udp-n-acetylmuramic-acid-pentapeptide has been researched along with alanylalanine* in 3 studies
3 other study(ies) available for udp-n-acetylmuramic-acid-pentapeptide and alanylalanine
Article | Year |
---|---|
The β-lactamase gene regulator AmpR is a tetramer that recognizes and binds the D-Ala-D-Ala motif of its repressor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide.
Inducible expression of chromosomal AmpC β-lactamase is a major cause of β-lactam antibiotic resistance in the Gram-negative bacteria Pseudomonas aeruginosa and Enterobacteriaceae. AmpC expression is induced by the LysR-type transcriptional regulator (LTTR) AmpR, which activates ampC expression in response to changes in peptidoglycan (PG) metabolite levels that occur during exposure to β-lactams. Under normal conditions, AmpR represses ampC transcription by binding the PG precursor UDP-N-acetylmuramic acid (MurNAc)-pentapeptide. When exposed to β-lactams, however, PG catabolites (1,6-anhydroMurNAc-peptides) accumulate in the cytosol, which have been proposed to competitively displace UDP-MurNAc-pentapeptide from AmpR and convert it into an activator of ampC transcription. Here we describe the molecular interactions between AmpR (from Citrobacter freundii), its DNA operator, and repressor UDP-MurNAc-pentapeptide. Non-denaturing mass spectrometry revealed AmpR to be a homotetramer that is stabilized by DNA containing the T-N11-A LTTR binding motif and revealed that it can bind four repressor molecules in an apparently stepwise manner. A crystal structure of the AmpR effector-binding domain bound to UDP-MurNAc-pentapeptide revealed that the terminal D-Ala-D-Ala motif of the repressor forms the primary contacts with the protein. This observation suggests that 1,6-anhydroMurNAc-pentapeptide may convert AmpR into an activator of ampC transcription more effectively than 1,6-anhydroMurNAc-tripeptide (which lacks the D-Ala-D-Ala motif). Finally, small angle x-ray scattering demonstrates that the AmpR·DNA complex adopts a flat conformation similar to the LTTR protein AphB and undergoes only a slight conformational change when binding UDP-MurNAc-pentapeptide. Modeling the AmpR·DNA tetramer bound to UDP-MurNAc-pentapeptide predicts that the UDP-MurNAc moiety of the repressor participates in modulating AmpR function. Topics: Bacterial Proteins; beta-Lactamases; Dipeptides; Peptidoglycan; Protein Binding; Scattering, Small Angle; Uridine Diphosphate N-Acetylmuramic Acid | 2015 |
Analysis of peptidoglycan precursors in vancomycin-resistant enterococci.
Analysis by high-pressure liquid chromatography of the cytoplasmic peptidoglycan precursors of a high- and a low-level vancomycin-resistant Enterococcus spp. was performed before and after induction of resistance. This analysis showed a decrease of the D-Ala-D-Ala and UDP-MurNac-pentapeptide pools, an increase of the UDP-MurNac-tripeptide pool, and the appearance of new UDP-MurNac-containing material. These results lead us to suggest that the vancomycin-induced carboxypeptidase activity cleaves the D-Ala-D-Ala (L. Gutmann, D. Billot-Klein, S. Al-Obeid, I. Klare, S. Francoul, E. Collatz, and J. van Heijenoort, Antimicrob. Agents Chemother. 36:77-80, 1992), which in turn would prevent formation of the normal UDP-MurNac-pentapeptide and thereby of the vancomycin target. The novel UDP-MurNac-containing material is thought to correspond to peptidoglycan precursors which might be synthesized by an alternate pathway (T. D. H. Bugg, G. D. Wright, S. Dutka-Malen, M. Arthur, P. Courvalin, and C. T. Walsh, Biochemistry 30:10408-10415, 1991) and which would be unable to bind vancomycin in glycopeptide-resistant enterococci. Topics: Cells, Cultured; Chromatography, High Pressure Liquid; Dipeptides; Drug Resistance, Microbial; Enterococcus; Peptidoglycan; Uridine Diphosphate N-Acetylmuramic Acid; Vancomycin | 1992 |
Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3.
The two membrane precursors (pentapeptide lipids I and II) of peptidoglycan are present in Escherichia coli at cell copy numbers no higher than 700 and 2,000 respectively. Conditions were determined for an optimal accumulation of pentapeptide lipid II from UDP-MurNAc-pentapeptide in a cell-free system and for its isolation and purification. When UDP-MurNAc-tripeptide was used in the accumulation reaction, tripeptide lipid II was formed, and it was isolated and purified. Both lipids II were compared as substrates in the in vitro polymerization by transglycosylation assayed with PBP 1b or PBP 3. With PBP 1b, tripeptide lipid II was used as efficiently as pentapeptide lipid II. It should be stressed that the in vitro PBP 1b activity accounts for at best to 2 to 3% of the in vivo synthesis. With PBP 3, no polymerization was observed with either substrate. Furthermore, tripeptide lipid II was detected in D-cycloserine-treated cells, and its possible in vivo use in peptidoglycan formation is discussed. In particular, it is speculated that the transglycosylase activity of PBP 1b could be coupled with the transpeptidase activity of PBP 3, using mainly tripeptide lipid II as precursor. Topics: Bacterial Proteins; Carrier Proteins; Cell Membrane; Dipeptides; Escherichia coli; Glycosylation; Hexosyltransferases; Multienzyme Complexes; Muramoylpentapeptide Carboxypeptidase; Penicillin-Binding Proteins; Peptidoglycan; Peptidyl Transferases; Polyisoprenyl Phosphate Monosaccharides; Polyisoprenyl Phosphate Oligosaccharides; Uridine Diphosphate N-Acetylmuramic Acid | 1992 |