ucn-1028-c has been researched along with 1-6-bis(cyclohexyloximinocarbonyl)hexane* in 4 studies
4 other study(ies) available for ucn-1028-c and 1-6-bis(cyclohexyloximinocarbonyl)hexane
Article | Year |
---|---|
Signalling mechanisms underlying the myogenic response in human subcutaneous resistance arteries.
In this study we have examined for the first time the signal transduction mechanisms involved in the generation of pressure-dependent myogenic tone in human small resistance arteries from the subcutaneous vascular bed.. Myogenic responses and the subcellular mechanisms involved in the generation of this response were studied on a pressure myograph.. Human subcutaneous resistance arteries constricted 14.1+/-1.1% in response to an increases in intraluminal pressure from 40 to 80 mmHg and a further 3.5+/-1.7% in response to the 80-120-mmHg pressure step. Ca(2+) depletion or nifedipine abolished this response, whereas BAY K 8644 increased this response to 20.6+/-2.1% (P<0.05, response vs. control). The phospholipase C inhibitor U-73122 reduced the myogenic response to 2.5+/-1.0% at 80 mmHg (P<0.01, response vs. control) and abolished it at 120 mmHg. Diacylglycerol lipase inhibition with RHC-80267 abolished all myogenic responses to pressure. The protein kinase C (PKC) activator phorbol 12,13-dibutyrate increased the maximal myogenic response to 20.9+/-1.8% (P<0.05, response vs. control), whereas the PKC inhibitor calphostin C abolished myogenic responses. These data show that the generation of pressure-dependent myogenic tone in human subcutaneous arteries is dependent on Ca(2+) influx via voltage operated Ca(2+) channels (VOCCs) and a concomitant requirement for the activation of phospholipase C (PLC), diacylglycerol, and PKC. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Aged; Analysis of Variance; Arteries; Caffeine; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium-Transporting ATPases; Cyclohexanones; Enzyme Inhibitors; Estrenes; Female; Humans; In Vitro Techniques; Indoles; Lipoprotein Lipase; Male; Middle Aged; Muscle, Smooth, Vascular; Naphthalenes; Nifedipine; Phorbol 12,13-Dibutyrate; Protein Kinase C; Pyrrolidinones; Ryanodine; Ryanodine Receptor Calcium Release Channel; Signal Transduction; Type C Phospholipases; Vascular Resistance | 2001 |
[8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate, HCl], the inhibitor of intracellular calcium mobilization, blocked mitogen-induced T cell proliferation by interfering with the sustained phase of protein kinase C activation.
The physiological role of IP(3)-dependent Ca(2+) release in T cell activation was in question due to the contradictory findings that [8-(Diethylamino)octyl-3,4,5-trimethoxybenzoate, HCl] (TMB-8), an inhibitor of intracellular Ca(2+) mobilization, blocked T cell proliferation, curtailing specifically the level of released Ca(2+) did not affect T cell activation and T cell line lacking IP(3) receptor was defective in IL-2 production in response to TCR/CD3 ligand. In the present study we found that TMB-8 inhibited Concanavalin A (Con A)- but not PMA/Ionomycin-induced T cell proliferation in a reversible and dose-dependent manner. The kinetic study revealed that TMB-8 exerted the inhibitory effect at a very early step of T cell activation. The Ca(2+) ionophore ionomycin augmented instead of overcoming the inhibitory effect of TMB-8, although the same doses of ionomycin alone had no effect on Con A-induced T cell proliferation. PMA the metabolically stable, but not diacylglycerol (DAG) the metabolically labile, activator of protein Kinase C (PKC) completely overcome the antiproliferative effect of TMB-8. A specific DAG lipase inhibitor RHC80267 also overcome the effect of TMB-8. Taken together, these results showed that the process of Ca(2+) release through IP(3) receptor, not the released Ca(2+), is essential for the sustained phase of PKC activation during T cell proliferation. Topics: Animals; Calcium; Calcium Channel Blockers; Calcium Channels; Cell Division; Concanavalin A; Cyclohexanones; Diglycerides; Enzyme Activation; Gallic Acid; Inositol 1,4,5-Trisphosphate; Inositol 1,4,5-Trisphosphate Receptors; Ionomycin; Mice; Mice, Inbred BALB C; Naphthalenes; Protein Kinase C; Receptors, Cytoplasmic and Nuclear; T-Lymphocytes; Tetradecanoylphorbol Acetate | 2000 |
Diacylglycerol mediates the T-cell receptor-driven Ca(2+) influx in T cells by a novel mechanism independent of protein kinase C activation.
The mechanism of Ca(2+) influx in nonexcitable cells is not known yet. According to the capacitative hypothesis, Ca(2+) influx is triggered by IP(3)-mediated Ca(2+) release from the intracellular Ca(2+) stores. Conversely, many workers have reported a lack of association between release and influx. In this work, the role of diacylglycerol (DAG) as the mediator of T-cell receptor (TCR)-driven Ca(2+) influx in T cells was investigated. Stimulation of mouse splenic T cells with naturally occurring DAG caused Ca(2+) entry in a dose- and time-dependent manner. Such stimulation was blocked by Ni(2+), a divalent cation known to block Ca(2+) channels. Inhibition of protein kinase C (PKC) by calphostin C did not inhibit, but slightly enhanced, the DAG-stimulated Ca(2+) entry. However, inhibition of DAG metabolism by DAG kinase and lipase inhibitors enhanced the DAG-stimulated Ca(2+) entry. DAG lipase and kinase inhibitors also enhanced the Ca(2+) entry in T cells stimulated through TCR/CD3 complex with anti-CD3 antibody. Calphostin C did not affect the anti-CD3-stimulated Ca(2+) entry. These results showed that TCR-driven Ca(2+) influx in T cells is mediated by DAG through a novel mechanism(s) independent of PKC activation. Topics: Animals; Calcium Signaling; Cyclohexanones; Diglycerides; Enzyme Activation; Enzyme Inhibitors; In Vitro Techniques; Lipoprotein Lipase; Mice; Mice, Inbred BALB C; Naphthalenes; Nickel; Protein Kinase C; Pyrimidinones; Receptors, Antigen, T-Cell; T-Lymphocytes; Thiazoles | 2000 |
The role of diacylglycerol and activation of protein kinase C in alpha 1A-adrenoceptor-mediated contraction to noradrenaline of rat isolated epididymal vas deferens.
1. The mechanism of contraction to noradrenaline (pEC50 5.6 +/- 0.1) in the rat epididymal vas deferens (mediated via alpha 1A-adrenoceptors) has been studied in functional experiments. 2. Contractions to noradrenaline at 10(-6) M were potentiated by the diacylglycerol (DAG) kinase inhibitor R 59022 (3 x 10(-7) M) from 49 +/- 4% to 63 +/- 3% maximum response and the time taken from initiation of contraction to the maximum response was reduced from 16 +/- 2 s to 9 +/- 1 s. The same contractions were not significantly potentiated by the DAG lipase inhibitor, U-57,908, 10(-5) M (51 +/- 2% control and 53 +/- 4% in the presence of U-57,908) nor was the time taken from initiation of contraction to the maximum response significantly altered (17 +/- 1 s control and 16 +/- 1 s in the presence of U-57,908). 3. Concentration-dependent contractions to noradrenaline (NA) were reduced by staurosporine (10(-7) M) and the selective protein kinase C inhibitor, calphostin C (10(-6) M) from 68 +/- 2% (NA, 3 x 10(-6) M) to 28 +/- 2% and 20 +/- 2% respectively and from 94 +/- 2% (NA, 3 x 10(-5) M) to 50 +/- 2% and 44 +/- 2% respectively. Contractions to K+ (40 +/- 2% maximum response to NA) were also significantly reduced by staurosporine (10(-7) M) (35 +/- 2%) but not by calphostin C (43 +/- 3%). 4. The phorbol ester, phorbol-12,13-dibutyrate (PDBu), produced a phasic, concentration-dependent contraction (10(-7) M - 10(-4) M) which was 41 +/- 2% of the maximum response to NA at 10(-4) M PDBu. The contraction to PDBu (10(-5) M) was reduced by calphostin C (10(-6) M) from 33 +/- 5% to 4 +/- 1% maximum response to NA. 5. Non-cumulative contractions to NA (10(-8) M - 10(-4) M) were abolished in Ca(2+)-free Krebs solution containing EGTA (1 mM) and were reduced in the presence of nifedipine (10(-6)M) in normal Krebs solution by 91 +/- 2% at 10(-4)M NA. The contraction to PDBu (10(-5)M, 33 +/- 5% maximum response to NA) was also abolished in Ca(2+)-free Krebs solution containing EGTA (1 mM) or by the presence of nifedipine (10(-6)M) in normal Krebs solution. 6. When NA (10(-4)M) was added to vasa deferentia in Ca(2+)-free Krebs solution containing EGTA (1 mM), following its wash out (and with EGTA later removed from the Krebs solution), readdition of Ca2+ (2.5 mM) to the Krebs solution produced no response. Cyclopiazonic acid (10(-5)M), which can deplete Ca2+ from intracellular stores, also produced no contraction. Therefore influx of extracellular Ca2+ is not a consequence of dep Topics: Animals; Calcium; Carcinogens; Cyclohexanones; Diglycerides; Lipoprotein Lipase; Male; Naphthalenes; Norepinephrine; Phorbol 12,13-Dibutyrate; Platelet Activating Factor; Protein Kinase C; Pyrimidinones; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-1; Staurosporine; Thiazoles; Vas Deferens | 1996 |