ucn-1028-c has been researched along with 8-(4-sulfophenyl)theophylline* in 3 studies
3 other study(ies) available for ucn-1028-c and 8-(4-sulfophenyl)theophylline
Article | Year |
---|---|
In vitro ischaemic preconditioning of isolated rabbit cardiomyocytes: effects of selective adenosine receptor blockade and calphostin C.
The aim was to determine if in vitro ischaemic preincubation can precondition cardiomyocytes and if the responses to adenosine receptor antagonists are similar to those previously determined during "metabolic" preconditioning with glucose deprivation or adenosine agonists.. Isolated rabbit cardiomyocytes were preconditioned with 10 min of ischaemic preincubation, followed by a 30 min postincubation before the final sustained ischaemic period. The protein kinase C inhibitor calphostin C or the adenosine receptor antagonists 8-sulphophenyltheophylline (SPT), BW 1433U, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) were added either during the preincubation or into the final ischaemic pellet. Adenosine deaminase (10 U.ml-1) was added during ischaemic preincubation. Rates of contracture and extent of injury were determined by sequential sampling and assessment of trypan blue permeability following 85 mOsM swelling.. Myocytes were preconditioned by a 10 min in vitro ischaemic preincubation. Preincubation with 100 microM SPT or with adenosine deaminase, or addition of 200 nM calphostin C into the final ischaemic pellet did not alter rates of rigor contracture but nearly abolished protection. A significant degree of protection was maintained following ischaemic preincubation with the highly selective adenosine A1 receptor blocker DPCPX (10 microM), while the A1/A3 antagonist BW 1433U (1 microM) severely limited protection. SPT and BW 1433U added only into the final ischaemic pellet of preconditioned cells significantly blocked protection, while protection was maintained in the presence of DPCPX.. Ischaemic preconditioning of cardiomyocytes is blocked by adenosine receptor antagonists known to bind to A3 receptors but not by DPCPX which has high affinity for A1 receptors, but little affinity for A3 receptors. Maintenance of protection during the final ischaemic phase has a similar receptor specificity. Blockade of protein kinase C activity abolishes protection. Ischaemic and metabolic preconditioning in vitro appear to occur through similar pathways. Topics: Animals; In Vitro Techniques; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Naphthalenes; Protein Kinase C; Purinergic P1 Receptor Antagonists; Rabbits; Theophylline; Xanthines | 1995 |
Preconditioning of isolated rabbit cardiomyocytes: induction by metabolic stress and blockade by the adenosine antagonist SPT and calphostin C, a protein kinase C inhibitor.
The aim was to determine if isolated rabbit cardiomyocytes could be preconditioned.. Cardiomyocytes isolated from rabbit hearts were subjected to 15 min oxygenated preincubation, with and without substrate, prior to concentration into an ischaemic slurry, with or without glucose present. The effects of an adenosine agonist (CCPA), an adenosine receptor blocker (SPT), and the protein kinase C blocker, calphostin C, on rates of ischaemic contracture and survival of the myocytes were determined after various times of ischaemia, following resuspension of the cells in hypotonic media.. A glucose-free preincubation period protected myocytes from subsequent ischaemic injury, with a 40% reduction of cell death at 90-120 min and 1-2 h delay in cell death. CCPA added during preincubation and during the ischaemic period also tended to protect from injury, but the differences were not significant and protection was less than with a glucose-free preincubation. Although preincubation with CCPA did not precondition, SPT added to the preincubation medium only, or to both the preincubation medium and the ischaemic pellet, inhibited the preconditioning effect of a glucose-free preincubation period. Calphostin C, added only into the ischaemic pellet, inhibited the preconditioning effect of glucose-free preincubation.. Glucose-free preincubation protects ischaemic isolated myocytes from subsequent ischaemia. The degree of protection is great enough to account for protection seen in intact hearts, following preconditioning protocols. Protection is blocked by SPT and a highly specific protein kinase C inhibitor, calphostin C. Protection from ischaemic injury that seems to mimic ischaemic preconditioning can be induced in isolated cardiomyocytes, and appears dependent on adenosine receptors and activation of protein kinase C. Topics: Adenosine; Animals; Cell Size; Cell Survival; Cells, Cultured; Glucose; Heart; Myocardial Ischemia; Myocardium; Naphthalenes; Polycyclic Compounds; Protein Kinase C; Rabbits; Theophylline; Time Factors | 1994 |
Adenosine receptor specificity in preconditioning of isolated rabbit cardiomyocytes: evidence of A3 receptor involvement.
The aim was to further characterise an experimental model of preconditioning of isolated rabbit cardiomyocytes and to determine the role of adenosine receptor subtypes in initiation of the protective response.. Isolated myocytes were subjected to 5 min preincubation in the presence or absence of glucose and various agonists and antagonists of adenosine receptors. Ischaemic pelleting was preceded by a 30 min postincubation period. Rate and extent of injury during ischaemia was determined by sequential sampling of the pelleted cells and assessment of trypan blue permeability following 85 mOsm swelling.. Myocytes were preconditioned with a 30-50% reduction of injury by a 5 min glucose-free preincubation. Substitution of 5 mM pyruvate for glucose during preincubation did not prevent the protective response. Protection was maintained over a 60-180 min postincubation period. Protection was blocked by 100 microM of the non-specific adenosine A1/A2 antagonist SPT, both when added only during preincubation or only into the ischaemic pellet. Calphostin C, a specific protein kinase C inhibitor at 200 nM, added to the ischaemic pellet blocked protection. Preincubation with R-PIA, the adenosine A1 agonist, did not precondition at an A1 selective dose of 1 microM, but did at 100 microM. The selective A2 agonist CGS 12680 (1 microM) did not precondition. The selective A1/A3 adenosine agonist, APNEA, preconditioned at 1 microM and 200 nM dose levels. Preconditioning induced either by 200 nM APNEA or by glucose-free preincubation was not blocked by 200 nM or 10 microM of the A1 antagonist DPCPX, which has extremely low affinity for A3 receptors, but was blocked by 1 microM of the A1/A3 adenosine antagonist BW 1433U83.. Preconditioning can be induced in isolated myocytes by a 5 min preincubation/30 min postincubation protocol, and a similar protection induced by adenosine agonists with A3, but not A1 selectivity. Preconditioning is blocked by non-selective or selective A1/A3 adenosine antagonists and a specific protein kinase C inhibitor, but not by A1 antagonists with little affinity for A3 receptors. The results suggest that preconditioning in isolated rabbit myocytes requires participation of adenosine receptors with agonist/antagonist binding characteristics of the A3 subtype, and is likely to be mediated by activation of protein kinase C. Topics: Adenosine; Animals; Antihypertensive Agents; Cells, Cultured; Glucose; Myocardial Infarction; Myocardial Ischemia; Myocardium; Naphthalenes; Phenethylamines; Phenylisopropyladenosine; Polycyclic Compounds; Protein Kinase C; Purinergic Antagonists; Pyruvates; Pyruvic Acid; Rabbits; Receptors, Purinergic P1; Theophylline; Time Factors; Trypan Blue; Xanthines | 1994 |