urb-597 and 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol

urb-597 has been researched along with 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol* in 7 studies

Other Studies

7 other study(ies) available for urb-597 and 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol

ArticleYear
Chronic inhibition of fatty acid amide hydrolase by URB597 produces differential effects on cardiac performance in normotensive and hypertensive rats.
    British journal of pharmacology, 2017, Volume: 174, Issue:13

    Fatty acid amide hydrolase (FAAH) inhibitors are postulated to possess anti-hypertensive potential, because their acute injection decreases BP in spontaneously hypertensive rats (SHR), partly through normalization of cardiac contractile function. Here, we examined whether the potential hypotensive effect of chronic FAAH inhibition by URB597 in hypertensive rats correlated with changes in cardiac performance.. Experiments were performed using perfused hearts and left atria isolated from 8- to 10-week-old SHR, age-matched deoxycorticosterone acetate (DOCA)-salt rats and normotensive controls chronically treated with URB597 (1 mg·kg. URB597 decreased BP only in the DOCA-salt rats, along with a reduction of ventricular hypertrophy and diastolic stiffness, determined in hypertension. We also observed normalization of the negative inotropic atrial response to the cannabinoid receptor agonist CP55940. In the SHR model, URB597 normalized (atria) and enhanced (hearts) the positive ino- and chronotropic effects of the β-adrenoceptor agonist isoprenaline respectively. Ventricular CB. Hypotensive effect of chronic FAAH inhibition depend on the model of hypertension and partly correlate with improved cardiac performance. In normotensive rats, chronic FAAH inhibition produced several side-effects. Thus, the therapeutic potential of these agents should be interpreted cautiously.

    Topics: Amidohydrolases; Animals; Antihypertensive Agents; Benzamides; Blood Pressure; Carbamates; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Heart; Isoproterenol; Male; Myocardial Contraction; Rats; Rats, Inbred SHR; Rats, Wistar; Structure-Activity Relationship

2017
Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2013, Volume: 38, Issue:9

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

    Topics: Amidohydrolases; Amygdala; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Carbamates; Cyclohexanols; Dose-Response Relationship, Drug; Endocannabinoids; Male; Phencyclidine; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pyrazoles; Quinazolinones; Rats; Receptor, Cannabinoid, CB1; Receptor, Cholecystokinin B; Rimonabant; Schizophrenia; Social Behavior

2013
SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance.
    Nature neuroscience, 2012, Jan-08, Volume: 15, Issue:2

    Endocannabinoids (eCBs) regulate neuronal activity in the dorso-lateral striatum (DLS), a brain region that is involved in habitual behaviors. How synaptic eCB signaling contributes to habitual behaviors under physiological and pathological conditions remains unclear. Using a mouse model of cannabinoid tolerance, we found that persistent activation of the eCB pathway impaired eCB-mediated long-term depression (LTD) and synaptic depotentiation in the DLS. The loss of eCB LTD, occurring preferentially at cortical connections to striatopallidal neurons, was associated with a shift in behavioral control from goal-directed action to habitual responding. eCB LTD and behavioral alterations were rescued by in vivo modulation of small-conductance calcium activated potassium channel (SK channel) activity in the DLS, which potentiates eCB signaling. Our results reveal a direct relationship between drug tolerance and changes in control of instrumental performance by establishing a central role for eCB LTD in habit expression. In addition, SK channels emerge as molecular targets to fine tune the eCB pathway under pathological conditions.

    Topics: Animals; Apamin; Benzamides; Biophysics; Cannabinoids; Carbamates; Conditioning, Operant; Corpus Striatum; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Drug Tolerance; Electric Stimulation; Enzyme Inhibitors; Excitatory Postsynaptic Potentials; Guanosine 5'-O-(3-Thiotriphosphate); Habits; Long-Term Synaptic Depression; Male; Mice; Mice, Inbred C57BL; Motor Activity; Okadaic Acid; Patch-Clamp Techniques; Piperidines; Protein Binding; Pyrazoles; Rimonabant; Small-Conductance Calcium-Activated Potassium Channels; Sodium Channel Blockers; Tritium

2012
Effects of alterations in cannabinoid signaling, alone and in combination with morphine, on pain-elicited and pain-suppressed behavior in mice.
    The Journal of pharmacology and experimental therapeutics, 2012, Volume: 342, Issue:1

    Inhibitors of fatty acid amide hydrolase (FAAH) and anandamide (AEA) uptake, which limit the degradation of endogenous cannabinoids, have received interest as potential therapeutics for pain. There is also evidence that endogenous cannabinoids mediate the antinociceptive effects of opioids. Assays of pain-elicited and pain-suppressed behavior have been used to differentiate the effects of drugs that specifically alter nociception from drugs that alter nociception caused by nonspecific effects such as catalepsy or a general suppression of activity. Using such procedures, this study examines the effects of the direct cannabinoid type 1 (CB1) agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940), the FAAH inhibitor cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), and the AEA uptake inhibitor N-(4-hydroxyphenyl) arachidonylamide (AM404). Additional experiments examined these compounds in combination with morphine. CP55940 produced antinociception in assays of pain-elicited, but not pain-suppressed, behavior and disrupted responding in an assay of schedule-controlled behavior. URB597 and AM404 produced antinociception in assays of pain-elicited and pain-suppressed behavior in which acetic acid was the noxious stimulus, but had no effect on the hotplate and schedule-controlled responding. CP55940 in combination with morphine resulted in effects greater than those of morphine alone in assays of pain-elicited and scheduled-controlled behavior but not pain-suppressed behavior. URB597 in combination with morphine resulted in enhanced morphine effects in assays of pain-elicited and pain-suppressed behavior in which diluted acetic acid was the noxious stimulus, but did not alter morphine's effects on the hotplate or schedule-controlled responding. These studies suggest that, compared with direct CB1 agonists, manipulations of endogenous cannabinoid signaling have enhanced clinical potential; however, their effects depend on the type of noxious stimulus.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cyclohexanols; Endocannabinoids; Male; Mice; Mice, Inbred C57BL; Morphine; Nociception; Pain; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1

2012
Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats.
    The international journal of neuropsychopharmacology, 2010, Volume: 13, Issue:3

    The 'cannabinoid hypothesis' of schizophrenia tulates that over-activity of the endocannabinoid system might contribute to the aetiology of schizophrenia. In keeping with this hypothesis, increased expression of CB1 receptors, elevation of the endocannabinoid anandamide (AEA) and cannabinoid-induced cognitive changes have been reported in animal models of schizophrenia and psychotic patients. In this study we measured brain endocannabinoid levels and [35S]GTPgammaS binding stimulated by the CB receptor agonist CP55,940 in rats undergoing withdrawal from subchronic administration of phencyclidine (PCP), a well-established pharmacological model of schizophrenia. We also investigated whether systemic application of the fatty-acid amide hydrolase (FAAH) inhibitor URB597 or CB1 receptor blockade by AM251 affected the following PCP-induced behavioural deficits reminiscent of schizophrenia-like symptoms: (1) working-memory impairment (cognitive deficit), (2) social withdrawal (negative symptom), and (3) hyperactivity in response to d-amphetamine challenge (positive symptoms). PCP-treated rats showed increased endocannabinoid levels in the nucleus accumbens and ventral tegmental area, whereas CB1 receptor expression and CP55,940-stimulated [35S]GTPgammaS binding were unaltered. URB597 reversed the PCP-induced social withdrawal but caused social withdrawal and working-memory deficits in saline-treated rats that were comparable to those observed after PCP treatment. Administration of AM251 ameliorated the working-memory deficit in PCP-treated rats, but impaired working memory in saline-injected controls. Taken together, these results suggest that FAAH inhibition may improve negative symptoms in PCP-treated rats but produce deleterious effects in untreated animals, possibly by disturbing endocannabinoid tone. A similar pattern (beneficial for schizophrenia-related cognitive deficits, but detrimental under normal conditions) accompanies CB1 receptor blockade.

    Topics: Amidohydrolases; Amphetamine; Animals; Autoradiography; Behavior, Animal; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Central Nervous System Stimulants; Cyclohexanols; Drug Administration Schedule; Drug Interactions; Enzyme Inhibitors; Guanosine 5'-O-(3-Thiotriphosphate); Hallucinogens; Interpersonal Relations; Male; Memory, Short-Term; Motor Activity; Neuropsychological Tests; Phencyclidine; Piperidines; Protein Binding; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Statistics, Nonparametric; Sulfur Isotopes; Time Factors

2010
Interactions between endocannabinoids and stress-induced decreased sensitivity to natural reward.
    Progress in neuro-psychopharmacology & biological psychiatry, 2007, Apr-13, Volume: 31, Issue:3

    Since endocannabinoids modulate reward processing and the stress response, we tested the hypothesis that endocannabinoids regulate stress-induced decreased sensitivity to natural reward. Restraint was used to produce stress-induced reductions in sucrose consumption and preference in male mice. Central cannabinoid receptor (CB(1)) signaling was modulated pharmacologically prior to the application of stress. The preference for sucrose over water was significantly decreased in mice exposed to restraint. Treatment of mice with a cannabinoid receptor agonist (CP55940) or fatty acid amide hydrolase inhibitor (URB597) attenuated, while the CB(1) receptor antagonist/inverse agonist, rimonabant (SR141716), enhanced, stress-induced decreases in sucrose preference. These data are consistent with a tonically active, stress-inhibitory role for the CB(1) receptor. Mice treated with 10 daily episodes of restraint showed reduced sucrose preference that was unaffected by CP55940 and URB597. However, rimonabant produced a greater reduction in sucrose preference on day 10 compared to day 1. These data suggest that on day 10, endocannabinoid signaling is maximally activated and essential for reward sensitivity. The findings of the present study indicate that the CB(1)/endocannabinoid signaling system is an important allostatic mediator that both modulates the responses of mice to stress and is itself modulated by stress.

    Topics: Analysis of Variance; Animals; Behavior, Animal; Benzamides; Body Weight; Cannabinoid Receptor Modulators; Carbamates; Cyclohexanes; Cyclohexanols; Dose-Response Relationship, Drug; Drinking Behavior; Drug Interactions; Endocannabinoids; Food Deprivation; Food Preferences; Male; Mice; Mice, Inbred ICR; Phenols; Piperidines; Pyrazoles; Restraint, Physical; Reward; Rimonabant; Stress, Psychological; Sucrose; Time Factors; Water Deprivation

2007
Evaluation of the role of nicotinic acetylcholine receptor subtypes and cannabinoid system in the discriminative stimulus effects of nicotine in rats.
    European journal of pharmacology, 2006, Jul-01, Volume: 540, Issue:1-3

    Male Wistar rats were trained to discriminate (-)-nicotine (0.4 mg/kg) from saline under a two-lever, fixed-ratio 10 schedule of water reinforcement. During test sessions the following drugs were coadministered with saline (substitution studies) or nicotine (0.025-0.4 mg/kg; combination studies): the alpha4beta2 nicotinic acetylcholine receptor subtype antagonist dihydro-beta-erythroidine (DHbetaE), the non-selective nicotinic acetylcholine receptor subtype antagonist mecamylamine, the alpha7 nicotinic acetylcholine receptor subtype antagonist methyllycaconitine (MLA), the alpha4beta2 nicotinic acetylcholine receptor subtype agonist 5-iodo-3-(2(S)-azetidinylmethoxy)pyridine (5-IA), the cannabinoid CB1 receptor antagonist/partial agonist rimonabant, the cannabinoid CB2 receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicyclo-[2.2.1]heptan-2-yl]5-(4-chloro-3-methyl-phenyl)-1-(4-methybenzyl)pyrazole-3-carboxamide (SR 144528), the cannabinoid CB1/2 receptor agonists (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)-phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol (CP 55,940) or R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]-pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)-methanone mesylate (WIN 55,212-2), the endogenous cannabinoid agonist and non-competitive alpha7 nicotinic acetylcholine receptor subtype antagonist anandamide, the anandamide uptake and fatty acid amide hydrolase inhibitor N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM-404), the fatty acid amide hydrolase inhibitor cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB 597), AM-404+anandamide or URB 597+anandamide. 5-IA (0.01 mg/kg) fully substituted for nicotine, while other drugs were inactive. In combination studies, DHbetaE and mecamylamine dose-dependently attenuated the discriminative stimulus effects of nicotine and the full substitution of 5-IA, while MLA, rimonabant, SR 144528, CP 55,940, WIN 55,212-2, and URB 597 did not alter the nicotine cue. Pretreatment with AM-404+anandamide or URB 597+anandamide weakly enhanced nicotine-lever responding. Our pharmacological analyses demonstrates that the expression of nicotine discrimination is under the control of nicotinic acetylcholine receptor subtypes composed of alpha4beta2 (but not of alpha7) subunits. Furthermore, we excluded the involvement of either cannabinoid CB1 and CB2 receptors or increases in the endocannabinoid tone in the nicotine discrimination.

    Topics: Aconitine; Animals; Arachidonic Acids; Azetidines; Benzamides; Benzoxazines; Camphanes; Cannabinoid Receptor Antagonists; Carbamates; Cyclohexanols; Dihydro-beta-Erythroidine; Discrimination Learning; Dose-Response Relationship, Drug; Drug Synergism; Endocannabinoids; Male; Mecamylamine; Morpholines; Naphthalenes; Nicotine; Nicotinic Agonists; Nicotinic Antagonists; Polyunsaturated Alkamides; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Nicotinic

2006