ubiquinone-q2 has been researched along with ubiquinol* in 11 studies
11 other study(ies) available for ubiquinone-q2 and ubiquinol
Article | Year |
---|---|
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I.
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion. Topics: Amino Acid Motifs; Animals; Binding Sites; Biocatalysis; Cattle; Electron Transport Complex I; Gene Expression; Hydrophobic and Hydrophilic Interactions; Kinetics; Mitochondria, Heart; Models, Molecular; Oxidoreductases; Protein Binding; Protein Interaction Domains and Motifs; Protein Structure, Secondary; Proteolipids; Recombinant Proteins; Static Electricity; Substrate Specificity; Swine; Terpenes; Thermodynamics; Thermus thermophilus; Ubiquinone | 2017 |
Three-Year Follow-Up of High-Dose Ubiquinol Supplementation in a Case of Familial Multiple System Atrophy with Compound Heterozygous COQ2 Mutations.
We report a 3-year follow-up of high-dose ubiquinol supplementation in a case of familial multiple system atrophy (MSA) with compound heterozygous nonsense (R387X) and missense (V393A) mutations in COQ2. A high-dose ubiquinol supplementation substantially increased total coenzyme Q Topics: Follow-Up Studies; Humans; Male; Middle Aged; Multiple System Atrophy; Mutation; Ubiquinone | 2017 |
Ubiquinol-10 and ubiquinone-10 levels in umbilical cord blood of healthy foetuses and the venous blood of their mothers.
Despite their being good markers of oxidative stress for clinical use, little is known about ubiquinol-10 (reduced coenzyme Q10) and ubiquinone-10 (oxidized coenzyme Q10) levels in foetuses and their mothers. This study investigates oxidative stress in 10 healthy maternal venous, umbilical arterial and venous bloods after vaginal delivery by measuring ubiquinol-10 and ubiquinone-10 levels. Serum ubiquinol-10 and ubiquinone-10 levels were measured by HPLC with a highly sensitive electrochemical detector. Maternal venous ubiquinol-10 and ubiquinone-10 levels were significantly higher than umbilical arterial and venous levels (all p < 0.001). However, the ubiquinone-10/total coenzyme Q10 (CoQ10) ratio, which reflects the redox status, was significantly higher in umbilical arterial and umbilical venous blood compared to maternal venous blood (all p < 0.001). The ubiquinone-10/total CoQ10 ratio was higher in umbilical arterial than in umbilical venous blood (p < 0.01). The present study demonstrated that foetuses were under higher oxidative stress than their mothers. Topics: Adult; Chromatography, High Pressure Liquid; Cross-Sectional Studies; Female; Fetal Blood; Fetus; Humans; Mothers; Pregnancy; Ubiquinone; Young Adult | 2010 |
High-sensitivity simultaneous analysis of ubiquinol-10 and ubiquinone-10 in human plasma.
A method to determine ubiquinol-10 and ubiquinone-10 in human serum was developed by using high-performance liquid chromatography consisting of a semi-microcolumn switching system and an electrochemical detector (ECD), which requires minimized sample pre-treatments. A linear dynamic range was obtained from 1.0 to 5000 ng/mL, and recovery values of 89-105% were observed in a low-concentration region of 10-50 ng/mL. In a long operation test, a good precision was maintained during 5100 runs without any maintenance on ECD or columns. In addition, retention behaviors of other ubiquinone homologues were examined. Topics: Chromatography, High Pressure Liquid; Electrochemistry; Humans; Reproducibility of Results; Sensitivity and Specificity; Ubiquinone | 2008 |
Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum.
It is now well established that, for photosynthetic bacteria, the aerobic-to-microaerophilic transition activates the membrane-bound sensor kinase RegB, which subsequently phosphorylates the transcriptional activator RegA, thereby inducing elevated levels of intracellular photosynthetic membranes. The mechanism of RegB activation--in particular, the role of ubiquinone-10--is controversial at present. One problem here is that very limited quantitative in vivo data for the response of the ubiquinone redox state to different cultivation conditions exist. Here, we utilize Rhodospirillum rubrum to study the correlation of the quinone redox state to the expression level of photosynthetic membranes and determine an effective response function directly. Our results show that changes in the photosynthetic membrane levels between 50 and 95% of that maximally attainable are associated with only a twofold change in the ubiquinol/ubiquinone ratio and are not necessarily proportional to the total levels of either quinone or [NAD(+) + NADH]. There is no correlation between the redox potentials of the quinone and pyridine nucleotide pools. Hill function analysis of the photosynthetic membrane induction in response to the quinone redox state suggests that the induction process is highly cooperative. Our results are probably generally applicable to quinone redox regulation in bacteria. Topics: Aerobiosis; Bacterial Proteins; Cell Membrane; Chromatography, High Pressure Liquid; Light-Harvesting Protein Complexes; Mass Spectrometry; NAD; NADP; Oxidation-Reduction; Photosynthesis; Rhodospirillum rubrum; Ubiquinone | 2008 |
Specific and rapid analysis of ubiquinones using Craven's reaction and HPLC with postcolumn derivatization.
A new method for the analysis of ubiquinones in various samples was developed using an HPLC system with postcolumn derivatization. Craven's reaction, a specific color reaction for the analysis of ubiquinones, was used in the system. Because the reaction progressed in organic solvents that contained ubiquinones and ethylcyanoacetate under an alkaline condition, the selectivity for ubiquinone detection was higher than that for ubiquinone detection using the nonderivatized ultraviolet detection system at 275 nm, a system widely used for the analysis of ubiquinones. The new detection system can avoid the adverse effects of impurities. Furthermore, it can confirm specificity by stopping the color reaction under a neutral condition. The detection limit for ubiquinone-10 was 1 ng (1.2 pmol). A good linearity for the calibration curve was observed in the range of 11.7 pmol to 11.7 nmol. To investigate the possible application of this method, various samples, such as soybean capsules used as a dietary supplement and biological materials (rice as well as bovine plasma and liver samples), were applied to the system and their ubiquinone contents were quantified. This method is thought to be widely and conveniently applicable for determining the level of ubiquinones because of its high selectivity for ubiquinone detection. Topics: Animals; Cattle; Chromatography, High Pressure Liquid; Glycine max; Liver; Oryza; Ubiquinone | 2007 |
Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway.
Lipoamide dehydrogenase belongs to a family of pyridine nucleotide disulfide oxidoreductases and is ubiquitous in aerobic organisms. This enzyme also reduces ubiquinone (the only endogenously synthesized lipid-soluble antioxidant) to ubiquinol, the form in which it functions as an antioxidant. The reduction of ubiquinone was linear with time and exhibited turnover numbers of 5 and 1.2 min(-1) in the presence and absence of zinc, respectively. The reaction was stimulated by zinc and cadmium but not by the other divalent ions tested. The zinc/cadmium-dependent stimulation of the reaction increased rapidly and linearly up to a concentration of 0.1 mM and was even further increased at 0.5 mM. At pH 6, the activity was three times higher than at physiological pH. Alteration of the NADPH : NADP(+) ratio revealed that the reaction is inhibited by higher concentrations of the oxidized cofactors. FAD reduced ubiquinone in a dose-dependent manner at a considerably lower rate, suggesting that the reduction of ubiquinone by lipoamide dehydrogenase involves the FAD moiety of the enzyme. Topics: Animals; Antioxidants; Cadmium; Cations, Divalent; Chromatography, High Pressure Liquid; Coenzymes; Dihydrolipoamide Dehydrogenase; Flavin-Adenine Dinucleotide; Heart; Hydrogen-Ion Concentration; Kinetics; Lipid Peroxidation; NAD; NADP; Oxidation-Reduction; Swine; Ubiquinone; Zinc | 2001 |
1-Methyl-4-phenyl-2,3-dihydropyridinium is transformed by ubiquinone to the selective nigrostriatal toxin 1-methyl-4-phenylpyridinium.
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP. Topics: 1-Methyl-4-phenylpyridinium; Animals; Biotransformation; Liposomes; Male; Monoamine Oxidase; Neurotoxins; Oxidation-Reduction; Pyridinium Compounds; Rats; Rats, Wistar; Synaptosomes; Ubiquinone | 1999 |
Kinetic mechanism of beef heart ubiquinol:cytochrome c oxidoreductase.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme. Topics: Animals; Cattle; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Kinetics; Mitochondria, Heart; Ubiquinone | 1992 |
Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations.
It is well known that ubiquinone-10 (coenzyme Q10, ubiquinone 50) acts as an electron carrier of the respiratory chain in mitochondria. In this paper we show that ubiquinol-10, the reduced form of ubiquinone-10, also efficiently scavenges free radicals generated chemically within liposomal membranes. Ubiquinol-10 is about as effective in preventing peroxidative damage to lipids as alpha-tocopherol, which is considered the best lipid-soluble antioxidant in humans. The number of radicals scavenged by each molecule of ubiquinol-10 is 1.1 under our experimental conditions. In contrast to alpha-tocopherol, ubiquinol-10 is not recycled by ascorbate. However, it is known that ubiquinol-10 can be recycled by electron transport carriers present in various biomembranes and possibly by some enzymes. We also show that ubiquinol-10 spares alpha-tocopherol when both antioxidants are present in the same liposomal membranes and that ubiquinol-10, like alpha-tocopherol, does not interact with reduced glutathione. Our data together with previous work on the antioxidant function of ubiquinol reported in the literature strongly suggest that ubiquinol-10 is an important physiological lipid-soluble antioxidant. Topics: Kinetics; Lipid Peroxidation; Liposomes; Phosphatidylcholines; Solubility; Ubiquinone; Vitamin E | 1990 |
Fluorescence probe studies of the interaction of ubiquinone-10 and ubiquinol-10 with phosphatidylcholine bilayers.
Ubiquinone-10 and ubiquinol-10 were incorporated into dipalmitoylphosphatidylcholine vesicles and their interaction with the phospholipids was monitored by fluorescence measurements of diphenylhexatriene used as a probe. It was found that ubiquinone-10 did not perturb the phospholipid thermotropic pretransition but ubiquinol-10 was able to do so. Although, in ethanolic solution, ubiquinone-10 was a better quencher of diphenylhexatriene than ubiquinol-10, when incorporated into phospholipid multibilayers and at temperatures above Tc, ubiquinone-10 produced a smaller decrease in the intensity of the fluorescence probe than ubiquinol-10. Furthermore, the fluorescence anisotropy of the probe was significantly increased by ubiquinol-10 but not by ubiquinone-10. It was concluded that both forms of coenzyme Q have different localizations in the phospholipid bilayer. Topics: Diphenylhexatriene; Fluorescence Polarization; Kinetics; Lipid Bilayers; Models, Biological; Pulmonary Surfactants; Ubiquinone | 1986 |