undecan-2-one has been researched along with 2-heptanone in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 1 (25.00) | 2.80 |
Authors | Studies |
---|---|
khmel', IA; Koksharova, OA; Kuznetsov, AE; Pliuta, VA; Popova, FF | 1 |
Broekaert, K; Calliauw, F; Heyndrickx, M; Horemans, B; Michiels, C | 1 |
Khmel, IA; Koksharova, OA; Melkina, OE; Plyuta, VA; Zavilgelsky, GB | 1 |
Breckner, CJ; Chen, X; Cordell, WT; Hernández Lozada, NJ; Jindra, MA; Pfleger, BF; Simmons, TR; Yan, Q | 1 |
4 other study(ies) available for undecan-2-one and 2-heptanone
Article | Year |
---|---|
[The ability of the natural ketones to interact with bacterial quorum sensing systems].
Topics: Bacterial Proteins; Biosensing Techniques; Escherichia coli; Ketones; Ligases; Quorum Sensing; Repressor Proteins; Trans-Activators; Transcription Factors | 2014 |
Spoilage potential of Vagococcus salmoninarum in preservative-free, MAP-stored brown shrimp and differentiation from Brochothrix thermosphacta on streptomycin thallous acetate actidione agar.
Topics: Agar; Animals; Brochothrix; Cycloheximide; Enterococcaceae; Food Contamination; Food Packaging; Gas Chromatography-Mass Spectrometry; Ketones; Organometallic Compounds; Penaeidae; RNA, Ribosomal, 16S; Seafood; Shellfish; Streptomycin; Volatile Organic Compounds | 2016 |
Ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit DnaK-dependent refolding of heat-inactivated bacterial luciferases in Escherichia coli cells lacking small chaperon IbpB.
Topics: Escherichia coli; Escherichia coli Proteins; Heat-Shock Proteins; Hot Temperature; HSP70 Heat-Shock Proteins; Ketones; Luciferases, Bacterial; Molecular Chaperones; Protein Folding; Volatile Organic Compounds | 2017 |
Metabolic engineering of β-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone.
Topics: Bacterial Proteins; Escherichia coli; Ketones; Metabolic Engineering; Metabolic Networks and Pathways; Oxidation-Reduction; Providencia; Thiolester Hydrolases | 2020 |