ubiquinone has been researched along with ubiquinone-7* in 46 studies
46 other study(ies) available for ubiquinone and ubiquinone-7
Article | Year |
---|---|
Homozygous COQ7 mutation: a new cause of potentially treatable distal hereditary motor neuropathy.
Distal hereditary motor neuropathy represents a group of motor inherited neuropathies leading to distal weakness. We report a family of two brothers and a sister affected by distal hereditary motor neuropathy in whom a homozygous variant c.3G>T (p.1Met?) was identified in the COQ7 gene. This gene encodes a protein required for coenzyme Q10 biosynthesis, a component of the respiratory chain in mitochondria. Mutations of COQ7 were previously associated with severe multi-organ disorders characterized by early childhood onset and developmental delay. Using patient blood samples and fibroblasts derived from a skin biopsy, we investigated the pathogenicity of the variant of unknown significance c.3G>T (p.1Met?) in the COQ7 gene and the effect of coenzyme Q10 supplementation in vitro. We showed that this variation leads to a severe decrease in COQ7 protein levels in the patient's fibroblasts, resulting in a decrease in coenzyme Q10 production and in the accumulation of 6-demethoxycoenzyme Q10, the COQ7 substrate. Interestingly, such accumulation was also found in the patient's plasma. Normal coenzyme Q10 and 6-demethoxycoenzyme Q10 levels were restored in vitro by using the coenzyme Q10 precursor 2,4-dihydroxybenzoic acid, thus bypassing the COQ7 requirement. Coenzyme Q10 biosynthesis deficiency is known to impair the mitochondrial respiratory chain. Seahorse experiments showed that the patient's cells mainly rely on glycolysis to maintain sufficient ATP production. Consistently, the replacement of glucose by galactose in the culture medium of these cells reduced their proliferation rate. Interestingly, normal proliferation was restored by coenzyme Q10 supplementation of the culture medium, suggesting a therapeutic avenue for these patients. Altogether, we have identified the first example of recessive distal hereditary motor neuropathy caused by a homozygous variation in the COQ7 gene, which should thus be included in the gene panels used to diagnose peripheral inherited neuropathies. Furthermore, 6-demethoxycoenzyme Q10 accumulation in the blood can be used to confirm the pathogenic nature of the mutation. Finally, supplementation with coenzyme Q10 or derivatives should be considered to prevent the progression of COQ7-related peripheral inherited neuropathy in diagnosed patients. Topics: Ataxia; Child, Preschool; Humans; Male; Mitochondrial Diseases; Mutation; Ubiquinone | 2023 |
Biallelic variants in COQ7 cause distal hereditary motor neuropathy with upper motor neuron signs.
COQ7 encodes a hydroxylase responsible for the penultimate step of coenzyme Q10 (CoQ10) biosynthesis in mitochondria. CoQ10 is essential for multiple cellular functions, including mitochondrial oxidative phosphorylation, lipid metabolism, and reactive oxygen species homeostasis. Mutations in COQ7 have been previously associated with primary CoQ10 deficiency, a clinically heterogeneous multisystemic mitochondrial disorder. We identified COQ7 biallelic variants in nine families diagnosed with distal hereditary motor neuropathy with upper neuron involvement, expending the clinical phenotype associated with defects in this gene. A recurrent p.Met1? change was identified in five families from Brazil with evidence of a founder effect. Fibroblasts isolated from patients revealed a substantial depletion of COQ7 protein levels, indicating protein instability leading to loss of enzyme function. High-performance liquid chromatography assay showed that fibroblasts from patients had reduced levels of CoQ10, and abnormal accumulation of the biosynthetic precursor DMQ10. Accordingly, fibroblasts from patients displayed significantly decreased oxygen consumption rates in patients, suggesting mitochondrial respiration deficiency. Induced pluripotent stem cell-derived motor neurons from patient fibroblasts showed significantly increased levels of extracellular neurofilament light protein, indicating axonal degeneration. Our findings indicate a molecular pathway involving CoQ10 biosynthesis deficiency and mitochondrial dysfunction in patients with distal hereditary motor neuropathy. Further studies will be important to evaluate the potential benefits of CoQ10 supplementation in the clinical outcome of the disease. Topics: Humans; Mitochondria; Mitochondrial Diseases; Motor Neurons; Mutation; Ubiquinone | 2023 |
Phenotypic, molecular, and functional characterization of COQ7-related primary CoQ
Primary coenzyme Q10 (CoQ Topics: Humans; Infant, Newborn; Mitochondria; Mitochondrial Diseases; Ubiquinone | 2023 |
Distal hereditary motor neuropathy caused by coenzyme Q deficiency due to COQ7 variants.
Topics: Humans; Mitochondrial Diseases; Motor Neurons; Ubiquinone | 2023 |
Structure and functionality of a multimeric human COQ7:COQ9 complex.
Coenzyme Q (CoQ) is a redox-active lipid essential for core metabolic pathways and antioxidant defense. CoQ is synthesized upon the mitochondrial inner membrane by an ill-defined "complex Q" metabolon. Here, we present structure-function analyses of a lipid-, substrate-, and NADH-bound complex comprising two complex Q subunits: the hydroxylase COQ7 and the lipid-binding protein COQ9. We reveal that COQ7 adopts a ferritin-like fold with a hydrophobic channel whose substrate-binding capacity is enhanced by COQ9. Using molecular dynamics, we further show that two COQ7:COQ9 heterodimers form a curved tetramer that deforms the membrane, potentially opening a pathway for the CoQ intermediates to translocate from the bilayer to the proteins' lipid-binding sites. Two such tetramers assemble into a soluble octamer with a pseudo-bilayer of lipids captured within. Together, these observations indicate that COQ7 and COQ9 cooperate to access hydrophobic precursors within the membrane and coordinate subsequent synthesis steps toward producing CoQ. Topics: Carrier Proteins; Humans; Lipids; Mitochondrial Membranes; Ubiquinone | 2022 |
Over a period of 1 year, 270 isolates identified as Taxon 39 of Bisgaard were obtained from the nasopharynx of veal calves at 11 epidemiologically independent Swiss fattening farms. Two isolates from each farm and the Australian Taxon 39 reference strain BNO311 were further characterized by genetic and phenotypic methods. Phylogenetic analysis of 16S rRNA and Topics: Animals; Bacterial Typing Techniques; Base Composition; Cattle; DNA, Bacterial; Fatty Acids; Genes, Bacterial; Mannheimia; Phylogeny; Respiratory System; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Switzerland; Ubiquinone | 2021 |
The ubiquinone synthesis pathway is a promising drug target for Chagas disease.
Chagas disease is caused by infection with the protozoan parasite Trypanosoma cruzi (T. cruzi). It was originally a Latin American endemic health problem, but now is expanding worldwide as a result of increasing migration. The currently available drugs for Chagas disease, benznidazole and nifurtimox, provoke severe adverse effects, and thus the development of new drugs is urgently required. Ubiquinone (UQ) is essential for respiratory chain and redox balance in trypanosomatid protozoans, therefore we aimed to provide evidence that inhibitors of the UQ biosynthesis have trypanocidal activities. In this study, inhibitors of the human COQ7, a key enzyme of the UQ synthesis, were tested for their trypanocidal activities because they were expected to cross-react and inhibit trypanosomal COQ7 due to their genetic homology. We show the trypanocidal activity of a newly found human COQ7 inhibitor, an oxazinoquinoline derivative. The structurally similar compounds were selected from the commercially available compounds by 2D and 3D ligand-based similarity searches. Among 38 compounds selected, 12 compounds with the oxazinoquinoline structure inhibited significantly the growth of epimastigotes of T. cruzi. The most effective 3 compounds also showed the significant antitrypanosomal activity against the mammalian stage of T. cruzi at lower concentrations than benznidazole, a commonly used drug today. We found that epimastigotes treated with the inhibitor contained reduced levels of UQ9. Further, the growth of epimastigotes treated with the inhibitors was partially rescued by UQ10 supplementation to the culture medium. These results suggest that the antitrypanosomal mechanism of the oxazinoquinoline derivatives results from inhibition of the trypanosomal UQ synthesis leading to a shortage of the UQ pool. Our data indicate that the UQ synthesis pathway of T. cruzi is a promising drug target for Chagas disease. Topics: Animals; Antiprotozoal Agents; Cell Line; Cell Line, Tumor; Chagas Disease; Drug Delivery Systems; HeLa Cells; Humans; Mammals; Nitroimidazoles; Signal Transduction; Trypanocidal Agents; Trypanosoma cruzi; Ubiquinone | 2021 |
An aerobic methane oxidizing bacterium, designated XLMV4 Topics: Alberta; Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Methane; Methanol; Methylococcaceae; Nucleic Acid Hybridization; Oil and Gas Fields; Phylogeny; Pigmentation; Ponds; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Ubiquinone | 2020 |
Evolutionary dynamics of transposable elements during silkworm domestication.
Although there are some documented examples on population dynamics of transposable elements (TEs) in model organisms, the evolutionary dynamics of TEs in domesticated species has not been systematically investigated. The objective of this study is to understand population dynamics of TEs during silkworm domestication. In this work, using transposon-display we examined the polymorphism of seven TE families [they represent about 59% of silkworm (Bombyx mori) total TE content] in four domesticated silkworm populations and one wild silkworm population. Maximum likelihood (ML) was used to estimate selection pressure. Population differentiation and structure were performed by using AMOVA analysis and program DISTRUCT, respectively. The results of transposon-display showed that significant differentiation occurred between the domesticated silkworm and wild silkworm. These TEs have experienced expansions and fixation in the domesticated silkworm but not in wild silkworm. Furthermore, the ML results indicated that purifying selection of TEs in the domesticated silkworm were significantly weaker than that in the wild silkworm. Interestingly, an adaptation insertion induced by BmMITE-2 was found, and this insertion can reduce the polymorphism of the flanking regions of its neighboring COQ7 gene. Our results suggested that TEs expanded and were fixed in the domesticated silkworm might result from demographic effects and artificial selection during domestication. We concluded that the data presented in this study have general implication in animal and crop improvements as well as in domestication of new species. Topics: Animals; Bombyx; DNA Transposable Elements; Domestication; Evolution, Molecular; Genome, Insect; Insect Proteins; Phylogeny; Polymorphism, Genetic; Selection, Genetic; Ubiquinone | 2018 |
Pathogenicity of two COQ7 mutations and responses to 2,4-dihydroxybenzoate bypass treatment.
Primary ubiquinone (co-enzyme Q) deficiency results in a wide range of clinical features due to mitochondrial dysfunction. Here, we analyse and characterize two mutations in the ubiquinone biosynthetic gene COQ7. One mutation from the only previously identified patient (V141E), and one (L111P) from a 6-year-old girl who presents with spasticity and bilateral sensorineural hearing loss. We used patient fibroblast cell lines and a heterologous expression system to show that both mutations lead to loss of protein stability and decreased levels of ubiquinone that correlate with the severity of mitochondrial dysfunction. The severity of L111P is enhanced by the particular COQ7 polymorphism (T103M) that the patient carries, but not by a mitochondrial DNA mutation (A1555G) that is also present in the patient and that has been linked to aminoglycoside-dependent hearing loss. We analysed treatment with the unnatural biosynthesis precursor 2,4-dihydroxybenzoate (DHB), which can restore ubiquinone synthesis in cells completely lacking the enzymatic activity of COQ7. We find that the treatment is not beneficial for every COQ7 mutation and its outcome depends on the extent of enzyme activity loss. Topics: Animals; Base Sequence; Cell Line; Child; Consanguinity; Cytochrome P-450 Enzyme System; DNA Mutational Analysis; DNA, Mitochondrial; Female; Fibroblasts; Hearing Loss; Humans; Hydroxybenzoates; Membrane Proteins; Mice, Knockout; Mitochondrial Proteins; Mixed Function Oxygenases; Mutation; Spastic Paraplegia, Hereditary; Ubiquinone | 2017 |
Delftia rhizosphaerae sp. nov. isolated from the rhizosphere of Cistus ladanifer.
A bacterial strain, designated RA6T, was isolated from the rhizosphere of Cistus ladanifer. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Delftia within a cluster encompassing the type strains of Delftia lacustris, Delftia tsuruhatensis, Delftia acidovorans and Delftia litopenaei, which presented greater than 97 % sequence similarity with respect to strain RA6T. DNA-DNA hybridization studies showed average relatedness ranging from of 11 to 18 % between these species of the genus Delftia and strain RA6T. Catalase and oxidase were positive. Casein was hydrolysed but gelatin and starch were not. Ubiquinone 8 was the major respiratory quinone detected in strain RA6T together with low amounts of ubiquinones 7 and 9. The major fatty acids were those from summed feature 3 (C16 : 1ω7c/C16 : 1 ω6c) and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA6T should be considered as a representative of a novel species of genus Delftia, for which the name Delftia rhizosphaerae sp. nov. is proposed. The type strain is RA6T (=LMG 29737T= CECT 9171T). Topics: Bacterial Typing Techniques; Base Composition; Cistus; Delftia; DNA, Bacterial; Fatty Acids; Nucleic Acid Hybridization; Phospholipids; Phylogeny; Rhizosphere; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Soil Microbiology; Spain; Ubiquinone | 2017 |
Umboniibacter caenipelagi sp. nov., isolated from a tidal flat.
A Gram-stain-negative, non-motile, aerobic and ovoid or rod-shaped bacterium, designated SCTF-16T, was isolated from a tidal flat on the Yellow Sea, South Korea. Strain SCTF-16T grew optimally at 30 °C, at pH 7.0-7.5 and in the presence of 2.0 % (w/v) NaCl. In the neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences, strain SCTF-16T clustered with the type strains of two species of the genus Umboniibacter. Strain SCTF-16T exhibited 16S rRNA gene sequence similarities of 99.6 and 97.1 % to the type strains of Umboniibacterroseus and Umboniibactermarinipuniceus, respectively, and of less than 93.4 % to the type strains of the other recognized species. Strain SCTF-16T contained Q-7 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C13 : 0 as the major fatty acids. The major polar lipids detected in strain SCTF-16T were phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of strain SCTF-16T was 50.0 mol%, and its mean DNA-DNA relatedness values with the type strains of U. roseus and U. marinipuniceus were 31 and 9 %, respectively. The differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strain SCTF-16T is separated from the two recognized species of the genus Umboniibacter. On the basis of the data presented, strain SCTF-16T is considered to represent a novel species of the genus Umboniibacter, for which the name Umboniibacter caenipelagi sp. nov. is proposed. The type strain is SCTF-16T (=KCTC 52628T=NBRC 112760T). Topics: Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Gammaproteobacteria; Nucleic Acid Hybridization; Phosphatidylethanolamines; Phosphatidylglycerols; Phylogeny; Republic of Korea; RNA, Ribosomal, 16S; Seawater; Sequence Analysis, DNA; Ubiquinone | 2017 |
RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7.
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3'-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis. Topics: 3' Untranslated Regions; ELAV-Like Protein 1; Gene Expression Regulation; HeLa Cells; Heterogeneous-Nuclear Ribonucleoprotein Group C; Humans; Oxidative Phosphorylation; Oxygen Consumption; Ubiquinone | 2016 |
Gene expression differences in relation to age and social environment in queen and worker bumble bees.
Eusocial insects provide special insights into the genetic pathways influencing aging because of their long-lived queens and flexible aging schedules. Using qRT-PCR in the primitively eusocial bumble bee Bombus terrestris (Linnaeus), we investigated expression levels of four candidate genes associated with taxonomically widespread age-related pathways (coenzyme Q biosynthesis protein 7, COQ7; DNA methyltransferase 3, Dnmt3; foraging, for; and vitellogenin, vg). In Experiment 1, we tested how expression changes with queen relative age and productivity. We found a significant age-related increase in COQ7 expression in queen ovary. In brain, all four genes showed higher expression with increasing female (queen plus worker) production, with this relationship strengthening as queen age increased, suggesting a link with the positive association of fecundity and longevity found in eusocial insect queens. In Experiment 2, we tested effects of relative age and social environment (worker removal) in foundress queens and effects of age and reproductive status in workers. In this experiment, workerless queens showed significantly higher for expression in brain, as predicted if downregulation of for is associated with the cessation of foraging by foundress queens following worker emergence. Workers showed a significant age-related increase in Dnmt3 expression in fat body, suggesting a novel association between aging and methylation in B. terrestris. Ovary activation was associated with significantly higher vg expression in fat body and, in younger workers, in brain, consistent with vitellogenin's ancestral role in regulating egg production. Overall, our findings reveal a mixture of novel and conserved features in age-related genetic pathways under primitive eusociality. Topics: Aging; Animals; Bees; DNA (Cytosine-5-)-Methyltransferases; Female; Gene Expression; Social Environment; Ubiquinone; Vitellogenins | 2016 |
Shewanella algicola sp. nov., a marine bacterium isolated from brown algae.
A Gram-stain-negative, aerobic, rod-shaped bacterium motile by means of a single polar flagella, strain ST-6T, was isolated from a brown alga (Sargassum thunbergii) collected in Jeju, Republic of Korea. Strain ST-6T was psychrotolerant, growing at 4-30 °C (optimum 20 °C). Phylogenetic analysis based on 16S rRNA and gyrB gene sequences revealed that strain ST-6T belonged to a distinct lineage in the genus Shewanella. Strain ST-6T was related most closely to Shewanella basaltis J83T, S. gaetbuli TF-27T, S. arctica IT12T, S. vesiculosa M7T and S. aestuarii SC18T, showing 96-97 % and 85-70 % 16S rRNA and gyrB gene sequences similarities, respectively. DNA-DNA relatedness values between strain ST-6T and the type strains of two species of the genus Shewanella were <22.6 %. The major cellular fatty acids (>5 %) were summed feature 3 (comprising C16:1ω7c and/ or iso-C15:0 2-OH), C16:0, iso-C13:0 and C17:1ω8c. The DNA G+C content of strain ST-6Twas 42.4 mol%, and the predominant isoprenoid quinones were menaquinone MK-7 and ubiquinones Q-7 and Q-8. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain ST-6T is considered to represent a novel species of the genus Shewanella, for which the name Shewanella algicola sp. nov. is proposed. The type strain is ST-6T (= KCTC 23253T = JCM 31091T). Topics: Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Genes, Bacterial; Nucleic Acid Hybridization; Phaeophyceae; Phylogeny; Republic of Korea; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Shewanella; Ubiquinone; Vitamin K 2 | 2016 |
Shewanella gelidii sp. nov., isolated from the red algae Gelidium amansii, and emended description of Shewanella waksmanii.
A novel Gram-stain-negative, straight or slightly curved rod-shaped, non-spore-forming, facultatively anaerobic bacterium with a single polar flagellum, designated RZB5-4T, was isolated from a sample of the red algae Gelidium amansii collected from the coastal region of Rizhao, PR China (119.625° E 35.517° N). The organism grew optimally between 24 and 28 °C, at pH 7.0 and in the presence of 2-3 % (w/v) NaCl. The strain required seawater or artificial seawater for growth, and NaCl alone did not support growth. Strain RZB5-4T contained C16 : 1ω7c and/or C16 : 1ω6c, C16 : 0 and iso-C15 : 0 as the dominant fatty acids. The respiratory quinones detected in strain RZB5-4T were ubiquinone 7, ubiquinone 8, menaquinone 7 and methylmenaquinone 7. The polar lipids of strain RZB5-4T comprised phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, one unidentified glycolipid, one unidentified phospholipid and one unknown lipid. The DNA G+C content of strain RZB5-4T was 47 mol %. Phylogenetic analysis based on 16S rRNA and gyrase B (gyrB) gene sequences showed that strain RZB5-4T belonged to the genus Shewanella, clustering with Shewanella waksmanii ATCC BAA-643T. Strain RZB5-4T exhibited the highest 16S rRNA gene sequence similarity value (96.6 %) and the highest gyrB gene sequence similarity value (80.7 %), respectively, to S. waksmanii ATCC BAA-643T. On the basis of polyphasic analyses, strain RZB5-4T represents a novel species of the genus Shewanella, for which the name Shewanella gelidii sp. nov. is proposed. The type strain is RZB5-4T (=JCM 30804T=KCTC 42663T=MCCC 1K00697T). Topics: Bacterial Typing Techniques; Base Composition; China; DNA Gyrase; DNA, Bacterial; Fatty Acids; Phospholipids; Phylogeny; Rhodophyta; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Shewanella; Ubiquinone; Vitamin K 2 | 2016 |
Yeast Coq9 controls deamination of coenzyme Q intermediates that derive from para-aminobenzoic acid.
Coq9 is a polypeptide subunit in a mitochondrial multi-subunit complex, termed the CoQ-synthome, required for biosynthesis of coenzyme Q (ubiquinone or Q). Deletion of COQ9 results in dissociation of the CoQ-synthome, but over-expression of Coq8 putative kinase stabilizes the CoQ-synthome in the coq9 null mutant and leads to the accumulation of two nitrogen-containing Q intermediates, imino-demethoxy-Q6 (IDMQ6) and 3-hexaprenyl-4-aminophenol (4-AP) when para-aminobenzoic acid (pABA) is provided as a ring precursor. To investigate whether Coq9 is responsible for deamination steps in Q biosynthesis, we utilized the yeast coq5-5 point mutant. The yeast coq5-5 point mutant is defective in the C-methyltransferase step of Q biosynthesis but retains normal steady-state levels of the Coq5 polypeptide. Here, we show that when high amounts of 13C6-pABA are provided, the coq5-5 mutant accumulates both 13C6-imino-demethyl-demethoxy-Q6 (13C6-IDDMQ6) and 13C6-demethyl-demethoxy-Q6 (13C6-DDMQ6). Deletion of COQ9 in the yeast coq5-5 mutant along with Coq8 over-expression and 13C6- pABA labeling leads to the absence of 13C6-DDMQ6, and the nitrogen-containing intermediates 13C6-4-AP and 13C6-IDDMQ6 persist. We describe a coq9 temperature-sensitive mutant and show that at the non-permissive temperature, steady-state polypeptide levels of Coq9-ts19 increased, while Coq4, Coq5, Coq6, and Coq7 decreased. The coq9-ts19 mutant had decreased Q6 content and increased levels of nitrogen-containing intermediates. These findings identify Coq9 as a multi-functional protein that is required for the function of Coq6 and Coq7 hydroxylases, for removal of the nitrogen substituent from pABA-derived Q intermediates, and is an essential component of the CoQ synthome. Topics: 4-Aminobenzoic Acid; Deamination; Gene Expression Regulation, Fungal; Methyltransferases; Mitochondrial Proteins; Models, Molecular; Point Mutation; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Temperature; Ubiquinone | 2015 |
Rescue of primary ubiquinone deficiency due to a novel COQ7 defect using 2,4-dihydroxybensoic acid.
Coenzyme Q is an essential mitochondrial electron carrier, redox cofactor and a potent antioxidant in the majority of cellular membranes. Coenzyme Q deficiency has been associated with a range of metabolic diseases, as well as with some drug treatments and ageing.. We used whole exome sequencing (WES) to investigate patients with inherited metabolic diseases and applied a novel ultra-pressure liquid chromatography-mass spectrometry approach to measure coenzyme Q in patient samples.. We identified a homozygous missense mutation in the COQ7 gene in a patient with complex mitochondrial deficiency, resulting in severely reduced coenzyme Q levels We demonstrate that the coenzyme Q analogue 2,4-dihydroxybensoic acid (2,4DHB) was able to specifically bypass the COQ7 deficiency, increase cellular coenzyme Q levels and rescue the biochemical defect in patient fibroblasts.. We report the first patient with primary coenzyme Q deficiency due to a homozygous COQ7 mutation and a potentially beneficial treatment using 2,4DHB. Topics: Amino Acid Sequence; Ataxia; Child; Child, Preschool; Chromatography, Liquid; DNA Mutational Analysis; Exome; Homozygote; Humans; Hydroxybenzoates; Infant, Newborn; Male; Mitochondria; Mitochondrial Diseases; Molecular Sequence Data; Muscle Weakness; Mutation, Missense; Sequence Alignment; Tandem Mass Spectrometry; Ubiquinone | 2015 |
Ursidibacter maritimus gen. nov., sp. nov. and Ursidibacter arcticus sp. nov., two new members of the family Pasteurellaceae isolated from the oral cavity of bears.
Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T). Topics: Animals; Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Genes, Bacterial; Molecular Sequence Data; Mouth; Pasteurellaceae; Phylogeny; RNA, Ribosomal, 16S; Sequence Analysis, DNA; Ubiquinone; Ursidae | 2015 |
Umboniibacter roseus sp. nov., isolated from coastal seawater.
A Gram-reaction-negative, non-motile, strictly aerobic, dark pink-pigmented and rod-shaped bacterial isolate, designated 14-121-B13T, was isolated from surface seawater off the coast of the South Sea at Namhae-gun, Republic of Korea. Cells were catalase- and oxidase-positive and required NaCl for growth. Strain 14-121-B13T grew optimally at 30 °C, in the presence of 2 % (w/v) NaCl and at pH 7.5-8.0.Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain 14-121-B13T clustered with the type strain of Umboniibacter marinipuniceus, with which it exhibited 96.7 % sequence similarity. The DNA G+C content of strain 14-121-B13T was 48.9 mol%. The major cellular fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. The major respiratory quinone was ubiquinone Q-7 and the polar lipids detected in strain 14-121-B13T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid, unidentified phospholipids, unidentified aminophospholipids and unidentified lipids. Based on the phenotypic, chemotaxonomic and phylogenetic data presented, strain 14-121-B13T is considered to represent a novel species of the genus, Umboniibacter for which the name Umboniibacter roseus sp. nov. is proposed. The type strain is 14-121-B13T ( = DSM 29882T = KCTC 42467T). Topics: Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Gammaproteobacteria; Nucleic Acid Hybridization; Phospholipids; Phylogeny; Republic of Korea; RNA, Ribosomal, 16S; Seawater; Sequence Analysis, DNA; Ubiquinone | 2015 |
Coenzyme Q supplementation or over-expression of the yeast Coq8 putative kinase stabilizes multi-subunit Coq polypeptide complexes in yeast coq null mutants.
Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome. Topics: Dietary Supplements; Gene Expression Regulation, Fungal; Methyltransferases; Mitochondrial Proteins; Multiprotein Complexes; Mutation; Respiration; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Ubiquinone | 2014 |
Ferrimonas pelagia sp. nov., isolated from seawater.
A Gram-stain-negative bacterium, designated strain CBA4601(T), was isolated from a seawater sample obtained off the coast of Jeju Island, Korea. The organism grew in the presence of 0-4% (w/v) NaCl and at 20-35 °C and pH 7.0-9.0, with optimal growth in 2% NaCl, and at 25 °C and pH 8.0. Phylogenetic trees based on 16S rRNA gene sequences showed that strain CBA4601(T) was related to the genus Ferrimonas within the class Gammaproteobacteria. 16S rRNA gene sequence similarity between strain CBA4601(T) and Ferrimonas marina A4D-4(T), the most closely related species, was 96.9%. The G+C content of the genomic DNA from strain CBA4601(T) was 54.2 mol%, and the isoprenoid quinones menaquinone 7 (MK-7), ubiquinone 7 (Q-7) and ubiquinone 8 (Q-8) were detected. The major fatty acids were C(17:1)ω8c, C(18:1)ω9c and C(16:0), and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unidentified ninhydrin-positive phospholipid. On the basis of this taxonomic study using a polyphasic approach, strain CBA4601(T) represents a novel species of the genus Ferrimonas, for which the name Ferrimonas pelagia sp. nov. is proposed. The type strain is CBA4601(T) ( =KACC 16695(T) =KCTC 32029(T) =JCM 18401(T)). Topics: Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Gammaproteobacteria; Molecular Sequence Data; Nucleic Acid Hybridization; Phylogeny; Republic of Korea; RNA, Ribosomal, 16S; Seawater; Sequence Analysis, DNA; Ubiquinone; Vitamin K 2; Water Microbiology | 2013 |
Ferrimonas gelatinilytica sp. nov., isolated from tidal flat sediment.
A novel beige-pigmented, Gram-staining-negative, coccoid, motile and facultatively anaerobic bacteria, designated strain CJ24(T), was isolated from the tidal flat sediment of the Yellow Sea in South Korea. Characterization of this strain was performed on the basis of polyphasic taxonomic methods. Phylogenetic analysis of the 16S rRNA and gyrB genes revealed that strain CJ24(T) belongs to the genus Ferrimonas, sharing the highest 16S rRNA gene sequence similarity of 96.9 % with Ferrimonas marina DSM 16917(T). Strain CJ24(T) was able to grow optimally at 30 °C, at pH 6.0 and in the presence of 2 % NaCl (w/v). As an isoprenoid quinone, menaquinone (MK-7) was predominantly identified from this strain, while ubiquinone (Q-7) was also present as a minor component. The DNA G+C content of strain CJ24(T) was 60.2 mol%. The most abundant cellular fatty acids were C15 : 0 iso, C18 : 1ω9c, C16 : 0 and C17 : 0 iso. Therefore, strain CJ24(T) represents a novel species in the genus Ferrimonas for which the name Ferrimonas gelatinilytica sp. nov. is proposed; the type strain is CJ24(T) ( = KACC 17065(T) = JCM 18720(T)). Topics: Bacterial Typing Techniques; Base Composition; DNA, Bacterial; Fatty Acids; Gammaproteobacteria; Genes, Bacterial; Geologic Sediments; Molecular Sequence Data; Phylogeny; Republic of Korea; RNA, Ribosomal, 16S; Seawater; Sequence Analysis, DNA; Sodium Chloride; Ubiquinone; Vitamin K 2 | 2013 |
The phosphatase Ptc7 induces coenzyme Q biosynthesis by activating the hydroxylase Coq7 in yeast.
The study of the components of mitochondrial metabolism has potential benefits for health span and lifespan because the maintenance of efficient mitochondrial function and antioxidant capacity is associated with improved health and survival. In yeast, mitochondrial function requires the tight control of several metabolic processes such as coenzyme Q biosynthesis, assuring an appropriate energy supply and antioxidant functions. Many mitochondrial processes are regulated by phosphorylation cycles mediated by protein kinases and phosphatases. In this study, we determined that the mitochondrial phosphatase Ptc7p, a Ser/Thr phosphatase, was required to regulate coenzyme Q6 biosynthesis, which in turn activated aerobic metabolism and enhanced oxidative stress resistance. We showed that Ptc7p phosphatase specifically activated coenzyme Q6 biosynthesis through the dephosphorylation of the demethoxy-Q6 hydroxylase Coq7p. The current findings revealed that Ptc7p is a regulator of mitochondrial metabolism that is essential to maintain proper function of the mitochondria by regulating energy metabolism and oxidative stress resistance. Topics: Alleles; Antioxidants; Enzyme Activation; Gene Expression Regulation, Fungal; Isoelectric Focusing; Mitochondria; Mixed Function Oxygenases; Oxidation-Reduction; Oxidative Stress; Phosphorylation; Plasmids; Protein Phosphatase 2; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Ubiquinone | 2013 |
Aging of biological matrices and its effect on bioanalytical method performance.
Apart from the well-known matrix effects that can occur in ESI LC-MS, biological matrices may have other effects influencing the quantitative reliability of bioanalytical methods. In this paper, six case studies are presented that show the effect that aging, that is the change in properties and composition of biological matrices over time, can have on the performance of bioanalytical methods. It is shown that selectivity can be affected due to the formation or disappearance of endogenous compounds. Stability can be influenced because of the decrease (or increase) of enzyme activities and recovery can be impacted if the extractability from binding sites in the matrix is enhanced or decreased. A general discussion on the importance of these matrix effects is provided as well as a perspective on how to properly address them in the method-development and validation stages of regulated bioanalysis. Topics: Animals; Cholesterol; Chromatography, High Pressure Liquid; Cyclosporine; Cytarabine; Humans; Hydroxycholesterols; Isotope Labeling; Mice; Oxidation-Reduction; Serum; Spectrometry, Mass, Electrospray Ionization; Temperature; Time Factors; Ubiquinone | 2013 |
ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption.
Identification of single-gene causes of steroid-resistant nephrotic syndrome (SRNS) has furthered the understanding of the pathogenesis of this disease. Here, using a combination of homozygosity mapping and whole human exome resequencing, we identified mutations in the aarF domain containing kinase 4 (ADCK4) gene in 15 individuals with SRNS from 8 unrelated families. ADCK4 was highly similar to ADCK3, which has been shown to participate in coenzyme Q10 (CoQ10) biosynthesis. Mutations in ADCK4 resulted in reduced CoQ10 levels and reduced mitochondrial respiratory enzyme activity in cells isolated from individuals with SRNS and transformed lymphoblasts. Knockdown of adck4 in zebrafish and Drosophila recapitulated nephrotic syndrome-associated phenotypes. Furthermore, ADCK4 was expressed in glomerular podocytes and partially localized to podocyte mitochondria and foot processes in rat kidneys and cultured human podocytes. In human podocytes, ADCK4 interacted with members of the CoQ10 biosynthesis pathway, including COQ6, which has been linked with SRNS and COQ7. Knockdown of ADCK4 in podocytes resulted in decreased migration, which was reversed by CoQ10 addition. Interestingly, a patient with SRNS with a homozygous ADCK4 frameshift mutation had partial remission following CoQ10 treatment. These data indicate that individuals with SRNS with mutations in ADCK4 or other genes that participate in CoQ10 biosynthesis may be treatable with CoQ10. Topics: Adolescent; Adrenal Cortex Hormones; Amino Acid Sequence; Animals; Cells, Cultured; Child; Consanguinity; Conserved Sequence; Disease Models, Animal; DNA Mutational Analysis; Drosophila Proteins; Drug Resistance; Exome; Fibroblasts; Gene Knockdown Techniques; Humans; Mitochondria; Molecular Sequence Data; Mutation; Nephrotic Syndrome; Podocytes; Protein Kinases; Rats; Sequence Alignment; Sequence Homology, Amino Acid; Ubiquinone; Young Adult; Zebrafish; Zebrafish Proteins | 2013 |
Calorie restriction modifies ubiquinone and COQ transcript levels in mouse tissues.
We studied ubiquinone (Q), Q homologue ratio, and steady-state levels of mCOQ transcripts in tissues from mice fed ad libitum or under calorie restriction. Maximum ubiquinone levels on a protein basis were found in kidney and heart, followed by liver, brain, and skeletal muscle. Liver and skeletal muscle showed the highest Q(9)/Q(10) ratios with significant interindividual variability. Heart, kidney, and particularly brain exhibited lower Q(9)/Q(10) ratios and interindividual variability. In skeletal muscle and heart, the most abundant mCOQ transcript was mCOQ7, followed by mCOQ8, mCOQ2, mPDSS2, mPDSS1, and mCOQ3. In nonmuscular tissues (liver, kidney, and brain) the most abundant mCOQ transcript was mCOQ2, followed by mCOQ7, mCOQ8, mPDSS1, mPDSS2, and mCOQ3. Calorie restriction increased both ubiquinone homologues and mPDSS2 mRNA in skeletal muscle, but mCOQ7 was decreased. In contrast, Q(9) and most mCOQ transcripts were decreased in heart. Calorie restriction also modified the Q(9)/Q(10) ratio, which was increased in kidney and decreased in heart without alterations in mPDSS1 or mPDSS2 transcripts. We demonstrate for the first time that unique patterns of mCOQ transcripts exist in muscular and nonmuscular tissues and that Q and COQ genes are targets of calorie restriction in a tissue-specific way. Topics: Animals; Brain; Caloric Restriction; Free Radicals; Kidney; Liver; Mice; Muscle, Skeletal; Myocardium; Organ Specificity; RNA, Messenger; Ubiquinone | 2011 |
Respiratory-induced coenzyme Q biosynthesis is regulated by a phosphorylation cycle of Cat5p/Coq7p.
CoQ(6) (coenzyme Q(6)) biosynthesis in yeast is a well-regulated process that requires the final conversion of the late intermediate DMQ(6) (demethoxy-CoQ(6)) into CoQ(6) in order to support respiratory metabolism in yeast. The gene CAT5/COQ7 encodes the Cat5/Coq7 protein that catalyses the hydroxylation step of DMQ(6) conversion into CoQ(6). In the present study, we demonstrated that yeast Coq7 recombinant protein purified in bacteria can be phosphorylated in vitro using commercial PKA (protein kinase A) or PKC (protein kinase C) at the predicted amino acids Ser(20), Ser(28) and Thr(32). The total absence of phosphorylation in a Coq7p version containing alanine instead of these phospho-amino acids, the high extent of phosphorylation produced and the saturated conditions maintained in the phosphorylation assay indicate that probably no other putative amino acids are phosphorylated in Coq7p. Results from in vitro assays have been corroborated using phosphorylation assays performed in purified mitochondria without external or commercial kinases. Coq7p remains phosphorylated in fermentative conditions and becomes dephosphorylated when respiratory metabolism is induced. The substitution of phosphorylated residues to alanine dramatically increases CoQ(6) levels (256%). Conversely, substitution with negatively charged residues decreases CoQ(6) content (57%). These modifications produced in Coq7p also alter the ratio between DMQ(6) and CoQ(6) itself, indicating that the Coq7p phosphorylation state is a regulatory mechanism for CoQ(6) synthesis. Topics: Amino Acid Sequence; Cyclic AMP-Dependent Protein Kinases; Electron Transport; Mitochondria; Phosphorylation; Protein Kinase C; Recombinant Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Ubiquinone | 2011 |
Hydroxylation of demethoxy-Q6 constitutes a control point in yeast coenzyme Q6 biosynthesis.
Coenzyme Q is a lipid molecule required for respiration and antioxidant protection. Q biosynthesis in Saccharomyces cerevisiae requires nine proteins (Coq1p-Coq9p). We demonstrate in this study that Q levels are modulated during growth by its conversion from demethoxy-Q (DMQ), a late intermediate. Similar conversion was produced when cells were subjected to oxidative stress conditions. Changes in Q(6)/DMQ(6) ratio were accompanied by changes in COQ7 gene mRNA levels encoding the protein responsible for the DMQ hydroxylation, the penultimate step in Q biosynthesis pathway. Yeast coq null mutant failed to accumulate any Q late biosynthetic intermediate. However, in coq7 mutants the addition of exogenous Q produces the DMQ synthesis. Similar effect was produced by over-expressing ABC1/COQ8. These results support the existence of a biosynthetic complex that allows the DMQ(6) accumulation and suggest that Coq7p is a control point for the Q biosynthesis regulation in yeast. Topics: Hydroxylation; Methyltransferases; Mitochondrial Proteins; Oxidative Stress; RNA, Fungal; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Ubiquinone | 2009 |
Cell survival from chemotherapy depends on NF-kappaB transcriptional up-regulation of coenzyme Q biosynthesis.
Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells.. CPT activates NF-kappaB that binds specifically to two kappaB binding sites present in the 5'-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-kappaB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-kappaB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells.. We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-kappaB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway. Topics: Antineoplastic Agents, Phytogenic; Base Sequence; Binding Sites; Camptothecin; Cell Line, Tumor; Cell Survival; HeLa Cells; Humans; Molecular Sequence Data; NF-kappa B; Promoter Regions, Genetic; Transcription, Genetic; Ubiquinone; Up-Regulation | 2009 |
Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov.
Relationships among species assigned to the yeast genera Pichia, Issatchenkia and Williopsis, which are characterized by the ubiquinone CoQ-7 and inability to utilize methanol, were phylogenetically analyzed from nucleotide sequence divergence in the genes coding for large and small subunit rRNAs and for translation elongation factor-1alpha. From this analysis, the species separated into five clades. Species of Issatchenkia are members of the Pichia membranifaciens clade and are proposed for transfer to Pichia. Pichia dryadoides and Pichia quercuum are basal members of the genus Starmera. Williopsis species are dispersed among hat-spored taxa in each of the remaining three clades, which are proposed as the new genera Barnettozyma, Lindnera and Wickerhamomyces. Lineages previously classified as varieties of Pichia kluyveri, 'Issatchenkia'scutulata, Starmera amethionina and 'Williopsis'saturnus are elevated to species rank based on sequence comparisons. Topics: DNA, Fungal; DNA, Ribosomal Spacer; Genes, Fungal; Genes, rRNA; Mycological Typing Techniques; Peptide Elongation Factor 1; Phylogeny; Pichia; RNA; RNA, Mitochondrial; RNA, Ribosomal; Saccharomycetales; Sequence Analysis, DNA; Species Specificity; Ubiquinone | 2008 |
Comparison of a coq7 deletion mutant with other respiration-defective mutants in fission yeast.
Among the steps in ubiquinone biosynthesis, that catalyzed by the product of the clk-1/coq7 gene has received considerable attention because of its relevance to life span in Caenorhabditis elegans. We analyzed the coq7 ortholog (denoted coq7) in Schizosaccharomyces pombe, to determine whether coq7 has specific roles that differ from those of other coq genes. We first confirmed that coq7 is necessary for the penultimate step in ubiquinone biosynthesis, from the observation that the deletion mutant accumulated the ubiquinone precursor demethoxyubiquinone-10 instead of ubiquinone-10. The coq7 mutant displayed phenotypes characteristic of other ubiquinone-deficient Sc. pombe mutants, namely, hypersensitivity to hydrogen peroxide, a requirement for antioxidants for growth on minimal medium, and an elevated production of sulfide. To compare these phenotypes with those of other respiration-deficient mutants, we constructed cytochrome c (cyc1) and coq3 deletion mutants. We also assessed accumulation of oxidative stress in various ubiquinone-deficient strains and in the cyc1 mutant by measuring mRNA levels of stress-inducible genes and the phosphorylation level of the Spc1 MAP kinase. Induction of ctt1, encoding catalase, and apt1, encoding a 25 kDa protein, but not that of gpx1, encoding glutathione peroxidase, was indistinguishable in four ubiquinone-deficient mutants, indicating that the oxidative stress response operates at similar levels in the tested strains. One new phenotype was observed, namely, loss of viability in stationary phase (chronological life span) in both the ubiquinone-deficient mutant and in the cyc1 mutant. Finally, Coq7 was found to localize in mitochondria, consistent with the possibility that ubiquinone biosynthesis occurs in mitochondria in yeasts. In summary, our results indicate that coq7 is required for ubiquinone biosynthesis and the coq7 mutant is not distinguishable from other ubiquinone-deficient mutants, except that its phenotypes are more pronounced than those of the cyc1 mutant. Topics: Cytochromes c; Fungal Proteins; Mutation; Oxidative Stress; Phenotype; Schizosaccharomyces; Sequence Deletion; Ubiquinone | 2008 |
Proteomic analysis of early left ventricular hypertrophy secondary to hypertension: modulation by antihypertensive therapies.
Untreated or poorly controlled arterial hypertension induced development of pathologic left ventricular hypertrophy (LVH), a common finding in hypertensive patients and a strong predictor of cardiovascular morbidity and mortality. The proteomic approach is a powerful technique to analyze a complex mixture of proteins in various settings. An experimental model of hypertension-induced early LVH was performed in spontaneously hypertensive rats, and the cardiac protein pattern compared with the normotensive Wistar Kyoto counterpart was analyzed. Fifteen altered protein spots were shown in the early stage of LVH. Compared with a previous animal model of established and regressed LVH, three protein spots were common in both models. These three altered protein spots corresponded to two unique proteins that were identified as Calsarcin-1 (CS-1) and ubiquinone biosynthesis protein COQ7 homolog. CS-1 is a negative regulator of the calcineurin/NF-AT pathway. Because upregulation in the expression levels of this protein was observed, the activation level of NF-kappaB by oxidative stress as an alternative pathway was investigated. It was found that antihypertensive therapies partially decreased oxidative stress and normalized the activation of NF-kappaB in the kidneys and aorta NF-kappaB activation but just moderately in the heart. This could be due to the interaction of any specific cardiac protein with any component of the NF-kappaB pathway. In this sense, CS-1 could be a good candidate because it is expressed preferentially in heart, to a lesser extent in smooth muscle cells, but not in kidney. Further investigations are necessary to elucidate the exact role of CS-1 and ubiquinone biosynthesis protein COQ7 in the setting of hypertension-induced LVH. Topics: Animals; Antihypertensive Agents; Aorta; Carrier Proteins; Disease Models, Animal; Gene Expression Profiling; Hypertension; Hypertrophy, Left Ventricular; Kidney; Male; Microfilament Proteins; Muscle Proteins; Myocardium; NF-kappa B; Oxidative Stress; Proteomics; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Ubiquinone | 2006 |
Pichia myanmarensis sp. nov., a novel cation-tolerant yeast isolated from palm sugar in Myanmar.
Four halotolerant yeast strains, M21(T), M34-1, HS054 and D41, were isolated from various foods in South-East Asia. These isolates were most closely related to Pichia anomala, with which each strain had from zero to two differences in the 26S rDNA D1/D2 domain nucleotide sequence; for this reason, they were thought to be the same as, or sister species of, P. anomala. Of the four yeast isolates, only one strain, M21(T), had an 18S rDNA sequence that differed from those of P. anomala IFO 10213(T) and the other three isolates, having 20 substitutions and two gaps. Strain M21(T) showed lower cation (Li(+)) tolerance (< or =0.3 M LiCl) than P. anomala IFO 10213(T) or the other three strains (< or = 0.5 M LiCl). Furthermore, the DNA-DNA hybridization data indicated that M21(T) was clearly distinct from P. anomala IFO 10213(T) and the other three isolates. The ability of strain M21(T) to assimilate d-arabinose distinguished it from P. anomala IFO 10213(T) and the other three isolates; it also differed in that it was able to grow at 37 and 40 degrees C. Strain M21(T) grew by multilateral budding, produced persistent asci, in which between one and four hat-shaped ascospores were formed, and contained ubiquinone Q-7. On the basis of this polyphasic characterization, strain M21(T) represents a novel species within the Q-7-containing group of the genus Pichia, for which the name Pichia myanmarensis is proposed. The type strain is M21(T) (= NBRC 11090(T) = JCM 12922(T) = CBS 9786(T)). Topics: Antifungal Agents; Arabinose; Carbohydrates; DNA, Fungal; DNA, Ribosomal; Food Microbiology; Genes, Fungal; Genes, rRNA; Lithium; Molecular Sequence Data; Myanmar; Nucleic Acid Hybridization; Phylogeny; Pichia; RNA, Fungal; RNA, Ribosomal; RNA, Ribosomal, 18S; Sequence Analysis, DNA; Spores, Fungal; Temperature; Ubiquinone | 2005 |
Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity.
Caenorhabditis elegans clk-1 mutants cannot produce coenzyme Q(9) and instead accumulate demethoxy-Q(9) (DMQ(9)). DMQ(9) has been proposed to be responsible for the extended lifespan of clk-1 mutants, theoretically through its enhanced antioxidant properties and its decreased function in respiratory chain electron transport. In the present study, we assess the functional roles of DMQ(6) in the yeast Saccharomyces cerevisiae. Three mutations designed to mirror the clk-1 mutations of C. elegans were introduced into COQ7, the yeast homologue of clk-1: E233K, predicted to disrupt the di-iron carboxylate site considered essential for hydroxylase activity; L237Stop, a deletion of 36 amino acid residues from the carboxyl terminus; and P175Stop, a deletion of the carboxyl-terminal half of Coq7p. Growth on glycerol, quinone content, respiratory function, and response to oxidative stress were analyzed in each of the coq7 mutant strains. Yeast strains lacking Q(6) and producing solely DMQ were respiratory deficient and unable to support (6)either NADH-cytochrome c reductase or succinate-cytochrome c reductase activities. DMQ(6) failed to protect cells against oxidative stress generated by H(2)O(2) or linolenic acid. Thus, in the yeast model system, DMQ does not support respiratory activity and fails to act as an effective antioxidant. These results suggest that the life span extension observed in the C. elegans clk-1 mutants cannot be attributed to the presence of DMQ per se. Topics: Alleles; alpha-Linolenic Acid; Antioxidants; Benzoquinones; Binding Sites; Blotting, Western; Chromatography, High Pressure Liquid; Electron Transport; Flow Cytometry; Glycerol; Hydrogen Peroxide; Mass Spectrometry; Mitochondria; Models, Chemical; Mutation; NADH Dehydrogenase; Oxidative Stress; Oxygen Consumption; Peptides; Plasmids; Saccharomyces cerevisiae; Superoxides; Time Factors; Ubiquinone | 2004 |
coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q.
coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, and shows sluggish behaviours and an extended lifespan. In C. elegans and Saccharomyces cerevisiae, coq7/clk-1 is required for the biosynthesis of coenzyme Q (CoQ), an essential co-factor in mitochondrial respiration. The clk-1 mutant contains dietary CoQ(8) from Escherichia coli and demethoxyubiquinone 9 (DMQ9) instead of CoQ(9). In a previous study, we generated COQ7-deficient mice by targeted disruption of the coq7 gene and reported that mouse coq7/clk-1 is also essential for CoQ synthesis, maintenance of mitochondrial integrity and neurogenesis. In the present study, we rescued COQ7-deficient mice from embryonic lethality and established a mouse model with decreased CoQ level by transgene expression of COQ7/CLK-1. A biochemical analysis showed a concomitant decrease in CoQ(9), mitochondrial respiratory enzyme activity and the generation of reactive oxygen species (ROS) in the mitochondria of CoQ-insufficient mice. This implied that the depressed activity of respiratory enzymes and the depressed production of ROS may play a physiological role in the control of lifespan in mammalian species and of C. elegans. Topics: Animals; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Cell Respiration; Mice; Mice, Transgenic; Mitochondria; Reactive Oxygen Species; Saccharomyces cerevisiae; Succinate Cytochrome c Oxidoreductase; Ubiquinone | 2004 |
Indirect identification of isoprenoid quinones in Escherichia coli by LC-MS with atmospheric pressure chemical ionization in negative mode.
A novel analytical method was applied for identification of isoprenoid quinones in Escherichia coli by liquid chromatography atmospheric press chemical ionization mass spectrometry in negative mode (LC-NI-APCI-MS). Extraction and clean-up of sample were carried out on Sep-Pak Plus Silica solid-phase extraction cartridges. Ubiquinone-7 (UQ-7), Ubiquinone-8 (UQ-8) and Mequinone-8 (MK-8) were determined directly using combined information on retention time, molecular ion mass, fragment ion masses and UV characteristic spectrometry without any standard reagent. It was found that UQ-8 was the major component of isoprenoid quinones in Escherichia coli under aerobic condition. Compared with UQ-8, the relative abundance of UQ-7 and MK-8 is only 15% and 14%, respectively. The average recoveries of UQ-6, UQ-10 and vitamin K(1) in Escherichia coli were investigated by standard spiking experiment. The recoveries were achieved in the range from 94 to 106%, and the relative standard deviations (RSD) of the triplicate analysis of the spiked samples (UQ-6, UQ-10 and vitamin K(1)) ranged from 3 to 8%. The detection limits of LC-NI-APCI-MS were estimated to be 5, 40 and 0.8 microg/g dry cell for UQ-6, UQ-10 and vitamin K(1), respectively. Topics: Chromatography, Liquid; Escherichia coli; Mass Spectrometry; Quinones; Sensitivity and Specificity; Terpenes; Ubiquinone; Vitamin K 1; Vitamin K 2 | 2004 |
A phylogenetic study of ubiquinone-7 species of the genus Candida based on 18S ribosomal DNA sequence divergence.
To clarify phylogenetic relationships among ubiquinone 7 (Q7)-forming species of the genus Candida, we analyzed the nearly complete sequences of 18S ribosomal RNA genes (18S rDNAs) from fifty strains (including 46 type strains) of Candida species, and from 8 type strains of species/varieties of the genera Issatchenkia, Pichia and Saturnispora. Q7-forming Candida species were divided into three major groups (Group I, II, and III) and were phylogenetically distant from a group that includes the type species of the genus Candida. Group I included four clusters with basal branches that were weakly supported. The first cluster comprised C. vartiovaarae, C. maritima, C. utilis, C. freyschussii, C. odintsovae, C. melinii, C. quercuum, Williopsis saturnus var. saturnus, and W. mucosa. The second cluster comprised C. norvegica, C. montana, C. stellimalicola, C. solani, C. berthetii, and C. dendrica. Williopsis pratensis, W. californica, Pichia opuntiae and 2 related species, P. amethionina (two varieties), and P. caribaea were also included in this cluster. The third cluster comprised C. pelliculosa (anamorph of P. anomala), C. nitrativorans, and C. silvicultrix. The fourth cluster comprised C. wickerhamii and C. peltata, which were placed in the P. holstii - C. ernobii clade with Q8-containing species. Group II comprised C. pignaliae, C. nemodendra, C. methanolovescens, C. maris, C. sonorensis, C. pini, C. llanquihuensis, C. cariosilignicola, C. ovalis, C. succiphila (including its two synonyms), C. methanosorbosa, C. nitratophila, C. nanaspora, C. boidinii (including its two synonyms), W. salicorniae, and P. methanolica. Group III was composed of four clusters with strong bootstrap support. The first cluster comprised C. valida (anamorph of P. membranifaciens), C. ethanolica, C. pseudolambica, C. citrea, C. inconspicua, C. norvegensis, C. rugopelliculosa, and C. lambica. Three species and two varieties of the genus Issatchenkia were also included in this cluster. The second cluster comprised C. diversa, C. silvae, 4 Saturnispora species, and P. besseyi. The third comprised C. sorboxylosa, and the fourth comprised C. vini. Based on this 18S rDNA sequence analysis, it is evident that Q7-forming Candida species and the genera Pichia and Williopsis are polyphyletic. The genus Issatchenkia is suggested to be congeneric with the genus Pichia. The genus Saturnispora is phylogenetically definable. Topics: Ascomycota; Base Sequence; Candida; DNA, Fungal; Molecular Sequence Data; Phylogeny; Polymerase Chain Reaction; RNA, Ribosomal, 18S; Sequence Analysis, DNA; Ubiquinone | 2002 |
Mouse homologue of coq7/clk-1, longevity gene in Caenorhabditis elegans, is essential for coenzyme Q synthesis, maintenance of mitochondrial integrity, and neurogenesis.
coq7/clk-1 was isolated from a long-lived mutant of Caenorhabditis elegans, which showed sluggish behavior and an extended life span. Mouse coq7 is homologous to Saccharomyces cerevisiae coq7/cat5 that is required for biosynthesis of coenzyme Q (CoQ), an essential cofactor in mitochondrial respiration. Here we generated COQ7-deficient mice to investigate the biological role of COQ7 in mammals. COQ7-deficient mouse embryos failed to survive beyond embryonic day 10.5, exhibiting small-sized body and delayed embryogenesis. Morphological studies showed that COQ7-deficient neuroepithelial cells failed to show the radial arrangement in the developing cerebral wall, aborting neurogenesis at E10.5. Electron microscopic analysis further showed the enlarged mitochondria with vesicular cristae and enlarged lysosomes filled with disrupted membranes, which is consistent with mitochondriopathy. Biochemical analysis demonstrated that COQ7-deficient embryos failed to synthesize CoQ(9), but instead yielded demethoxyubiquinone 9 (DMQ(9)). Cultured embryonic cells from COQ7-deficient mice were rescued by adding bovine fetal serum in vitro, but exhibited slowed cell proliferation, which resembled to the phenotype of clk-1 with delayed cell divisions. The result implied the essential role of coq7 in CoQ synthesis, maintenance of mitochondrial integrity, and neurogenesis in mice. Topics: Animals; Blotting, Western; Caenorhabditis elegans; Cattle; Cell Division; Cells, Cultured; Crosses, Genetic; Lysosomes; Mice; Mice, Knockout; Mice, Transgenic; Microscopy, Electron; Mitochondria; Models, Genetic; Neurons; Phenotype; Saccharomyces cerevisiae; Time Factors; Transgenes; Ubiquinone | 2001 |
Orthologues of the Caenorhabditis elegans longevity gene clk-1 in mouse and human.
The clk-1 gene was isolated from the long-lived mutant of Caenorhabditis elegans and was suggested to play a biological role in longevity (Ewbank et al., 1997, Science 275: 980-983). The primary structure of CLK-1 showed a significant homology to Saccharomyces cerevisiae Coq7p/Cat5p, which is required for the biosynthesis of ubiquinone and the derepression of gluconeogenic genes. In the present study, we isolated and characterized human and mouse orthologues of the COQ7/CLK-1 gene. Sequence analysis of both the human and the mouse COQ7 cDNAs showed an open reading frame composed of 217 amino acids with calculated molecular mass of 24,309 and 24,044 Da, respectively. Homology search revealed that human COQ7 showed 85% identity to mouse COQ7, 89% identity to rat COQ7, 53% identity to C. elegans CLK-1, and 37% identity to S. cerevisiae Coq7p/Cat5p. Zoo blot analysis implied that the COQ7 gene was well conserved among mammal, bird, and reptile genomes. Tissue blot analysis showed that human COQ7 is dominantly transcribed in heart and skeletal muscle. Genomic analyses revealed that the human COQ7 gene is composed of six exons spanning 11 kb of human genome as a single-copy gene. Radiation hybrid mapping assigned the COQ7 gene to human chromosome 16p12.3-p13.11. Topics: Amino Acid Sequence; Animals; Base Sequence; Blotting, Northern; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Chromosome Banding; Chromosome Mapping; Chromosomes, Human, Pair 16; Conserved Sequence; DNA, Complementary; Evolution, Molecular; Exons; Female; Gene Expression; Genes; Helminth Proteins; Humans; Hybrid Cells; Introns; Male; Mice; Molecular Sequence Data; Phylogeny; RNA, Messenger; Rodentia; Sequence Alignment; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Tissue Distribution; Ubiquinone | 1999 |
Conservation of the Caenorhabditis elegans timing gene clk-1 from yeast to human: a gene required for ubiquinone biosynthesis with potential implications for aging.
Mutations in the Caenorhabditis elegans gene clk-1 have a major effect on slowing development and increasing life span. The Saccharomyces cerevisiae homolog COQ7 encodes a mitochondrial protein involved in ubiquinone biosynthesis and, hence, is required for respiration and gluconeogenesis. In this study, RT-PCR and 5' RACE were used to isolate both human and mouse clk-1/COQ7 homologs. Human CLK-1 was mapped to Chr 16(p12-13.1) by Radiation Hybrid (RH) and fluorescence in situ hybridization (FISH) methods. The number and location of human CLK1 introns were determined, and the location of introns II and IV are the same as in C. elegans. Northern blot analysis showed that three different isoforms of CLK-1 mRNA are present in several tissues and that the isoforms differ in the amount of expression. The functional equivalence of human CLK-1 to the yeast COQ7 homolog was tested by introducing either a single or multicopy plasmid containing human CLK-1 cDNA into yeast coq7 deletion strains and assaying for growth on a nonfermentable carbon source. The human CLK-1 gene was able to functionally complement yeast coq7 deletion mutants. The protein similarities and the conservation of function of the CLK-1/clk-1/COQ7 gene products suggest a potential link between the production of ubiquinone and aging. Topics: Aging; Alternative Splicing; Amino Acid Sequence; Animals; Biological Clocks; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Chromosome Mapping; Chromosomes, Human, Pair 16; Cloning, Molecular; Conserved Sequence; Evolution, Molecular; Exons; Genetic Complementation Test; Helminth Proteins; Humans; In Situ Hybridization, Fluorescence; Introns; Mice; Molecular Sequence Data; RNA, Messenger; Sequence Homology, Amino Acid; Ubiquinone; Yeasts | 1999 |
Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis.
Mutations in the clk-1 gene result in slower development and increased life span in Caenorhabditis elegans. The Saccharomyces cerevisiae homologue COQ7/CAT5 is essential for several metabolic pathways including ubiquinone biosynthesis, respiration, and gluconeogenic gene activation. We show here that Coq7p/Cat5p is a mitochondrial inner membrane protein directly involved in ubiquinone biosynthesis, and that the defect in gluconeogenic gene activation in coq7/cat5 null mutants is a general consequence of a defect in respiration. These results obtained in the yeast model suggest that the effects on development and life span in C. elegans clk-1 mutants may relate to changes in the amount of ubiquinone, an essential electron transport component and a lipid soluble antioxidant. Topics: Amino Acid Sequence; Caenorhabditis elegans Proteins; Fungal Proteins; Gluconeogenesis; Glucose; Helminth Proteins; Intracellular Membranes; Mitochondria; Molecular Sequence Data; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Homology, Amino Acid; Ubiquinone | 1998 |
The COQ7 gene encodes a protein in saccharomyces cerevisiae necessary for ubiquinone biosynthesis.
Ubiquinone (coenzyme Q) is a lipid that transports electrons in the respiratory chains of both prokaryotes and eukaryotes. Mutants of Saccharomyces cerevisiae deficient in ubiquinone biosynthesis fail to grow on nonfermentable carbon sources and have been classified into eight complementation groups (coq1 coq8; Tzagoloff, A., and Dieckmann, C. L.(1990) Microbiol. Rev. 54, 211-225). In this study we show that although yeast coq7 mutants lack detectable ubiquinone, the coq7 1 mutant does synthesize demethoxyubiquinone (2-hexaprenyl-3-methyl-6-methoxy-1,4-benzoquinone), a ubiquinone biosynthetic intermediate. The corresponding wild-type COQ7 gene was isolated, sequenced, and found to restore growth on nonfermentable carbon sources and the synthesis of ubiquinone. The sequence predicts a polypeptide of 272 amino acids which is 40% identical to a previously reported Caenorhabditis elegans open reading frame. Deletion of the chromosomal COQ7 gene generates respiration defective yeast mutants deficient in ubiquinone. Analysis of several coq7 deletion strains indicates that, unlike the coq7 1 mutant, demethoxyubiquinone is not produced. Both coq7 1 and coq7 deletion mutants, like other coq mutants, accumulate an early intermediate in the ubiquinone biosynthetic pathway, 3-hexaprenyl-4-hydroxybenzoate. The data suggest that the yeast COQ7 gene may encode a protein involved in one or more monoxygenase or hydroxylase steps of ubiquinone biosynthesis. Topics: Amino Acid Sequence; Base Sequence; Cloning, Molecular; Genes, Fungal; Genetic Complementation Test; Genotype; Mass Spectrometry; Molecular Sequence Data; Open Reading Frames; Quinones; Restriction Mapping; Saccharomyces cerevisiae; Sequence Deletion; Sequence Homology, Amino Acid; Ubiquinone | 1996 |
Isolation and sequencing of the rat Coq7 gene and the mapping of mouse Coq7 to chromosome 7.
We recently identified the Saccharomyces cerevisiae COQ7 gene and showed that its product affects one or more monoxygenase steps in the synthesis of ubiquinone. Other investigators have independently isolated the yeast COQ7 gene as CAT5 and identified it as a gene necessary for the derepression of gluconeogenic enzymes in yeast. In the present study, a homolog of the yeast COQ7 (CAT5) gene was isolated from a rat testis cDNA library by functional complementation of a coq7 deletion mutant of S. cerevisiae. The resulting cDNA clones contained a 0.8-kb insert with an open reading frame encoding a 183-amino-acid polypeptide. The rat Coq7 amino acid sequence is 49% identical to that of yeast Coq7p and 58% identical to a C. elegans homolog over a 152-aa region. Sequence homology searches fail to identify any other significant homologies. The Coq7 gene was mapped to mouse chromosome 7, 7.6 +/- 3.6 cM proximal to the marker D7Mit7, by linkage analysis of an interspecific backcross. This region of chromosome 7 containing Coq7 is part of a linkage group conserved between mouse chromosome 7 and human chromosome 11p15. Topics: Amino Acid Sequence; Animals; Base Sequence; Caenorhabditis elegans; Chromosome Mapping; Crosses, Genetic; DNA, Complementary; Female; Genes, Fungal; Genetic Complementation Test; Genetic Linkage; Humans; Male; Mice; Mice, Inbred C57BL; Molecular Sequence Data; Muridae; Rats; Saccharomyces cerevisiae; Sequence Homology, Amino Acid; Ubiquinone | 1996 |
The thermotropic properties of coenzyme Q10 and its lower homologues.
The thermotropic properties of coenzymes Q10, Q9, Q8, and Q7 have been examined by differential scanning calorimetry and wide-angle X-ray diffraction. Typical scanning calorimetry cooling curves of coenzyme Q from the liquid state exhibit a single exothermic phase transition into a crystalline state at a temperature that decreases as the length of the polyisoprenoid side-chain substituent decreases. Upon subsequent heating, the molecules undergo a series of thermal events which precede the main crystalline-to-liquid endothermic phase transition. The temperature of these transitions increases with increasing chain length. The crystallization phase transition temperature depends markedly on the rate at which the sample is cooled and increases with decreasing scan rate; the temperature of the melting endotherm is not markedly affected by the scan rate. Detailed calorimetric studies of coenzyme Q10 indicate that two crystalline states are formed, one at relatively high cooling rates to low temperatures and the other when preparations are cooled slowly from the liquid state to relatively high temperatures. Heating the crystalline phase formed by rapid cooling causes its transformation into the phase observed by cooling slowly. X-ray diffraction analysis confirmed the existence of these two crystal phases in coenzymes Q9 and Q10 and the transformation from the rapidly crystallized form to the more ordered form associated with slower cooling rates. At body temperature (310 K) under equilibrium conditions coenzyme Q10 exists in an ordered crystalline phase; the implications of the thermotropic behavior of coenzyme Q10 on mitochondrial function in vitro and in vivo are discussed. Topics: Calorimetry, Differential Scanning; Coenzymes; Crystallization; Crystallography, X-Ray; Mitochondria; Thermodynamics; Ubiquinone | 1983 |
Inability of ubiquinones to stimulate resistance of mice against infection with Listeria monocytogenes.
Topics: Animals; Anti-Infective Agents; Coenzymes; Female; Immunity, Cellular; Listeriosis; Mice; Spleen; Ubiquinone | 1981 |