whereas anandamide is hydrolyzed primarily by fatty-acid amide hydrolase (FAAH). This metabolic segregation enabled us to manipulate endocannabinoid tone at the spinal level to further evaluate the roles of 2-AG and anandamide in nonopioid SIA. Intrathecal administration of the competitive CB1 antagonist SR141716A (rimonabant) failed to suppress nonopioid SIA, suggesting that supraspinal rather than spinal CB1 receptor activation plays a pivotal role in endocannabinoid-mediated SIA. By contrast, spinal inhibition of MGL using URB602, which selectively inhibits 2-AG hydrolysis in the PAG, enhanced SIA through a CB1-selective mechanism. Spinal inhibition of FAAH, with either URB597 or arachidonoyl serotonin (AA-5-HT), also enhanced SIA through a CB1-mediated mechanism, presumably by increasing accumulation of tonically released anandamide. Our results suggest that endocannabinoids in the spinal cord regulate, but do not mediate, nonopioid SIA.

    Topics: Analgesia; Analysis of Variance; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Glycerides; Male; Mass Spectrometry; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Reaction Time; Rimonabant; Serotonin; Spinal Cord; Stress, Psychological; Time Factors

2006
Cisplatin increases brain 2-arachidonoylglycerol (2-AG) and concomitantly reduces intestinal 2-AG and anandamide levels in the least shrew.
    Neuropharmacology, 2005, Volume: 49, Issue:4

    The chemotherapeutic agent cisplatin may produce emesis via release of several neurotransmitters such as serotonin (5-HT), substance P and/or dopamine as well as production of prostaglandins (PGs). Administration of synthetic 2-arachidonoylglycerol (2-AG) but not of anandamide, which are two putative endocannabinoids, causes vomiting via its downstream metabolites such as arachidonic acid (AA) and PGs in the least shrew (Cryptotis parva). We report here that cisplatin (0, 5, 10 and 20 mg/kg, i.p.) causes dose- and time-dependent increases in brain tissue levels of 2-AG but not anandamide in this vomiting species. Concomitantly, intestinal tissue levels of both endocannabinoids are relatively reduced. Selective inhibitors [arachidonoyl-serotonin (AA-5-HT) and URB597, 0-5 and 0-10 mg/kg, i.p.] of one of the major endocannabinoid metabolic enzymes, the intracellular fatty acid amide hydrolase (FAAH), do not significantly prevent vomiting produced by emetic doses of i.p.-administered 2-AG, cisplatin or the dopamine receptor agonist apomorphine. At large doses (10 and 20 mg/kg, respectively), both FAAH inhibitors caused emesis per se. Administration of one selective uptake inhibitor of endocannabinoids, OMDM1 (0-5 mg/kg, i.p.), also did not significantly prevent emesis by the direct and indirect emetic stimuli, and likewise caused emesis by itself at a high (10 mg/kg) dose. However, another selective uptake inhibitor, VDM11, did not produce significant emesis per se and prevented emesis caused by apomorphine. Both the corticosteroid dexamethasone, and the cyclooxygenase inhibitor indomethacin, reduced vomiting produced by cisplatin. These data: (a) provide the first evidence that cisplatin causes a selective increase in 2-AG levels in the brain, and (b) support the established notion that 2-AG may produce some of its effects, including emesis, via downstream metabolites produced independently of FAAH.

    Topics: Analysis of Variance; Animals; Apomorphine; Arachidonic Acids; Benzamides; Benzyl Compounds; Brain; Carbamates; Cisplatin; Dopamine Agonists; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Female; Glycerides; Intestinal Mucosa; Intestines; Male; Radiation-Sensitizing Agents; Serotonin; Shrews; Time Factors; Vomiting

2005