ubiquinone-q2 has been researched along with ubiquinone-8* in 3 studies
3 other study(ies) available for ubiquinone-q2 and ubiquinone-8
Article | Year |
---|---|
Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues.
We studied ubiquinone (Q), Q homologue ratio, and steady-state levels of mCOQ transcripts in tissues from mice fed ad libitum or under calorie restriction. Maximum ubiquinone levels on a protein basis were found in kidney and heart, followed by liver, brain, and skeletal muscle. Liver and skeletal muscle showed the highest Q(9)/Q(10) ratios with significant interindividual variability. Heart, kidney, and particularly brain exhibited lower Q(9)/Q(10) ratios and interindividual variability. In skeletal muscle and heart, the most abundant mCOQ transcript was mCOQ7, followed by mCOQ8, mCOQ2, mPDSS2, mPDSS1, and mCOQ3. In nonmuscular tissues (liver, kidney, and brain) the most abundant mCOQ transcript was mCOQ2, followed by mCOQ7, mCOQ8, mPDSS1, mPDSS2, and mCOQ3. Calorie restriction increased both ubiquinone homologues and mPDSS2 mRNA in skeletal muscle, but mCOQ7 was decreased. In contrast, Q(9) and most mCOQ transcripts were decreased in heart. Calorie restriction also modified the Q(9)/Q(10) ratio, which was increased in kidney and decreased in heart without alterations in mPDSS1 or mPDSS2 transcripts. We demonstrate for the first time that unique patterns of mCOQ transcripts exist in muscular and nonmuscular tissues and that Q and COQ genes are targets of calorie restriction in a tissue-specific way. Topics: Animals; Brain; Caloric Restriction; Free Radicals; Kidney; Liver; Mice; Muscle, Skeletal; Myocardium; Organ Specificity; RNA, Messenger; Ubiquinone | 2011 |
Indirect identification of isoprenoid quinones in Escherichia coli by LC-MS with atmospheric pressure chemical ionization in negative mode.
A novel analytical method was applied for identification of isoprenoid quinones in Escherichia coli by liquid chromatography atmospheric press chemical ionization mass spectrometry in negative mode (LC-NI-APCI-MS). Extraction and clean-up of sample were carried out on Sep-Pak Plus Silica solid-phase extraction cartridges. Ubiquinone-7 (UQ-7), Ubiquinone-8 (UQ-8) and Mequinone-8 (MK-8) were determined directly using combined information on retention time, molecular ion mass, fragment ion masses and UV characteristic spectrometry without any standard reagent. It was found that UQ-8 was the major component of isoprenoid quinones in Escherichia coli under aerobic condition. Compared with UQ-8, the relative abundance of UQ-7 and MK-8 is only 15% and 14%, respectively. The average recoveries of UQ-6, UQ-10 and vitamin K(1) in Escherichia coli were investigated by standard spiking experiment. The recoveries were achieved in the range from 94 to 106%, and the relative standard deviations (RSD) of the triplicate analysis of the spiked samples (UQ-6, UQ-10 and vitamin K(1)) ranged from 3 to 8%. The detection limits of LC-NI-APCI-MS were estimated to be 5, 40 and 0.8 microg/g dry cell for UQ-6, UQ-10 and vitamin K(1), respectively. Topics: Chromatography, Liquid; Escherichia coli; Mass Spectrometry; Quinones; Sensitivity and Specificity; Terpenes; Ubiquinone; Vitamin K 1; Vitamin K 2 | 2004 |
Pleiotropic phenotypes of fission yeast defective in ubiquinone-10 production. A study from the abc1Sp (coq8Sp) mutant.
We previously constructed two Schizosaccahromyces pombe ubiquinone-10 (or Coenzyme Q10) less mutants, which are either defective for decaprenyl diphosphate synthase or p-hydroxybenzoate polyprenyl diphosphate transferase. To further confirm the roles of ubiquinone in S. pombe, we examined the phenotype of the abc1Sp (coq8Sp) mutant, which is highly speculated to be defective in ubiquinone biosynthesis. We show here that the abc1Sp defective strain did not produce UQ-10 and could not grow on minimal medium. The abc1Sp-deficient strain required supplementation with antioxidants such as cysteine or glutathione to grow on minimal medium. In support of the antioxidant function of ubiquinone, the abc1Sp-deficient strain is sensitive to H2O2 and Cu2+. In addition, expression of the stress inducible ctt1 gene was much induced in the ubiquinone less mutant than wild type. Interestingly, we also found that the abc1-deficient strain as well as other ubiquinone less mutants produced a significant amount of H2S, which suggests that oxidation of sulfide by ubiquinone may be an important pathway for sulfur metabolism in S. pombe. Thus, analysis of the phenotypes of S. pombe ubiquinone less mutants clearly demonstrate that ubiquinone has multiple functions in the cell apart from being an integral component of the electron transfer system. Topics: Antioxidants; Copper; Cysteine; Glutathione; Hydrogen Peroxide; Hydrogen Sulfide; Mutation; Oxidative Stress; Phenotype; Schizosaccharomyces; Ubiquinone | 2003 |