ubiquinone has been researched along with ubiquinol* in 405 studies
42 review(s) available for ubiquinone and ubiquinol
Article | Year |
---|---|
Pathology of salivary gland dysfunction and restoration of function.
In this review, the author shows that simultaneous multiple disorders caused by reactivation of Epstein-Barr virus can lead to salivary gland disorders as part of Sjogren's syndrome (SS). Therefore, clinicians must differentiate SS from other diseases when diagnosing and treating salivary gland disorders. In particular, the author explains how microbial infection in SS overcomes immunological tolerance, leading to pathological changes, and how cytokine overexpression and endocrine disrupters contribute to glandular tissue injury. Also, the author suggests that involvement of reactive oxygen species is a common pathogenesis of salivary gland disorders and SS, so regulation of oxidative stress is an effective treatment for both. The results of clinical studies on restoring salivary gland function and regenerating salivary glands with tissue stem cells may provide clues on elucidating the cause of SS. Topics: Antioxidants; Arthritis, Rheumatoid; Autoantigens; Autoimmune Diseases; Cytokines; Diagnosis, Differential; Dioxins; Epstein-Barr Virus Infections; Estrogens; Female; Genetic Predisposition to Disease; Herpesvirus 4, Human; Humans; Interleukin-10; Lymphocytes; Male; Mikulicz' Disease; Oxidative Stress; Reactive Oxygen Species; Salivary Glands; Sjogren's Syndrome; Stem Cell Transplantation; Ubiquinone; Virus Activation; Virus Diseases | 2021 |
Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications.
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site. Topics: Benzoquinones; Electron Transport Complex III; Oxidation-Reduction; Plant Proteins; Plants; Ubiquinone | 2016 |
Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency.
Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions. Topics: Adenosine Triphosphate; Animals; Ataxia; Central Nervous System Diseases; Disease Models, Animal; Electron Transport; Humans; Mice; Mitochondria; Mitochondrial Diseases; Muscle Weakness; Nephrotic Syndrome; Oxidative Stress; Phenotype; Ubiquinone | 2015 |
The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis.
The CydDC complex of Escherichia coli is a heterodimeric ATP-binding cassette type transporter (ABC transporter) that exports the thiol-containing redox-active molecules cysteine and glutathione. These reductants are thought to aid redox homeostasis of the periplasm, permitting correct disulphide folding of periplasmic and secreted proteins. Loss of CydDC results in the periplasm becoming more oxidising and abolishes the assembly of functional bd-type respiratory oxidases that couple the oxidation of ubiquinol to the reduction of oxygen to water. In addition, CydDC-mediated redox control is important for haem ligation during cytochrome c assembly. Given the diverse roles for CydDC in redox homeostasis, respiratory metabolism and the maturation of virulence factors, this ABC transporter is an intriguing system for researchers interested in both the physiology of redox perturbations and the role of low-molecular-weight thiols during infection. Topics: ATP-Binding Cassette Transporters; Cysteine; Escherichia coli; Escherichia coli Proteins; Glutathione; Homeostasis; Models, Biological; Models, Molecular; Molecular Conformation; Oxidation-Reduction; Oxidoreductases; Oxygen; Ubiquinone; Water | 2015 |
Myocardial energetics and ubiquinol in diastolic heart failure.
Diastolic heart failure, or heart failure with preserved ejection fraction, is a leading cause of morbidity and mortality. There are no current therapies effective in improving outcomes for these patients. The aim of this article is to review the literature and examine the role of coenzyme Q10 in heart failure with preserved ejection fraction related to mitochondrial synthesis of adenosine triphosphate and reactive oxygen species production. The study results reflect that myocardial energetics alters in diastolic heart failure and that there is defective energy metabolism and increased oxidative stress. Studies are emerging to evaluate coenzyme Q10 , particularly ubiquinol, as a supplemental treatment for heart-failure patients. In diastolic heart-failure patients, clinicians are beginning to use supplemental therapies to improve patient outcomes, and one promising complementary treatment to improve left ventricular diastolic function is ubiquinol. Additional studies are needed using large-scale randomized models to confirm if ubiquinol would be beneficial. Since ubiquinol is an antioxidant and is required for adenosine triphosphate production, clinicians and health scientists should be aware of the potential role of this supplement in the treatment of diastolic heart failure. Topics: Heart Failure, Diastolic; Humans; Hypertension; Ubiquinone | 2014 |
Structure, function, and assembly of heme centers in mitochondrial respiratory complexes.
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals. Topics: Bacteria; Electron Transport; Electron Transport Complex II; Electron Transport Complex III; Electron Transport Complex IV; Electrons; Heme; Humans; Mitochondria; Models, Molecular; Oxidation-Reduction; Oxidative Phosphorylation; Oxygen; Thermodynamics; Ubiquinone | 2012 |
Nitrite as a mediator of ischemic preconditioning and cytoprotection.
Ischemia/reperfusion (IR) injury is a central component in the pathogenesis of several diseases and is a leading cause of morbidity and mortality in the western world. Subcellularly, mitochondrial dysfunction, characterized by depletion of ATP, calcium-induced opening of the mitochondrial permeability transition pore, and exacerbated reactive oxygen species (ROS) formation, plays an integral role in the progression of IR injury. Nitric oxide (NO) and more recently nitrite (NO(2)(-)) are known to modulate mitochondrial function, mediate cytoprotection after IR and have been implicated in the signaling of the highly protective ischemic preconditioning (IPC) program. Here, we review what is known about the role of NO and nitrite in cytoprotection after IR and consider the putative role of nitrite in IPC. Focus is placed on the potential cytoprotective mechanisms involving NO and nitrite-dependent modulation of mitochondrial function. Topics: Animals; Cytochromes c; Cytoprotection; Glutathione; Humans; Ischemic Preconditioning; Mice; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Mitochondrial Proton-Translocating ATPases; Nitric Oxide; Nitric Oxide Synthase; Nitrites; Protein Processing, Post-Translational; Reactive Oxygen Species; Reperfusion Injury; Signal Transduction; Ubiquinone | 2011 |
Coenzyme Q10 and male infertility.
We had previously demonstrated that Coenzyme Q10 [(CoQ10) also commonly called ubiquinone] is present in well-measurable levels in human seminal fluid, where it probably exerts important metabolic and antioxidant functions; seminal CoQ10 concentrations show a direct correlation with seminal parameters (count and motility). Alterations of CoQ10 content were also shown in conditions associated with male infertility, such as asthenozoospermia and varicocele (VAR). The physiological role of this molecule was further clarified by inquiring into its variations in concentrations induced by different medical or surgical procedures used in male infertility treatment. We therefore evaluated CoQ10 concentration and distribution between seminal plasma and spermatozoa in VAR, before and after surgical treatment, and in infertile patients after recombinant human FSH therapy. The effect of CoQ10 on sperm motility and function had been addressed only through some in vitro experiments. In two distinct studies conducted by our group, 22 and 60 patients affected by idiopathic asthenozoospermia were enrolled, respectively. CoQ10 and its reduced form, ubiquinol, increased significantly both in seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, at baseline and after treatment, of seminal plasma or intracellular CoQ10, ubiquinol levels and kinetic parameters was found in the treated group. Patients with lower baseline value of motility and CoQ10 levels had a statistically significant higher probability to be responders to the treatment. In conclusion, the exogenous administration of CoQ10 increases both ubiquinone and ubiquinol levels in semen and can be effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia. Topics: Animals; Asthenozoospermia; Double-Blind Method; Humans; Infertility, Male; Male; Oxidation-Reduction; Randomized Controlled Trials as Topic; Semen; Sperm Motility; Spermatozoa; Ubiquinone; Vitamins | 2009 |
Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle.
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage. Topics: Bacterial Chromatophores; Electron Transport Complex III; Electrons; Models, Biological; Oxidation-Reduction; Protons; Rhodobacter capsulatus; Ubiquinone | 2007 |
Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations.
Plasma coenzyme Q10 (CoQ10) response to oral ingestion of various CoQ10 formulations was examined. Both total plasma CoQ10 and net increase over baseline CoQ10 concentrations show a gradual increase with increasing doses of CoQ10. Plasma CoQ10 concentrations plateau at a dose of 2400 mg using one specific chewable tablet formulation. The efficiency of absorption decreases as the dose increases. About 95% of circulating CoQ10 occurs as ubiquinol, with no appreciable change in the ratio following CoQ10 ingestion. Higher plasma CoQ10 concentrations are necessary to facilitate uptake by peripheral tissues and also the brain. Solubilized formulations of CoQ10 (both ubiquinone and ubiquinol) have superior bioavailability as evidenced by their enhanced plasma CoQ10 responses. Topics: Administration, Oral; Adult; Animals; Brain; Chemistry, Pharmaceutical; Child; Clinical Trials as Topic; Coenzymes; Humans; Models, Biological; Oxidation-Reduction; Tablets; Time Factors; Ubiquinone | 2007 |
Targeting antioxidants to mitochondria and cardiovascular diseases: the effects of mitoquinone.
Mitochondria have long been known to play a critical role in maintaining the bioenergetic status of cells under physiological conditions. Mitochondria produce large amounts of free radicals, and mitochondrial oxidative damage can contribute to a range of degenerative conditions including cardiovascular diseases (CVDs). Although the molecular mechanisms responsible for mitochondrion-mediated disease processes are not correctly understood, oxidative stress seems to play an important role. Consequently, the selective inhibition of mitochondrial oxidative damage is an obvious therapeutic strategy. This review considers the process of CVD from a mitochondrial perspective and provides a summary of the following areas: reactive oxygen species (ROS) production and its role in pathophysiological processes such as CVD, currently available antioxidants and possible reasons for their efficacy and inefficacy in ameliorating oxidative stress-mediated diseases, and recent developments in mitochondria-targeted antioxidants that concentrate on the matrix-facing surface of the inner mitochondrial membrane. These mitochondrion-targeted antioxidants have been developed by conjugating the lipophilic triphenylphosphonium cation to antioxidant moieties such as ubiquinol. These compounds pass easily through biological membranes and, due to their positive charge, they accumulate several-hundred-fold within mitochondria. In this way they protect against mitochondrial oxidative damage and show potential as a future therapy for CVDs. Topics: Antioxidants; Cardiovascular Diseases; Diabetes Mellitus; Endothelium, Vascular; Humans; Membrane Potentials; Mitochondria; Mitochondrial Diseases; Nitric Oxide; Organophosphorus Compounds; Oxidative Stress; Reactive Oxygen Species; Reperfusion Injury; Risk Factors; Ubiquinone | 2007 |
Ubiquinol oxidation in the cytochrome bc1 complex: reaction mechanism and prevention of short-circuiting.
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule. Topics: Catalytic Domain; Electron Transport; Electron Transport Complex III; Glutamine; Histidine; Models, Biological; Oxidation-Reduction; Ubiquinone | 2005 |
The mitochondrial interplay of ubiquinol and nitric oxide in endotoxemia.
Topics: Animals; Endotoxemia; Hydrogen Peroxide; Mitochondria; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Peroxynitrous Acid; Tissue Distribution; Ubiquinone | 2004 |
Structure and function of quinone binding membrane proteins.
Topics: Amino Acid Sequence; Animals; Benzoquinones; Binding Sites; Cattle; Cell Membrane; Electron Transport Complex III; Electrons; Mitochondria; Models, Biological; Models, Molecular; Molecular Sequence Data; Mutation; Myocardium; Oxidation-Reduction; Protein Binding; Protons; Ubiquinone | 2003 |
Protonmotive pathways and mechanisms in the cytochrome bc1 complex.
The cytochrome bc(1) complex catalyzes electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which electron transfer is linked to proton translocation across the inner mitochondrial membrane. In the Q cycle mechanism proton translocation is the net result of topographically segregated reduction of quinone and reoxidation of quinol on opposite sides of the membrane, with protons being carried across the membrane as hydrogens on the quinol. The linkage of proton chemistry to electron transfer during quinol oxidation and quinone reduction requires pathways for moving protons to and from the aqueous phase and the hydrophobic environment in which the quinol and quinone redox reactions occur. Crystal structures of the mitochondrial cytochrome bc(1) complexes in various conformations allow insight into possible proton conduction pathways. In this review we discuss pathways for proton conduction linked to ubiquinone redox reactions with particular reference to recently determined structures of the yeast bc(1) complex. Topics: Electron Transport Complex III; Ion Transport; Models, Chemical; Models, Molecular; Oxidation-Reduction; Proton-Motive Force; Protons; Ubiquinone; Yeasts | 2003 |
Regeneration of the antioxidant ubiquinol by lipoamide dehydrogenase, thioredoxin reductase and glutathione reductase.
Ubiquinol is a powerful antioxidant, which is oxidized in action and needs to be replaced or regenerated to be capable of a sustained effort. This article summarises current knowledge of extramitochondrial reduction of ubiquinone by three flavoenzymes, i.e. lipoamide dehydrogenase, glutathione reductase and thioredoxin reductase, belonging to the same pyridine nucleotide-disulfide oxidoreductase family. These three enzymes are the most efficient extramitochondrial ubiquinone reductases so far described. The reduction of ubiquinone by lipoamide dehydrogenase and glutathione reductase is potently stimulated by zinc and the highest rate of reduction is achieved at acidic pH and the rates are equal with either NADPH or NADH as co-factors. The most efficient ubiquinone reductases are mammalian cytosolic thioredoxin reductases, which are selenoenzymes with a number of biological functions. Reduction of ubiquinone by thioredoxin reductase is in contrast to the other two enzymes investigated, inhibited by zinc and shows a sharp physiological pH optimum at pH 7.5. Furthermore, the reaction is selenium dependent as revealed from experiments using truncated and mutant forms of the enzyme and also in a cellular context by selenium treatment of transfected thioredoxin reductase overexpressing stable cell lines. The reduction of ubiquinone by the three enzymes offers a multifunctional system for extramitochondrial regeneration of an important antioxidant. Topics: Animals; Antioxidants; Dihydrolipoamide Dehydrogenase; Glutathione Reductase; Humans; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Thioredoxin-Disulfide Reductase; Ubiquinone | 2003 |
Interactions of quinone with the iron-sulfur protein of the bc(1) complex: is the mechanism spring-loaded?
Since available structures of native bc(1) complexes show a vacant Q(o)-site, occupancy by substrate and product must be investigated by kinetic and spectroscopic approaches. In this brief review, we discuss recent advances using these approaches that throw new light on the mechanism. The rate-limiting reaction is the first electron transfer after formation of the enzyme-substrate complex at the Q(o)-site. This is formed by binding of both ubiquinol (QH(2)) and the dissociated oxidized iron-sulfur protein (ISP(ox)). A binding constant of approximately 14 can be estimated from the displacement of E(m) or pK for quinone or ISP(ox), respectively. The binding likely involves a hydrogen bond, through which a proton-coupled electron transfer occurs. An enzyme-product complex is also formed at the Q(o)-site, in which ubiquinone (Q) hydrogen bonds with the reduced ISP (ISPH). The complex has been characterized in ESEEM experiments, which detect a histidine ligand, likely His-161 of ISP (in mitochondrial numbering), with a configuration similar to that in the complex of ISPH with stigmatellin. This special configuration is lost on binding of myxothiazol. Formation of the H-bond has been explored through the redox dependence of cytochrome c oxidation. We confirm previous reports of a decrease in E(m) of ISP on addition of myxothiazol, and show that this change can be detected kinetically. We suggest that the myxothiazol-induced change reflects loss of the interaction of ISPH with Q, and that the change in E(m) reflects a binding constant of approximately 4. We discuss previous data in the light of this new hypothesis, and suggest that the native structure might involve a less than optimal configuration that lowers the binding energy of complexes formed at the Q(o)-site so as to favor dissociation. We also discuss recent results from studies of the bypass reactions at the site, which lead to superoxide (SO) production under aerobic conditions, and provide additional information about intermediate states. Topics: Benzoquinones; Binding Sites; Electron Transport Complex III; Iron-Sulfur Proteins; Kinetics; Methacrylates; Oxidation-Reduction; Thermodynamics; Thiazoles; Ubiquinone | 2002 |
[Mitochondrial complex II (succinate-ubiquinone oxidoreductase)].
Topics: Animals; Citric Acid Cycle; Cytochrome b Group; Electron Transport; Electron Transport Complex II; Ferrous Compounds; Flavins; Humans; Mitochondria; Multienzyme Complexes; Oxidation-Reduction; Oxidoreductases; Succinate Dehydrogenase; Succinic Acid; Ubiquinone | 2002 |
[Mitochondrial complex III (ubiquinone-cytochrome c oxidoreductase)].
Topics: Animals; Crystallography, X-Ray; Cytochrome b Group; Electron Transport Complex III; Ferrous Compounds; Humans; Mitochondria; Oxidation-Reduction; Proton Pumps; Ubiquinone | 2002 |
[Inhibitors of complex I and II of the mitochondrial respiratory chain].
Topics: Animals; Anthraquinones; Carboxin; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Energy Metabolism; Humans; Malonates; Mitochondria; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidative Phosphorylation; Oxidoreductases; Rotenone; Succinate Dehydrogenase; Ubiquinone | 2002 |
[Coenzyme Q10 deficiency].
Topics: Coenzymes; Diagnosis, Differential; Humans; Lactic Acid; Mitochondria; Mitochondrial Diseases; Mitochondrial Encephalomyopathies; Myoglobinuria; Prognosis; Syndrome; Ubiquinone | 2002 |
[Structure of cytochrome bc1 complex from bovine heart mitochondria].
Topics: Animals; Cattle; Crystallography, X-Ray; Electron Transport Complex III; Membrane Proteins; Mitochondria, Heart; Oxidation-Reduction; Protein Conformation; Protons; Ubiquinone | 1999 |
Energy transduction function of the quinone reactions in cytochrome bc complexes.
Cytochrome bc1, a multi-subunit integral membrane protein complex found in mammalian mitochondria, plays a central role in the transfer of electrons and protons generated by the oxidation of ubiquinol. According to the classical chemiosmotic theory, quinones shuttle protons across the hydrophobic membrane bilayer with the net result of H+ transfer to the aqueous side and generation of an electrochemical proton gradient. Recently, high-resolution structures of the mitochondrial bc1 complex showed quinone binding sites at one of the transmembrane helices of cytochrome b, and two potentially protonatable histidine residues on the Rieske iron-sulfur protein. The modern biochemical refinements of the original chemiosmotic theory require electron and proton transfer from quinones to particular residues/redox centers of integral membrane proteins and subsequent transfer of H+ to the bulk aqueous phase outside the membrane. Topics: Animals; Electron Transport; Electron Transport Complex III; Energy Metabolism; Iron-Sulfur Proteins; Mammals; Mitochondria; Models, Chemical; Models, Molecular; Protein Conformation; Protein Structure, Secondary; Ubiquinone | 1999 |
[Intramolecular and intermolecular electron transfer reactions in quinoprotein and quinohemoprotein dehydrogenases].
Topics: Acetobacter; Alcohol Dehydrogenase; Alcohol Oxidoreductases; Binding Sites; Electron Transport; Escherichia coli; Glucose 1-Dehydrogenase; Glucose Dehydrogenases; Oxidoreductases Acting on CH-NH Group Donors; Protein Conformation; Ubiquinone | 1999 |
[Ubiquinone (CoQ), ubiquinol (UQ)].
Topics: Adult; Female; Humans; Male; Middle Aged; Ubiquinone | 1999 |
The role of various domains of the iron-sulfur protein in the assembly and activity of the cytochrome bc1 complex of yeast mitochondria.
Assembly studies in vitro of deletion mutants of the iron-sulfur protein into the cytochrome bc1 complex revealed that mutants localized in the extramembranous regions of the protein were not assembled into the complex in contrast to the efficient assembly of mutants in the membrane-spanning region. Charged amino acids located in the extramembranous alpha1-beta4 loop and the alpha1 helix were mutated and expressed in yeast cells lacking the gene for the iron-sulfur protein. Mutating the charged amino acid residues H124, E125, R146, K148, and D149 as well as V132 and W152 resulted in loss of enzymatic activity due to the loss of iron-sulfur protein suggesting that these amino acids are required to maintain protein stability. By contrast, no loss of iron-sulfur protein accompanied the 30-50% loss of bc1 complex activity in mutants of three conserved alanine residues, A86, A90, and A92, suggesting that these residues may be involved in the proposed movement of the flexible tether of the iron-sulfur protein during catalysis. Topics: Amino Acid Substitution; Binding Sites; Catalysis; Dimerization; Electron Transport; Electron Transport Complex III; Fungal Proteins; Gene Deletion; Heme; Iron-Sulfur Proteins; Mitochondria; Models, Molecular; Motion; Mutagenesis, Site-Directed; Oxidation-Reduction; Protein Conformation; Protein Folding; Protein Structure, Tertiary; Protons; Saccharomyces cerevisiae; Structure-Activity Relationship; Ubiquinone | 1999 |
Role of the Rieske iron-sulfur protein midpoint potential in the protonmotive Q-cycle mechanism of the cytochrome bc1 complex.
The midpoint potential of the [2Fe-2S] cluster of the Rieske iron-sulfur protein (Em7 = +280 mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochrome c catalyzed by the cytochrome bc1 complex. As the midpoint potential of the Rieske cluster is lowered by altering the electronic environment surrounding the cluster, the ubiquinol-cytochrome c reductase activity of the bc1 complex decreases; between 220 and 280 mV the rate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects the presteady-state kinetics of cytochrome b and c1 reduction. When the midpoint potential of the Rieske cluster is more positive than that of the heme of cytochrome c1, reduction of cytochrome b is biphasic. The fast phase of b reduction is linked to the optically invisible reduction of the Rieske center, while the rate of the second, slow phase matches that of c1 reduction. The rates of b and c1 reduction become slower as the potential of the Rieske cluster decreases and change from biphasic to monophasic as the Rieske potential approaches that of the ubiquinone/ubiquinol couple. Reduction of b and c1 remain kinetically linked as the midpoint potential of the Rieske cluster is varied by 180 mV and under conditions where the presteady state reduction is biphasic or monophasic. The persistent linkage of the rates of b and c1 reduction is accounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism. Topics: Amino Acid Substitution; Dimerization; Electron Transport; Electron Transport Complex III; Heme; Iron-Sulfur Proteins; Kinetics; Models, Chemical; Models, Molecular; Oxidation-Reduction; Point Mutation; Protein Conformation; Protein Structure, Tertiary; Protons; Static Electricity; Structure-Activity Relationship; Thermodynamics; Ubiquinone | 1999 |
The role of the supernumerary subunit of Rhodobacter sphaeroides cytochrome bc1 complex.
The smallest molecular weight subunit (subunit IV), which contains no redox prosthetic group, is the only supernumerary subunit in the four-subunit Rhodobacter sphaeroides bc1 complex. This subunit is involved in Q binding and the structural integrity of the complex. When the cytochrome bc1 complex is photoaffinity labeled with [3H]azido-Q derivative, radioactivity is found in subunits IV and I (cytochrome b), indicating that these two subunits are responsible for Q binding in the complex. When the subunit IV gene (fbcQ) is deleted from the R. sphaeroides chromosome, the resulting strain (RSdeltaIV) requires a period of adaptation before the start of photosynthetic growth. The cytochrome bc1 complex in adapted RSdeltaIV chromatophores is labile to detergent treatment (60-75% inactivation), and shows a four-fold increase in the Km for Q2H2. The first two changes indicate a structural role of subunit IV; the third change supports its Q-binding function. Tryptophan-79 is important for structural and Q-binding functions of subunit IV. Subunit IV is overexpressed in Escherichia coli as a GST fusion protein using the constructed expression vector, pGEX/IV. Purified recombinant subunit IV is functionally active as it can restore the bc1 complex activity from the three-subunit core complex to the same level as that of wild-type or complement complex. Three regions in the subunit IV sequence, residues 86-109, 77-85, and 41-55, are essential for interaction with the core complex because deleting one of these regions yields a subunit completely or partially unable to restore cytochrome bc1 from the core complex. Topics: Amino Acid Sequence; Bacterial Proteins; Catalysis; Dimerization; Electron Transport Complex III; Gene Deletion; Genetic Complementation Test; Kinetics; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Protein Conformation; Rhodobacter sphaeroides; Structure-Activity Relationship; Ubiquinone | 1999 |
Structure and function of the bacterial bc1 complex: domain movement, subunit interactions, and emerging rationale engineering attempts.
The ubiquinol: cytochrome c oxidoreductase, or the bc1 complex, is a key component of both respiratory and photosynthetic electron transfer and contributes to the formation of an electrochemical gradient necessary for ATP synthesis. Numerous bacteria harbor a bc1 complex comprised of three redox-active subunits, which bear two b-type hemes, one c-type heme, and one [2Fe-2S] cluster as prosthetic groups. Photosynthetic bacteria like Rhodobacter species provide powerful models for studying the function and structure of this enzyme and are being widely used. In recent years, extensive use of spontaneous and site-directed mutants and their revertants, new inhibitors, discovery of natural variants of this enzyme in various species, and engineering of novel bc1 complexes in species amenable to genetic manipulations have provided us with a wealth of information on the mechanism of function, nature of subunit interactions, and assembly of this important enzyme. The recent resolution of the structure of various mitochondrial bc1 complexes in different crystallographic forms has consolidated previous findings, added atomic-scale precision to our knowledge, and raised new issues, such as the possible movement of the Rieske Fe-S protein subunit during Qo site catalysis. Here, studies performed during the last few years using bacterial bc1 complexes are reviewed briefly and ongoing investigations and future challenges of this exciting field are mentioned. Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Bacterial Proteins; Binding Sites; Catalysis; Electron Transport; Electron Transport Complex III; Heme; Iron-Sulfur Proteins; Ligands; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Polyenes; Protein Conformation; Protein Engineering; Protein Folding; Protein Structure, Tertiary; Rhodobacter capsulatus; Structure-Activity Relationship; Ubiquinone | 1999 |
The chemistry and mechanics of ubihydroquinone oxidation at center P (Qo) of the cytochrome bc1 complex.
The emerging X-ray structures of the cytochrome bc1 complexes from bovine and chicken heart mitochondria support the protonmotive Q-cycle as the overall electron- and proton-pathway within the cytochrome bc1 complex. The energy conserving reaction within this reaction scheme is the unique bifurcation of electron flow into a high potential and a low potential pathway occurring at the ubihydroquinone-oxidation center (center P or Qo). This step is prerequisite for the 'recycling' of every second electron across the membrane onto the ubiquinone-reduction center, which results in vectorial proton translocation. It has been shown that during steady-state the step controlling this reaction is the first deprotonation of ubihydroquinone and not, as proposed earlier, the formation of a highly unstable semiquinone species. Ubiquinone has not yet been detected at the ubihydroquinone-oxidation center of the protein structures now available, but the pocket seems spacious enough to accommodate two ubiquinone molecules. This is in line with recent enzymological studies, which have shown that not only two ubiquinones, but also two inhibitor molecules can bind to center P. The most striking result from the structures is that the hydrophilic domain of the 'Rieske' protein can be found in two different positions which seem to allow electron transfer between the iron-sulfur cluster and either ubiquinone binding at center P or heme c1. This provides strong support for the 'catalytic switch' model proposed earlier based on detailed analysis of inhibitor binding to cytochrome bc1 complex in different redox states. Topics: Animals; Binding Sites; Catalysis; Crystallography, X-Ray; Electron Transport Complex III; Mitochondria, Heart; Oxidation-Reduction; Protein Conformation; Ubiquinone | 1998 |
The biochemical, pathophysiological, and medical aspects of ubiquinone function.
Ubiquinone (Q) shares its biological implication in membrane-associated redox reactions with a variety of other redox carriers, such as dehydrogenases, non-heme-iron proteins, and cytochromes. Peculiarities arise from the lack of transition metals, which in contrast to the other electron carriers do not participate in redox-shuttle activities of Q. Another peculiarity is the lipophilicity of Q, which allows free movement between reductants and oxidants of a membrane. The chemistry of Q reduction and ubiquinol oxidation requires the stepwise acceptance and transfer of two single electrons associated with the addition or release of two single H+. These special qualities are widely used in biological membranes for linear electron transfer and transmembranous H+ translocation. In mitochondria it was long reported that under certain conditions linear e- transfer from the semireduced form (SQ.) to native oxidants of the respiratory chain may run out of control, thereby establishing a permanent source of oxygen radical release. It should be mentioned that in mitochondria e- transfer to dioxygen out of sequence requires a particular treatment with inhibitors and uncouplers of the respiratory chain. Nevertheless, it is generally assumed that Q is mainly involved in mitochondrial O2.- generation and that mitochondria represent the major source of O2.- radicals under physiological and various pathophysiological conditions. The ever-increasing application of coenzyme Q as an antioxidant for the prophylaxis and treatment of a great variety of functional disorders, including senescence, has considerably stimulated our interest in the potential prooxidative potency of this natural electron carrier. Experimental evidence will be presented that under physiological conditions Q implicated in mitochondrial e- transfer of the respiratory chain is not involved in cellular oxygen activation. It will also be shown that alterations of Q from an e- carrier to an active radical promotor is possible under various conditions. In addition, reaction products emerging from the antioxidant activity of ubiquinol were found to stimulate the formation of inorganic as well as organic oxygen radicals. Topics: Aging; Animals; Disease; Electron Transport; Humans; Membrane Fluidity; Mitochondria; Models, Biological; Oxidation-Reduction; Oxidative Stress; Oxygen Consumption; Ubiquinone | 1998 |
Role of coenzyme Q and superoxide in vitamin E cycling.
Topics: Animals; Antioxidants; Electron Transport; Free Radical Scavengers; Humans; Intracellular Membranes; Lipoproteins, LDL; Oxidation-Reduction; Oxidative Stress; Phospholipids; Superoxides; Ubiquinone; Vitamin E | 1998 |
Prooxidant functions of coenzyme Q.
Topics: Animals; Antioxidants; Electron Transport; Free Radical Scavengers; Humans; In Vitro Techniques; Mitochondria; Oxidants; Oxidation-Reduction; Superoxides; Ubiquinone | 1998 |
Mechanisms and dynamics of antioxidant action of ubiquinol.
The mechanisms and dynamics of antioxidant action of ubiquinol have been studied. Ubiquinol scavenges peroxyl radical faster than alpha-tocopherol. However, it is autooxidized rapidly to give hydroperoxyl radical and/or superoxide and hence its antioxidant potency is smaller than that of alpha-tocopherol. The side chain of ubiquinol reduces the mobility between the membranes. It was concluded that ubiquinol acts as a potent antioxidant in combination with alpha-tocopherol. Topics: Animals; Antioxidants; Ascorbic Acid; Drug Synergism; Humans; Linoleic Acids; Lipid Peroxidation; Oxidation-Reduction; Peroxides; Phenylenediamines; Reactive Oxygen Species; Ubiquinone; Vitamin E | 1997 |
Biochemical, physiological and medical aspects of ubiquinone function.
This presentation is a brief review of current knowledge concerning some biochemical, physiological and medical aspects of the function of ubiquinone (coenzyme Q) in mammalian organisms. In addition to its well-established function as a component of the mitochondrial respiratory chain, ubiquinone has in recent years acquired increasing attention with regard to its function in the reduced form (ubiquinol) as an antioxidant. Ubiquinone, partly in the reduced form, occurs in all cellular membranes as well as in blood serum and in serum lipoproteins. Ubiquinol efficiently protects membrane phospholipids and serum low-density lipoprotein from lipid peroxidation, and, as recent data indicate, also mitochondrial membrane proteins and DNA from free-radical induced oxidative damage. These effects of ubiquinol are independent of those of exogenous antioxidants, such as vitamin E, although ubiquinol can also potentiate the effect of vitamin E by regenerating it from its oxidized form. Tissue ubiquinone levels are regulated through the mevalonate pathway, increasing upon various forms of oxidative stress, and decreasing during aging. Drugs inhibiting cholesterol biosynthesis via the mevalonate pathway may inhibit or stimulate ubiquinone biosynthesis, depending on their site of action. Administration of ubiquinone as a dietary supplement seems to lead primarily to increased serum levels, which may account for most of the reported beneficial effects of ubiquinone intake in various instances of experimental and clinical medicine. Topics: Animals; Antioxidants; Disease; DNA Damage; Electron Transport Complex III; Electron Transport Complex IV; Humans; Lipid Peroxidation; Lipoproteins, LDL; Mammals; Membrane Lipids; Membrane Proteins; Models, Biological; NAD(P)H Dehydrogenase (Quinone); Organ Specificity; Oxidants; Oxidation-Reduction; Phospholipids; Reference Values; Ubiquinone | 1995 |
Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation.
Topics: Adenosine Triphosphatases; Animals; Antioxidants; DNA Damage; DNA, Mitochondrial; Lipid Peroxidation; Mitochondria, Liver; Oxidative Stress; Proteins; Rats; Thiobarbituric Acid Reactive Substances; Ubiquinone | 1994 |
Ubiquinol: an endogenous antioxidant in aerobic organisms.
Ubiquinone (coenzyme Q), in addition to its function as an electron and proton carrier in mitochondrial and bacterial electron transport linked to ATP synthesis, acts in its reduced form (ubiquinol) as an antioxidant, preventing the initiation and/or propagation of lipid peroxidation in biological membranes and in serum low-density lipoprotein. The antioxidant activity of ubiquinol is independent of the effect of vitamin E, which acts as a chain-breaking antioxidant inhibiting the propagation of lipid peroxidation. In addition, ubiquinol can efficiently sustain the effect of vitamin E by regenerating the vitamin from the tocopheroxyl radical, which otherwise must rely on water-soluble agents such as ascorbate (vitamin C). Ubiquinol is the only known lipid-soluble antioxidant that animal cells can synthesize de novo, and for which there exist enzymic mechanisms that can regenerate the antioxidant from its oxidized form resulting from its inhibitory effect of lipid peroxidation. These features, together with its high degree of hydrophobicity and its widespread occurrence in biological membranes and in low-density lipoprotein, suggest an important role of ubiquinol in cellular defense against oxidative damage. Degenerative diseases and aging may be manifestations of a decreased capacity to maintain adequate ubiquinol levels. Topics: Aerobiosis; Animals; Humans; Oxidation-Reduction; Ubiquinone | 1993 |
Mutational analysis of assembly and function of the iron-sulfur protein of the cytochrome bc1 complex in Saccharomyces cerevisiae.
The iron-sulfur protein of the cytochrome bc1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochrome c1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochrome b-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochrome bc1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochrome c1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to the b-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein. Topics: Amino Acid Sequence; Bacterial Proteins; Catalysis; Electron Transport; Electron Transport Complex III; Fungal Proteins; Iron-Sulfur Proteins; Mitochondria; Models, Molecular; Molecular Sequence Data; Mutagenesis; Oxidation-Reduction; Phylogeny; Plant Proteins; Protein Conformation; Protein Processing, Post-Translational; Saccharomyces cerevisiae; Sequence Alignment; Sequence Homology, Amino Acid; Species Specificity; Ubiquinone | 1993 |
The mode of action of lipid-soluble antioxidants in biological membranes. Relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles.
The effects of ubiquinol and vitamin E on ascorbate- and ADP-Fe(3+)-induced lipid peroxidation were investigated in beef heart submitochondrial particles before and after extraction of ubiquinone and vitamin E, and after reincorporation of either or both of these components. It is concluded that ubiquinol is capable of inhibiting lipid peroxidation without the mediation of vitamin E, but may also amplify the antioxidant effect of the latter. It is pointed out that ubiquinol is the only known lipid-soluble antioxidant that can be synthesized de novo in animal cells, and for which there exists an enzymic mechanism--the mitochondrial electron-transport system--that can regenerate the antioxidant from its oxidized form resulting from its inhibitory effect on lipid peroxidation. These features, together with its high degree of hydrophobicity and its general occurrence in biological membrane and in low-density lipoprotein, suggest a highly important role of ubiquinol in cellular defense against oxidative damage. Topics: Animals; Antioxidants; Humans; Lipid Peroxidation; Membranes; Solubility; Submitochondrial Particles; Ubiquinone; Vitamin E | 1992 |
Simplicity and complexity in electron transfer between NADH and c-type cytochromes in bacteria.
Topics: Bacteria; Cytochrome c Group; Electron Transport; NAD; NAD(P)H Dehydrogenase (Quinone); Ubiquinone | 1991 |
Vectorial electron and proton transfer steps in the cytochrome bc1 complex.
Topics: Antimycin A; Bacterial Chromatophores; Binding Sites; Biological Transport; Electron Transport; Electron Transport Complex III; Mitochondria; Models, Chemical; Rhodobacter sphaeroides; Ubiquinone | 1990 |
Experimental observations on the structure and function of mitochondrial complex III that are unresolved by the protonmotive ubiquinone-cycle hypothesis.
The current model of the protonmotive ubiquinone cycle as applied to mitochondrial ubiquinol-cytochrome c reductase complex (Complex III) is able to explain a number of previously puzzling observations concerning electron-transfer and proton translocating functions of the complex. However, a number of pertinent experimental observations concerning the structure and function of this complex cannot as yet be incorporated into the present version of the ubiquinone cycle. The yet unresolved problems of electron transfer uncovered by these observations include some kinetic and thermodynamic problems, uncertainties in the binding site(s) and mode of binding of ubiquinol and inhibitors, the observed multiple spectroscopic, electrochemical, and kinetic forms of cytochromes b, iron-sulfur protein, and cytochrome c1, the multiple and overlapping effects of inhibitors, and the functional role of conformational changes in the complex. It is concluded that although the Q cycle is a valuable base for the design of future experiments, its mechanism must be reconciled with the above uncertainties as well as with the accumulated evidence that Complex III can exist in two or more interchangeable forms, exhibiting different properties with respect to electron-transfer pathways, inhibitor binding, and spectral and electrochemical properties of the electron-carrier subunits. Topics: Animals; Carrier Proteins; Coenzymes; Cytochrome b Group; Electron Transport; Electron Transport Complex III; Hydroquinones; Intracellular Membranes; Mitochondria; Models, Molecular; Multienzyme Complexes; Oxidation-Reduction; Protein Conformation; Protons; Quinone Reductases; Ubiquinone | 1986 |
31 trial(s) available for ubiquinone and ubiquinol
Article | Year |
---|---|
Effects of Ubiquinol and/or D-ribose in Patients With Heart Failure With Preserved Ejection Fraction.
Topics: Adenosine Triphosphate; Capsules; Exercise Tolerance; Heart Failure; Humans; Lactates; Middle Aged; Powders; Ribose; Stroke Volume; Ubiquinone; Ventricular Function, Left | 2022 |
Ubiquinol (reduced coenzyme Q10) as a metabolic resuscitator in post-cardiac arrest: A randomized, double-blind, placebo-controlled trial.
Ubiquinol (reduced coenzyme Q10) is essential for adequate aerobic metabolism. The objective of this trial was to determine whether ubiquinol administration in patients resuscitated from cardiac arrest could increase physiological coenzyme Q10 levels, improve oxygen consumption, and reduce neurological biomarkers of injury.. This was a randomized, double-blind, placebo-controlled trial in patients successfully resuscitated from cardiac arrest. Patients were randomized to receive enteral ubiquinol (300 mg) or placebo every 12 h for up to 7 days. The primary endpoint was total coenzyme Q10 plasma levels at 24 h after enrollment. Secondary endpoints included neuron specific enolase, S100B, lactate, cellular and global oxygen consumption, neurological status, and in-hospital mortality.. Forty-three patients were included in the modified intention-to-treat analysis. Median coenzyme Q10 levels were significantly higher in the ubiquinol group as compared to the placebo group at 24 h (441 [IQR, 215-510] ηg/mL vs. 113 [IQR, 94-208] ηg/mL, P < 0.001). Similar results were observed at 48 and 72 h. There were no differences between the two groups in any of the secondary endpoints. Median neuron specific enolase levels were not different between the two groups at 24 h (16.8 [IQR, 9.5-19.8] ηg/mL vs. 8.2 [IQR, 4.3-19.1] ηg/mL, P = 0.61).. Administration of enteral ubiquinol increased plasma coenzyme Q10 levels in post-cardiac arrest patients as compared to placebo. There were no differences in neurological biomarkers and oxygen consumption between the two groups. Topics: Biomarkers; Double-Blind Method; Heart Arrest; Humans; Ubiquinone | 2021 |
Ubiquinol Improves Endothelial Function in Patients with Heart Failure with Reduced Ejection Fraction: A Single-Center, Randomized Double-Blind Placebo-Controlled Crossover Pilot Study.
Endothelial dysfunction is reportedly associated with worse outcomes in patients with chronic heart failure. Ubiquinol is a reduced form of coenzyme Q10 (CoQ10) that may improve endothelial function.. We assessed the hypothesis that ubiquinol improves peripheral endothelial function in patients with heart failure with reduced ejection fraction (HFrEF).. In this randomized, double-blind, placebo-controlled, crossover pilot study, 14 patients with stable HFrEF were randomly and blindly allocated to ubiquinol 400 mg/day or placebo for 3 months. After a 1-month washout period, patients were crossed over to the alternative treatment. Before and after each treatment, we assessed peripheral endothelial function using the reactive hyperemia index (RHI) and analyzed it using the natural logarithm of RHI (LnRHI).. Peripheral endothelial function as assessed by LnRHI tended to improve with ubiquinol 400 mg/day for 3 months (p = 0.076). Original RHI values were also compared, and RHI significantly improved with ubiquinol treatment (pre-RHI 1.57 [interquartile range (IQR) 1.39-1.80], post-RHI 1.74 [IQR 1.63-2.02], p = 0.026), but not with placebo (pre-RHI 1.67 [IQR 1.53-1.85], post-RHI 1.51 [IQR 1.39-2.11], p = 0.198).. Ubiquinol 400 mg/day for 3 months led to significant improvement in peripheral endothelial function in patients with HFrEF. Ubiquinol may be a therapeutic option for individuals with HFrEF. Large-scale randomized controlled trials of CoQ10 supplementation in patients with HFrEF are needed.. Japanese University Hospital Medical Information Network (UMIN-ICDR). Clinical Trial identifier number UMIN000012604. Topics: Aged; Cross-Over Studies; Double-Blind Method; Endothelium, Vascular; Female; Heart Failure; Humans; Male; Pilot Projects; Ubiquinone | 2020 |
Beneficial Effect of Ubiquinol on Hematological and Inflammatory Signaling during Exercise.
Strenuous exercise (any activity that expends six metabolic equivalents per minute or more causing sensations of fatigue and exhaustion to occur, inducing deleterious effects, affecting negatively different cells), induces muscle damage and hematological changes associated with high production of pro-inflammatory mediators related to muscle damage and sports anemia. The objective of this study was to determine whether short-term oral ubiquinol supplementation can prevent accumulation of inflammatory mediators and hematological impairment associated to strenuous exercise. For this purpose, 100 healthy and well-trained firemen were classified in two groups: Ubiquinol (experimental group), and placebo group (control). The protocol was two identical strenuous exercise tests with rest period between tests of 24 h. Blood samples were collected before supplementation (basal value) (T1), after supplementation (T2), after first physical exercise test (T3), after 24 h of rest (T4), and after second physical exercise test (T5). Hematological parameters, pro- and anti-inflammatory cytokines and growth factors were measured. Red blood cells (RBC), hematocrit, hemoglobin, VEGF, NO, EGF, IL-1ra, and IL-10 increased in the ubiquinol group while IL-1, IL-8, and MCP-1 decreased. Ubiquinol supplementation during high intensity exercise could modulate inflammatory signaling, expression of pro-inflammatory, and increasing some anti-inflammatory cytokines. During exercise, RBC, hemoglobin, hematocrit, VEGF, and EGF increased in ubiquinol group, revealing a possible pro-angiogenic effect, improving oxygen supply and exerting a possible protective effect on other physiological alterations. Topics: Chemokine CCL2; Cytokines; Double-Blind Method; Erythrocyte Count; Exercise; Exercise Test; Fatigue; Female; Hematocrit; Hemoglobins; Humans; Inflammation Mediators; Intercellular Signaling Peptides and Proteins; Interleukin-1; Male; Muscle, Skeletal; Oxygen Consumption; Signal Transduction; Ubiquinone | 2020 |
Ubiquinol supplementation in elderly patients undergoing aortic valve replacement: biochemical and clinical aspects.
Epidemiological data show a rise in the mean age of patients affected by heart disease undergoing cardiac surgery. Senescent myocardium reduces the tolerance to ischemic stress and there are indications about age-associated deficit in post-operative cardiac performance. Coenzyme Q10 (CoQ10), and more specifically its reduced form ubiquinol (QH), improve several conditions related to bioenergetic deficit or increased exposure to oxidative stress. This trial (Eudra-CT 2009-015826-13) evaluated the clinical and biochemical effects of ubiquinol in 50 elderly patients affected by severe aortic stenosis undergoing aortic valve replacement and randomized to either placebo or 400 mg/day ubiquinol from 7 days before to 5 days after surgery. Plasma and cardiac tissue CoQ10 levels and oxidative status, circulating troponin I, CK-MB (primary endpoints), IL-6 and S100B were assessed. Moreover, main cardiac adverse effects, NYHA class, contractility and myocardial hypertrophy (secondary endpoints) were evaluated during a 6-month follow-up visit. Ubiquinol treatment counteracted the post-operative plasma CoQ10 decline (p<0.0001) and oxidation (p=0.038) and curbed the post-operative increase in troponin I (QH, 1.90 [1.47-2.48] ng/dL; placebo, 4.03 [2.45-6.63] ng/dL; p=0.007) related to cardiac surgery. Moreover, ubiquinol prevented the adverse outcomes that might have been associated with defective left ventricular ejection fraction recovery in elderly patients. Topics: Age Factors; Aged; Aged, 80 and over; Aortic Valve; Aortic Valve Stenosis; Dietary Supplements; Double-Blind Method; Female; Heart Valve Prosthesis Implantation; Humans; Male; Postoperative Complications; Ubiquinone | 2020 |
Ubiquinol supplementation modulates energy metabolism and bone turnover during high intensity exercise.
Bone and energy metabolism are profoundly influenced by exercise. The objective of this study was to determine for the first time whether a short-term supplementation with ubiquinol could have a modulating effect on bone turnover and energy metabolism associated with strenuous exercise. The participants (n = 100 healthy and well-trained firemen) were randomly divided into two groups: ubiquinol group (ubiquinol (200 mg day-1)) and control group (placebo) for two weeks. The protocol consisted of conducting two identical strenuous exercise tests with a rest period between tests of 24 h. Blood samples were collected before supplementation (basal value) (T1), after supplementation (T2), after the first physical exercise test (T3), after 24 h of rest (T4), and after the second physical exercise test (T5). Parathyroid hormone (PTH), osteocalcin (OC), osteoprotegerin (OPG), osteopontin (OPN), sclerotin (SOST), alkaline phosphatase (AP), adrenocorticotropin (ACTH), insulin, leptin, adrenaline, noradrenaline and peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) were determined. Our protocol increased ACTH, SOST, PTH and OC levels, while it decreased OPN. This protocol also increased adrenaline, noradrenaline and PCG-1α, and decreased insulin. After ubiquinol supplementation, PTH, OC, OPG, alkaline phosphatase, leptin, insulin, noradrenaline and PGC-1α levels increased in the supplemented group compared to the control group after the exercise protocol. Strenuous exercise has a clear effect on energy metabolism and bone turnover. These effects are modulated by ubiquinol supplementation, which especially increases the biomarkers of bone formation during strenuous exercise. In addition, ubiquinol has a beneficial effect on the mobilization of energy sources, fact that it could represent an ergogenic and physiological advantage for skeletal muscles. Topics: Adrenocorticotropic Hormone; Adult; Bone Remodeling; Dietary Supplements; Energy Metabolism; Exercise; Exercise Test; Humans; Leptin; Male; Muscle, Skeletal; PPAR alpha; Ubiquinone | 2020 |
Effect of Ubiquinol Intake on Defecation Frequency and Stool Form: A Prospective, Double-Blinded, Randomized Control Study.
Bowel habits affect the quality of life (QOL) of patients with functional gastrointestinal disorders. This study evaluated the effects of reduced form coenzyme Q 10 (ubiquinol) intake on defecation frequency and stool form in patients with daily abdominal symptoms. This was a single-center, prospective, double-blind, randomized control study. Forty-one patients who had the daily symptom of constipation or diarrhea were randomly assigned at a 1:1 ratio to receive either ubiquinol (150 mg/day) or placebo for 12 weeks. Patients completed a daily diary to collect information regarding their numbers of defecations and stool forms according to the Bristol Stool Form (BSF) Scale for 7 days at baseline and 12 weeks. QOL was assessed using the 36-item short-form (SF-36) at baseline and 12 weeks. Twenty-one patients were assigned to the ubiquinol group, and 20 were assigned to the placebo group. At 12 weeks, the mean defecation frequency, compared to baseline, significantly decreased in the ubiquinol group (-0.1 times/day, P = .034) and increased in the placebo group (+0.3 times/day, P = .004). There was no significant change in the 12-week BSF Scale score of the ubiquinol group (+0.2, P = .123), whereas that of the placebo group was increased (+0.5, P < .001). The 12-week general health perception SF-36 score was significantly increased in the ubiquinol group (+3.5, P = .045), whereas there was no significant difference in that score in the placebo group (+1.2, P = .178). In conclusion, taking ubiquinol for 12 weeks decreased defecation frequencies and increased the QOL score, suggesting that ubiquinol may change the bowel habits and improve QOL in patients with abdominal distress. Topics: Aged; Constipation; Defecation; Diarrhea; Double-Blind Method; Feces; Female; Gastrointestinal Diseases; Humans; Male; Middle Aged; Prospective Studies; Quality of Life; Ubiquinone | 2019 |
Effect of gummy candy containing ubiquinol on secretion of saliva: A randomized, double-blind, placebo-controlled parallel-group comparative study and an in vitro study.
A randomized, double-blind, placebo-controlled, parallel-group comparative clinical study was conducted to examine the effects of ubiquinol (the reduced form of Coenzyme Q10) on secretion of saliva. This interventional study enrolled 40 subjects aged 65 years or younger who were healthy, but noted slight dryness of the mouth. Subjects were randomized with stratification according to gender and age to ingestion of gummy candy containing 50 mg of ubiquinol or placebo twice daily for 8 weeks. At the end of study, along with a significant increase of the CoQ10 level in saliva (p = 0.025*, d = 0.65), there was a significant increase of the saliva flow rate (p = 0.048*, d = 0.66) in the ubiquinol candy group (n = 18; 47.4±6.2 years; 6 men and 12 women) compared to the placebo group (n = 20; 52.2±7.7 years; 4 men and 16 women). The strength of the stomatognathic muscles was not significantly enhanced by ingestion of ubiquinol candy. Compared with baseline, significant improvement of the following four questionnaire items was observed in the ubiquinol group at the end of the study: feeling tired (p = 0.00506, d = -0.726), dryness of the mouth (p = 0.04799, d = -0.648), prone to catching a cold (p = 0.00577, d = -0.963), and diarrhea (p = 0.0166, d = -0.855). There were no serious adverse events. An in vitro study revealed that ubiquinol stimulated a significant and concentration-dependent increase of ATP production by a cell line derived from human salivary gland epithelial cells (p<0.05), while 1 nM ubiquinol significantly suppressed (p = 0.028) generation of malondialdehyde by cells exposed to FeSO4-induced oxidative stress. These findings suggest that ubiquinol increases secretion of saliva by suppressing oxidative stress in the salivary glands and by promoting ATP production. Trial Registration: UMIN-CTR UMIN000024406. Topics: Adenosine Triphosphate; Adult; Antioxidants; Candy; Cell Line; Deglutition; Double-Blind Method; Female; Humans; Japan; Male; Malondialdehyde; Middle Aged; Oxidative Stress; Saliva; Salivary Glands; Surveys and Questionnaires; Ubiquinone | 2019 |
Study protocol, randomized controlled trial: reducing symptom burden in patients with heart failure with preserved ejection fraction using ubiquinol and/or D-ribose.
Heart failure (HF), the leading cause of morbidity and mortality in the US, affects 6.6 million adults with an estimated additional 3 million people by 2030. More than 50% of HF patients have heart failure with preserved left ventricular ejection fraction (HFpEF). These patients have impaired cardiac muscle relaxation and diastolic filling, which investigators have associated with cellular energetic impairment. Patients with HFpEF experience symptoms of: (1) fatigue; (2) shortness of breath; and (3) swelling (edema) of the lower extremities. However, current HF guidelines offer no effective treatment to address these underlying pathophysiologic mechanisms. Thus, we propose a biobehavioral symptom science study using ubiquinol and D-ribose (therapeutic interventions) to target mitochondrial bioenergetics to reduce the complex symptoms experienced by patients with HFpEF.. Using a randomized, double-blind, placebo-controlled design, the overall objective is to determine if administering ubiquinol and/or D-ribose to HFpEF patients for 12 weeks would decrease the severity of their complex symptoms and improve their cardiac function. The measures used to assess patients' perceptions of their health status and level of vigor (energy) will be the Kansas City Cardiomyopathy Questionnaire (KCCQ) and Vigor subscale of the Profile of Mood States. The 6-min walk test will be used to test exercise tolerance. Left ventricular diastolic function will be assessed using innovative advanced echocardiography software called speckle tracking. We will measure B-type natriuretic peptides (secreted from ventricles in HF) and lactate/ATP ratio (measure of cellular energetics).. Ubiquinol (active form of Coenzyme Q10) and D-ribose are two potential treatments that can positively affect cellular energetic impairment, the major underlying mechanism of HFpEF. Ubiquinol, the reduced form of CoQ10, is more effective in adults over the age of 50. In patients with HFpEF, mitochondrial deficiency of ubiquinol results in decreased adenosine triphosphate (ATP) synthesis and reduced scavenging of reactive oxygen species. D-ribose is a substrate required for ATP synthesis and when administered has been shown to improve impaired myocardial bioenergetics. Therefore, if the biological underpinning of deficient mitochondrial ATP in HFpEF is not addressed, patients will suffer major symptoms including lack of energy, fatigue, exertional dyspnea, and exercise intolerance.. ClinicalTrials.gov Identifier: NCT03133793 ; Data of Registration: April 28, 2017. Topics: Double-Blind Method; Energy Metabolism; Exercise Tolerance; Female; Heart Failure; Humans; Male; Middle Aged; Mitochondria, Heart; Randomized Controlled Trials as Topic; Recovery of Function; Ribose; Stroke Volume; Time Factors; Treatment Outcome; Ubiquinone; Ventricular Function, Left | 2018 |
Effect of ubiquinol supplementation on biochemical and oxidative stress indexes after intense exercise in young athletes.
Physical exercise significantly impacts the biochemistry of the organism. Ubiquinone is a key component of the mitochondrial respiratory chain and ubiquinol, its reduced and active form, is an emerging molecule in sport nutrition. The aim of this study was to evaluate the effect of ubiquinol supplementation on biochemical and oxidative stress indexes after an intense bout of exercise.. 21 male young athletes (26 + 5 years of age) were randomized in two groups according to a double blind cross-over study, either supplemented with ubiquinol (200 mg/day) or placebo for 1 month. Blood was withdrawn before and after a single bout of intense exercise (40 min run at 85% maxHR). Physical performance, hematochemical parameters, ubiquinone/ubiquinol plasma content, intracellular reactive oxygen species (ROS) level, mitochondrial membrane depolarization, paraoxonase activity and oxidative DNA damage were analyzed.. A single bout of intense exercise produced a significant increase in most hematochemical indexes, in particular CK and Mb while, on the contrary, normalized coenzyme Q. Data highlights a very rapid dynamic of CoQ depletion following intense exercise underlying an increased demand by the organism. Ubiquinol supplementation minimized exercise-induced depletion and enhanced plasma and cellular antioxidant levels but it was not able to improve physical performance indexes or markers of muscular damage. Topics: Adult; Athletes; Cross-Over Studies; Dietary Supplements; Double-Blind Method; Exercise; Humans; Male; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Ubiquinone; Young Adult | 2018 |
Effect of liquid ubiquinol supplementation on glucose, lipids and antioxidant capacity in type 2 diabetes patients: a double-blind, randomised, placebo-controlled trial.
Ubiquinone is a lipid antioxidant, and a novel liquid ubiquinol (a hydro-soluble, reduced form of coenzyme Q10) supplement was recently developed. The purpose of this study was to examine the levels of glucose, lipids and antioxidant capacity of type 2 diabetes patients after liquid ubiquinol supplementation. This study was designed as a randomised, double-blind, placebo-controlled trial. In all, fifty participants were randomly assigned to a placebo (n 25) or liquid ubiquinol (100 mg/d, n 25) group, and the intervention lasted for 12 weeks. Plasma coenzyme Q10, glucose homoeostasis parameters, lipid profiles, oxidative stress and antioxidative enzyme activities were measured during the study. After 12 weeks of supplementation, glyco Hb (HbA1c) value was significantly decreased in the liquid ubiquinol group (P=0·03), and subjects in the liquid ubiquinol group had significantly lower anti-glycaemic medication effect scores (MES) compared with those in the placebo group (P=0·03). The catalase (P<0·01) and glutathione peroxidase (P=0·03) activities were increased significantly after supplementation. Plasma coenzyme Q10 was correlated with the insulin level (P=0·05), homoeostatic model assessment-insulin resistance (P=0·07), quantitative insulin sensitivity check index (P=0·03) and the anti-hyperglycaemic agents' MES (P=0·03) after supplementation. Lipid profiles did not change after supplementation; however, the subjects in the placebo group had a significantly lower level of HDL-cholesterol after 12 weeks of intervention. In conclusion, oral intake of 100 mg/d liquid ubiquinol might benefit type 2 diabetes patients by increasing antioxidant enzyme activity levels, reducing HbA1c levels and maintaining HDL-cholesterol levels. Topics: Administration, Oral; Adult; Aged; Anthropometry; Antioxidants; Blood Glucose; Blood Pressure; Cholesterol, HDL; Diabetes Mellitus, Type 2; Diet; Dietary Supplements; Double-Blind Method; Female; Glucose; Glycated Hemoglobin; Homeostasis; Humans; Insulin; Lipids; Male; Middle Aged; Oxidative Stress; Ubiquinone | 2018 |
Ubiquinol is superior to ubiquinone to enhance Coenzyme Q10 status in older men.
Coenzyme Q10 (CoQ10) exerts its functions in the body through the ability of its benzoquinone head group to accept and donate electrons. The primary functions are to relay electrons for ATP production in the electron transport chain and to act as an important lipophilic antioxidant. Ubiquinone, the oxidized form of CoQ10, is commonly formulated in commercial supplements, and it must be reduced to ubiquinol to exert CoQ10's functions after consumption. Thus, we aimed to examine whether as compared to ubiquinone, ubiquinol would be more effective to enhance the CoQ10 status in older men. We conducted a double-blind, randomized, crossover trial with two 2-week intervention phases and a 2-week washout between crossovers. Ten eligible older men were randomized to consume either the ubiquinol or ubiquinone supplement at a dose of 200 mg d-1 with one of the main meals. A total of 4 blood samples were collected after an overnight fast for the determination of ubiquinone and ubiquinol in plasma and PBMC and the assessment of FRAP, total thiol, and malondialdehyde (MDA) in plasma and ATP in PBMC. After 2 weeks of the supplementation, the ubiquinol supplement significantly increased plasma ubiquinone 1.7 fold from 0.2 to 0.6 μmol L-1 and total CoQ10 (the sum of 2 forms) 1.5 fold from 1.3 to 3.4 μmol L-1 (p < 0.05) and tended to increase the plasma ubiquinol status 1.5 fold from 1.1 to 2.8 μmol L-1, but did not alter the ratio of ubiquinol to total CoQ10. The ubiquinone supplement insignificantly increases plasma ubiquinol, ubiquinone, and total CoQ10 and did not affect the ratio. Of 10 subjects, six were more responsive to the ubiquinol supplement and 2 were more so to the ubiquinone. The supplementation of both CoQ10 forms did not alter the CoQ10 status in PBMC. FRAP, total thiol, and MDA in plasma and ATP in PBMC were not changed during the intervention. The significant increase in plasma CoQ10 status observed after the 2-week supplementation suggested that ubiquinol appeared to be a better supplemental form to enhance the CoQ10 status than ubiquinone in older men. Neither ubiquinol nor ubiquinone supplement affected the measured biomarkers of oxidative stress. Topics: Aged; Antioxidants; Biomarkers; Body Mass Index; Cross-Over Studies; Dietary Supplements; Dose-Response Relationship, Drug; Double-Blind Method; Humans; Leukocytes, Mononuclear; Male; Malondialdehyde; Middle Aged; Oxidative Stress; Ubiquinone | 2018 |
MicroRNAs as biomarkers of hepatotoxicity in a randomized placebo-controlled study of simvastatin and ubiquinol supplementation.
Statins are potent cholesterol-lowering drugs and are generally well tolerated. Hepatotoxicity is a rare but serious adverse effect of statins; however, its mechanisms are not clear. Coenzyme Q10 deficiency has been suggested, and supplementation of reduced coenzyme Q10 (ubiquinol) has been shown to have hepatoprotective effects. MicroRNAs (miRNAs) are small nucleotides that have been shown to be up-regulated in drug-induced liver injury. We hypothesized that circulating miRNAs may be differentially regulated after simvastatin treatment and by comparing with that of simvastatin and ubiquinol supplementation could potentially uncover signatory miRNA profile for simvastatin-induced liver injury. In this double-blind, prospective, randomized-controlled trial, miRNA profiles and liver enzymes were compared between simvastatin-treated patients, with and without ubiquinol supplementation, over 12 weeks compared to baseline. miRNA expression was further validated in HepG2 liver cell lines by real-time PCR. Changes in miR-192, miR-146a, miR-148a, miR-15a, and miR-21 were positively correlated (p<0.05) with alanine aminotransferase in simvastatin-only treated patients. In ubiquinol supplementation group, alanine aminotransferase and alkaline phosphatase were significantly down-regulated after 12 weeks and changes in miR-15a, miR-21 and miR-33a were negatively correlated with alkaline phosphatase (p < 0.05). Bioinformatics analyses predicted that miRNA regulation in simvastatin group was related to reduce proliferation and adenosine triphosphate-binding cassette transporters. Ubiquinol supplementation additionally regulated miRNAs that inhibit apoptotic and inflammatory pathways, suggesting potential hepatoprotective effects. Our results suggest that 20 mg/day of simvastatin does not have significant risk of hepatotoxicity and ubiquinol supplementation may, at the miRNA level, provide potential beneficial changes to reduce the effects of coenzyme Q10 deficiency in the liver. Topics: Adult; Alanine Transaminase; Alkaline Phosphatase; Anticholesteremic Agents; Biomarkers; Cell Line; Double-Blind Method; Female; Gene Expression Profiling; Hepatocytes; Humans; Liver; Male; MicroRNAs; Middle Aged; Placebos; Prospective Studies; Real-Time Polymerase Chain Reaction; Simvastatin; Ubiquinone | 2016 |
Short-term ubiquinol supplementation reduces oxidative stress associated with strenuous exercise in healthy adults: A randomized trial.
Topics: Adult; Antioxidants; Dietary Supplements; Drug Administration Schedule; Healthy Volunteers; Humans; Male; Middle Aged; Oxidative Stress; Physical Exertion; Resistance Training; Ubiquinone | 2016 |
Randomized, double-blind, placebo-controlled pilot trial of reduced coenzyme Q10 for Parkinson's disease.
Mitochondrial complex I deficiencies have been found in post-mortem brains of patients with Parkinson's disease (PD). Coenzyme Q10 (CoQ10) is the electron acceptor found in complexes I and II, and is a potent antioxidant. A recent trial of the oxidized form of CoQ10 for PD failed to show benefits; however, the reduced form of CoQ10 (ubiquinol-10) has shown better neuroprotective effects in animal models.. Randomized, double-blind, placebo-controlled, parallel-group pilot trials were conducted to assess the efficacy of ubiquinol-10 in Japanese patients with PD. Participants were divided into two groups: PD experiencing wearing off (Group A), and early PD, without levodopa (with or without a dopamine agonist) (Group B). Participants took 300 mg of ubiquinol-10 or placebo per day for 48 weeks (Group A) or 96 weeks (Group B).. In Group A, total Unified Parkinson's Disease Rating Scale (UPDRS) scores decreased in the ubiquinol-10 group (n = 14; mean ± SD [-4.2 ± 8.2]), indicating improvement in symptoms. There was a statistically significant difference (p < 0.05) compared with the placebo group (n = 12; 2.9 ± 8.9). In Group B, UPDRS increased in the ubiquinol-10 group (n = 14; 3.9 ± 8.0), as well as in the placebo group (n = 8; 5.1 ± 10.3).. This is the first report showing that ubiquinol-10 may significantly improve PD with wearing off, as judged by total UPDRS scores, and that ubiquinol-10 is safe and well tolerated. Topics: Aged; Antioxidants; Double-Blind Method; Female; Humans; Male; Middle Aged; Neuroprotective Agents; Parkinson Disease; Pilot Projects; Treatment Outcome; Ubiquinone | 2015 |
Ubiquinol (reduced Coenzyme Q10) in patients with severe sepsis or septic shock: a randomized, double-blind, placebo-controlled, pilot trial.
We previously found decreased levels of Coenzyme Q10 (CoQ10) in patients with septic shock. The objective of the current study was to assess whether the provision of exogenous ubiquinol (the reduced form of CoQ10) could increase plasma CoQ10 levels and improve mitochondrial function.. We performed a randomized, double-blind, pilot trial at a single, tertiary care hospital. Adults (age ≥18 years) with severe sepsis or septic shock between November 2012 and January 2014 were included. Patients received 200 mg enteral ubiquinol or placebo twice a day for up to seven days. Blood draws were obtained at baseline (0 h), 12, 24, 48, and 72 h. The primary outcome of the study was change in plasma CoQ10 parameters (total CoQ10 levels, CoQ10 levels relative to cholesterol levels, and levels of oxidized and reduced CoQ10). Secondary outcomes included assessment of: 1) vascular endothelial biomarkers, 2) inflammatory biomarkers, 3) biomarkers related to mitochondrial injury including cytochrome c levels, and 4) clinical outcomes. CoQ10 levels and biomarkers were compared between groups using repeated measures models.. We enrolled 38 patients: 19 in the CoQ10 group and 19 in the placebo group. The mean patient age was 62 ± 16 years and 47% were female. Baseline characteristics and CoQ10 levels were similar for both groups. There was a significant increase in total CoQ10 levels, CoQ10 levels relative to cholesterol levels, and levels of oxidized and reduced CoQ10 in the ubiquinol group compared to the placebo group. We found no difference between the two groups in any of the secondary outcomes.. In this pilot trial we showed that plasma CoQ10 levels could be increased in patients with severe sepsis or septic shock, with the administration of oral ubiquinol. Further research is needed to address whether ubiquinol administration can result in improved clinical outcomes in this patient population.. Clinicaltrials.gov identifier NCT01948063. Registered on 18 February 2013. Topics: Cholesterol; Cytochromes c; Double-Blind Method; Female; Humans; Interleukins; Male; Micronutrients; Middle Aged; Pilot Projects; Sepsis; Shock, Septic; Ubiquinone; Vascular Cell Adhesion Molecule-1; Vascular Endothelial Growth Factor A | 2015 |
Ubiquinol improves symptoms in children with autism.
Autism is a spectrum of neurodevelopmental disorders with manifestation within 3 years after birth. Manifestations of autism include behavior problems (hyperactivity, toys destruction, self-harm, and aggression) and sleep and eating disorders. Etiology of autism is poorly understood. Oxidative stress and antioxidants can participate in pathobiochemical mechanisms of autism.. Twenty-four children, aged 3-6 years, with autism according to the DSM IV criteria and using CARS were included in the study. Concentrations of CoQ10-TOTAL, γ- and α-tocopherol, β-carotene, and lipid peroxidation were determined in plasma before and after three months of supportive therapy with ubiquinol at a daily dose 2 × 50 mg. Data on behavior of the children were collected from parents at the same time.. Ubiquinol supportive therapy improved symptoms in children with autism, as communication with parents (in 12%), verbal communication (in 21%), playing games of children (in 42%), sleeping (in 34%), and food rejection (in 17%), with CoQ10-TOTAL plasma level above 2.5 μmol/L.. Beneficial effect of ubiquinol in children with autism has been demonstrated for the first time. We assume that plasma concentration of CoQ10-TOTAL and lipid peroxidation could be used as relevant biomarkers of ubiquinol supportive therapy. Topics: Antioxidants; Autistic Disorder; Behavior; Binding Sites; Child; Child, Preschool; Female; Humans; Male; Thiobarbituric Acid Reactive Substances; Ubiquinone | 2014 |
Ubiquinol reduces gamma glutamyltransferase as a marker of oxidative stress in humans.
The reduced form of Coenzyme Q10 (CoQ10), ubiquinol (Q10H2), serves as a potent antioxidant in mitochondria and lipid membranes. There is evidence that Q10H2 protects against oxidative events in lipids, proteins and DNA. Serum gamma-glutamyltransferase (GGT) activity is associated with cardiovascular diseases. In a physiological range, activity of GGT is a potential early and sensitive marker of inflammation and oxidative stress.In this study, we first examined the relationship between CoQ10 status and serum GGT activity in 416 healthy participants between 19 and 62 years of age in a cross-sectional study (cohort I). In the second step, 53 healthy males (21-48 years of age; cohort II) underwent a 14-day Q10H2 supplementation (150 mg/d) to evaluate the effect of Q10H2 supplementation on serum GGT activity and GGT1 gene expression.. There was a strong positive association between CoQ10 status and serum GGT activity in cohort I. However, a gender-specific examination revealed differences between male and female volunteers regarding the association between CoQ10 status and serum GGT activity. Q10H2 supplementation (cohort II) caused a significant decrease in serum GGT activity from T0 to T14 (p < 0.001). GGT1 mRNA levels declined 1.49-fold after Q10H2 supplementation. Of note, other liver enzymes (i.e., aspartate aminotransferase, AST) were not affected by Q10H2 supplementation.. CoQ10 level is positively associated with serum GGT activity. Supplementation with Q10H2 reduces serum GGT activity. This effect might be caused by gene expression. Overall, we provide preliminary evidence that higher Q10H2 levels improve oxidative stress via reduction of serum GGT activity in humans.. Current Controlled Trials ISRCTN26780329. Topics: Adult; Antioxidants; Biomarkers; Dietary Supplements; Female; gamma-Glutamyltransferase; Humans; Male; Middle Aged; Mitochondria; Oxidative Stress; Risk Factors; Ubiquinone | 2014 |
Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: a double-blind, placebo controlled, randomized study.
We investigated the effects of the administration of ubiquinol (a reduced form of coenzyme Q(10)) on semen parameters and seminal plasma antioxidant capacity in infertile men with idiopathic oligoasthenoteratozoospermia.. A total of 228 men with unexplained infertility were randomly assigned 1:1 into 2 groups. Group 1 (114) received 200 mg ubiquinol daily by mouth for 26 weeks and group 2 (114) received a similar regimen of placebo. After completion of the 26-week treatment phase, all participants were followed for another 12-week off-drug period. Primary outcomes were improvement in sperm density, sperm motility and sperm strict morphology.. At the end of the 26-week treatment period mean ± SD sperm density in the ubiquinol and placebo groups was 28.7 ± 4.6 × 10(6)/ml and 16.8 ± 4.4 × 10(6)/ml (p = 0.005), sperm motility was 35.8% ± 2.7% and 25.4% ± 2.1% (p = 0.008), and sperm strict morphology was 17.6% ± 4.4% and 14.8% ± 4.1% (p = 0.01) of normal sperm, respectively. During the treatment period serum follicle-stimulating hormone levels decreased significantly (p = 0.02) and serum inhibin B concentrations increased significantly (p = 0.01). During the off-drug period semen parameters gradually returned to baseline values but the differences were still significant for sperm density (p = 0.03) and sperm motility (p = 0.03). The correlation coefficients analysis revealed a positive association between the duration of treatment with ubiquinol and sperm density (r = 0.74, p = 0.017), sperm motility (r = 0.66, p = 0.024) and sperm morphology (r = 0.57, p = 0.027).. Ubiquinol was significantly effective in men with unexplained oligoasthenoteratozoospermia for improving sperm density, sperm motility and sperm morphology. Topics: Adult; Antioxidants; Double-Blind Method; Drug Administration Schedule; Follow-Up Studies; Humans; Infertility, Male; Iran; Male; Semen Analysis; Sperm Count; Sperm Motility; Spermatozoa; Ubiquinone | 2012 |
Impact of oral ubiquinol on blood oxidative stress and exercise performance.
Coenzyme Q10 (CoQ10) plays an important role in bioenergetic processes and has antioxidant activity. Fifteen exercise-trained individuals (10 men and 5 women; 30-65 years) received reduced CoQ10 (Kaneka QH ubiquinol; 300 mg per day) or a placebo for four weeks in a random order, double blind, cross-over design (3 week washout). After each four-week period, a graded exercise treadmill test and a repeated cycle sprint test were performed (separated by 48 hours). Blood samples were collected before and immediately following both exercise tests and analyzed for lactate, malondialdehyde, and hydrogen peroxide. Resting blood samples were analyzed for CoQ10 (ubiquinone and ubiquinol) profile before and after each treatment period. Treatment with CoQ10 resulted in a significant increase in total blood CoQ10 (138%; P = 0.02) and reduced blood CoQ10 (168%; P = 0.02), but did not improve exercise performance (with the exception of selected individuals) or impact oxidative stress. The relationship between the percentage change in total blood CoQ10 and the cycle sprint total work (R(2) = 0.6009) was noted to be moderate to strong. We conclude that treatment with CoQ10 in healthy, exercise-trained subjects increases total and reduced blood CoQ10, but this increase does not translate into improved exercise performance or decreased oxidative stress. Topics: Administration, Oral; Adult; Aged; Cross-Over Studies; Double-Blind Method; Exercise; Female; Humans; Hydrogen Peroxide; Lactic Acid; Male; Malondialdehyde; Middle Aged; Oxidative Stress; Placebo Effect; Ubiquinone; Vitamins | 2012 |
Ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory chemokine ligand 2 gene in humans.
Coenzyme Q₁₀ is an essential cofactor in the respiratory chain and serves in its reduced form, ubiquinol, as a potent antioxidant. Studies in vitro and in vivo provide evidence that ubiquinol reduces inflammatory processes via gene expression. Here we investigate the putative link between expression and DNA methylation of ubiquinol sensitive genes in monocytes obtained from human volunteers supplemented with 150 mg/ day ubiquinol for 14 days.. Ubiquinol decreases the expression of the pro-inflammatory chemokine (C-X-C motif) ligand 2 gene (CXCL2) more than 10-fold. Bisulfite-/ MALDI-TOF-based analysis of regulatory regions of the CXCL2 gene identified six adjacent CpG islands which showed a 3.4-fold decrease of methylation status after ubiquinol supplementation. This effect seems to be rather gene specific, because ubiquinol reduced the expression of two other pro-inflammatory genes (PMAIP1, MMD) without changing the methylation pattern of the respective gene.. In conclusion, ubiquinol decreases monocytic expression and DNA methylation of the pro-inflammatory CXCL2 gene in humans. Current Controlled Trials ISRCTN26780329. Topics: Adult; Chemokine CXCL2; CpG Islands; Dietary Supplements; DNA Methylation; Down-Regulation; Humans; Inflammation Mediators; Male; Middle Aged; Monocytes; RNA, Messenger; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Ubiquinone; Young Adult | 2012 |
Effects of coenzyme Q10 on salivary secretion.
Dry mouth is a condition associated with reduced salivary secretion and is thought to be related to aging. This study was conducted to test whether reduced (ubiquinol) or oxidized (ubiquinone) forms of CoQ10 affect salivary secretion and salivary CoQ10 content before and after treatment.. Sixty-six patients were given either ubiquinol or ubiquinone orally at a dosage of 100 mg/day, or a placebo for 1 month, and salivary secretion and salivary CoQ10 content were analyzed before and after treatment.. Both parameters were significantly improved following treatment with either form of CoQ10, suggesting the effectiveness of CoQ10 in attenuating dry mouth symptoms.. CoQ10 was locally detected in salivary glands, suggesting that orally administered CoQ10 was transported to the salivary glands via the blood stream and exerted its activity, improving salivary secretion. Topics: Administration, Oral; Aged; Antioxidants; Female; Humans; Male; Middle Aged; Salivation; Ubiquinone | 2011 |
Rosuvastatin combined with regular exercise preserves coenzyme Q10 levels associated with a significant increase in high-density lipoprotein cholesterol in patients with coronary artery disease.
Coenzyme Q10 levels are low in patients with coronary artery disease (CAD), and increasing or preserving coenzyme Q10 could be a beneficial strategy. Exercise and statins improve high-density lipoprotein cholesterol (HDL-C) levels. However, statins inhibit coenzyme Q10 biosynthesis, and the combination of statins with coenzyme Q10 supplementation increases HDL-C compared to statins alone. We compared the effects of two statins (rosuvastatin and atorvastatin) combined with exercise on coenzyme Q10 and HDL-C levels in CAD patients.. After randomizing 28 CAD patients to rosuvastatin (n=14) and atorvastatin (n=14) groups, patients performed weekly in-hospital aerobic exercise and daily home exercise for 20 weeks. We measured serum lipids, ubiquinol, and exercise capacity.. Both statins equally improved exercise capacity and lowered low-density lipoprotein cholesterol and triglyceride levels. Rosuvastatin significantly increased HDL-C (rosuvastatin, +12 ± 9 mg/dL [+30%], atorvastatin, +5 ± 5 mg/dL [+13%], p=0.014) and apolipoprotein A1 (ApoA1) (rosuvastatin, +28.3 ± 20.7 mg/dL, atorvastatin, +13.4 ± 12.0 mg/dL, p=0.030) compared to atorvastatin. Atorvastatin significantly decreased serum ubiquinol (731 ± 238 to 547 ± 219 nmol/L, p=0.001), but rosuvastatin (680±233 to 668 ± 299 nmol/L, p=0.834) did not. There was a significant positive correlation between changes in ubiquinol and ApoA1 (r=0.518, p=0.005). Multivariate regression analysis showed that changes in ubiquinol correlated significantly with changes in ApoA1 after adjusting for age, sex, body mass index, and smoking (β=0.502, p=0.008).. Compared to atorvastatin, rosuvastatin combined with exercise significantly preserved ubiquinol levels associated with an increase in HDL-C. Rosuvastatin with regular exercise could be beneficial for CAD patients. Topics: Aged; Atorvastatin; Cholesterol, HDL; Coronary Artery Disease; Echocardiography; Exercise; Female; Fluorobenzenes; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Male; Middle Aged; Multivariate Analysis; Pyrimidines; Pyrroles; Risk; Rosuvastatin Calcium; Smoking; Sulfonamides; Ubiquinone | 2011 |
Supplemental ubiquinol in patients with advanced congestive heart failure.
Patients with CHF, NYHA class IV, often fail to achieve adequate plasma CoQ10 levels on supplemental ubiquinone at dosages up to 900 mg/day. These patients often have plasma total CoQ10 levels of less than 2.5 microg/ml and have limited clinical improvement. It is postulated that the intestinal edema in these critically ill patients may impair CoQ10 absorption. We identified seven patients with advanced CHF (mean EF 22%) with sub-therapeutic plasma CoQ10 levels with mean level of 1.6 microg/ml on an average dose of 450 mg of ubiquinone daily (150-600 mg/day). All seven of these patients were changed to an average of 580 mg/day of ubiquinol (450-900 mg/day) with follow-up plasma CoQ10 levels, clinical status, and EF measurements by echocardiography. Mean plasma CoQ10 levels increased from 1.6 microg/ml (0.9-2.0 microg/ml) up to 6.5 microg/ml (2.6-9.3 microg/ml). Mean EF improved from 22% (10-35%) up to 39% (10-60%) and clinical improvement has been remarkable with NYHA class improving from a mean of IV to a mean of II (I to III). Ubiquinol has dramatically improved absorption in patients with severe heart failure and the improvement in plasma CoQ10 levels is correlated with both clinical improvement and improvement in measurement of left ventricular function. Topics: Aged; Female; Heart Failure; Humans; Intestinal Absorption; Male; Middle Aged; Ubiquinone | 2008 |
The effect of coenzyme Q10 on microcirculatory endothelial function of subjects with type 2 diabetes mellitus.
Topics: Adult; Cell Adhesion Molecules; Coenzymes; Diabetes Mellitus, Type 2; Endothelium, Vascular; Female; Humans; Male; Microcirculation; Middle Aged; Ubiquinone | 2008 |
Study on safety and bioavailability of ubiquinol (Kaneka QH) after single and 4-week multiple oral administration to healthy volunteers.
The safety and bioavailability of ubiquinol (the reduced form of coenzyme Q(10)), a naturally occurring lipid-soluble nutrient, were evaluated for the first time in single-blind, placebo-controlled studies with healthy subjects after administration of a single oral dose of 150 or 300 mg and after oral administration of 90, 150, or 300 mg for 4 weeks. No clinically relevant changes in results of standard laboratory tests, physical examination, vital signs, or ECG induced by ubiquinol were observed in any dosage groups. The C(max) and AUC(0-48 h) derived from the mean plasma ubiquinol concentration-time curves increased non-linearly with dose from 1.88 to 3.19 micro g/ml and from 74.61 to 91.76 micro g h/ml, respectively, after single administration. Trough concentrations had nearly plateaued at levels of 2.61 micro g/ml for 90 mg, 3.66 micro g/ml for 150 mg, and 6.53 micro g/ml for 300 mg at day 14, and increased non-linearly with dose in the 4-week study. In conclusion, following single or multiple-doses of ubiquinol in healthy volunteers, significant absorption of ubiquinol from the gastrointestinal tract was observed, and no safety concerns were noted on standard laboratory tests for safety or on assessment of adverse events for doses of up to 300 mg for up to 2 weeks after treatment completion. Topics: Administration, Oral; Adult; Area Under Curve; Biological Availability; Dietary Supplements; Female; Humans; Intestinal Absorption; Male; Single-Blind Method; Toxicity Tests, Acute; Ubiquinone | 2007 |
Effect of carni Q-gel (ubiquinol and carnitine) on cytokines in patients with heart failure in the Tishcon study.
There is evidence that both carnitine and coenzyme Q 10 (Co Q), which are important for the functioning of myocardial mitochondria, are deficient in patients with congestive heart failure, in association with increased pro-inflammatory cytokines. It is possible that supplementation with ubiquinol and L-carnitine may protect these patients by decreasing inflammation.. In a randomized, double-blind, placebo-controlled trial, the effects of carni Q-gel (2250 mg/d L-carnitine and 270 mg/d hydrosoluble ubiquinol) were examined for 12 weeks. Thirty-one patients with heart failure received intervention (group A) and another 31 patients served as controls (group B). Serum levels of interleukin (IL)-6, tumour necrosis factor (TNF)-alpha and IL-10 could be studied among 29 patients in each group. Statistical analysis was conducted by analysis of variance and chi square test.. Echocardiographic ejection fractions were lower at baseline (38.8 + 7.6 vs. 39.3 + 6.7% in the intervention and control groups, respectively) among both group of patients, indicating class II-IV heart failure. Serum concentration of interleukin-6 (IL-6), a pro-inflammatory cytokine, was high (18.7 +/- 5.8 vs. 15.0 +/- 3.3 pg/ml, normal 0.0-3.9) and IL-10 (anti-inflammatory) was normal (3.4 +/- 1.5 vs. 2.9 +/- 1.0 pg/ml, the normal range is 1.5-3.1 pg/ml) in both groups at baseline. After 12 weeks, there was a marked reduction in IL-6 in the intervention group without such changes in the control group (7.6 +/- 1.5 vs. 11.4 +/- 2.5 pg/ml, P < 0.01. IL-10 showed only the non-significant decrease in both groups from the baseline levels (3.2 +/- 1.0 vs. 2.8 +/- 0.9 pg/ml). TNF-alpha, which was comparable at baseline (17.6 +/- 4.3 vs. 20.0 +/- 5.3 pg/ml), also showed a greater decline in the carni Q-gel group compared to the placebo group (12.5 +/- 3.3 vs. 17.2 +/- 3.2 pg/ml, P < 0.05). Baseline serum CoQ levels (0.21 +/- 0.11 vs. 0.19 +/- 0.10 microg/ml) were low; however, after 12 weeks, serum CoQ showed a significant increase in the carni Q-gel group as compared to the control group (2.7 +/- 1.2 and 0.76 +/- 0.14 microg/ml, respectively). After 12 weeks of treatment, the quality of life visual analogous scale revealed that dyspnoea, palpitation and fatigue, (NYHA class II-III-IV), which were present at rest in all patients at baseline, showed beneficial effects in the intervention group compared to the placebo group. The six-minute walk test showed that there was a significant greater benefit in walking, from the baseline distance in the intervention group (208 +/- 15.8 vs. 281 +/- 20.6 metres, P < 0.02) compared to the placebo group (218.4 +/- 17.6 vs. 260.7 +/- 19.3 metres, P < 0.05). The symptom scale indicated that the majority of patients showed improvement in the intervention group compared to the control group (28 vs. 16 patients, respectively, P < 0.05). Three patients in the intervention group had nausea and vomiting, which were controlled with symptomatic treatment.. These findings indicate that treatment with ubiquinol + L-carnitine can cause a significant reduction in the pro-inflammatory cytokines that are neurohumoural precursors related to sympathetic and parasympathetic activity, which is impaired in patients with heart failure. There was no adverse effect on IL-10. There was a significant improvement in quality of life as well as decrease in NYHA-defined heart failure. Topics: Adult; Analysis of Variance; Biomarkers; Carnitine; Cytokines; Double-Blind Method; Exercise Test; Female; Follow-Up Studies; Heart Failure; Heart Rate; Humans; Interleukin-10; Interleukin-6; Male; Malondialdehyde; Middle Aged; Oxidative Stress; Quality of Life; Stroke Volume; Tumor Necrosis Factor-alpha; Ubiquinone; Vitamin B Complex; Walking | 2007 |
Coenzyme Q10-containing composition (Immugen) protects against occupational and environmental stress in workers of the gas and oil industry.
The manual workers of the gas-and-oil extraction industry are exposed to hostile environmental and occupational conditions, resulting in elevated mortality and disability, due to chronic neurological and cardiovascular diseases. We evaluated the degree of oxidative stress, often associated with these pathological features, in the blood of manual and office employees of Russian Siberian extraction plants, and their psycho-physiological conditions. Results showed increased levels of spontaneous (p < 0.05) and PMA-activated (p < 0.01) luminol-dependent chemiluminescence (LDCL) in the white blood cells (WBC), and decreased peroxynitrite levels (p < 0.05) in the group of manual workers, and less markedly in the clerks and technicians working on spot, vs. a control group of city clerks. Superoxide release by WBC, and plasma/WBC membrane ubiquinol levels did not display major differences in the three groups. A relevant percentage of manual/office workers of extraction platforms presented impaired cardiovascular and neurological functions. The short term administration of a nutraceutical formulation based on coenzyme10, vitamin E, selenium, methionine and phospholipids led to significant improvement of cardiovascular parameters and psycho-emotional status, consistent with the normalization of LDCL and peroxynitrite production by WBC, with a good compliance to treatment confirmed by the increased blood levels of ubiquinol. Topics: Adult; Cardiovascular Diseases; Coenzymes; Dietary Supplements; Emotions; Environment; Female; Humans; Industrial Oils; Leukocytes; Luminescent Measurements; Luminol; Male; Methionine; Middle Aged; Nervous System Diseases; Occupational Exposure; Oxidative Stress; Peroxynitrous Acid; Petroleum; Phospholipids; Russia; Selenium; Siberia; Superoxides; Tetradecanoylphorbol Acetate; Ubiquinone; Vitamin E | 2003 |
Effect of atorvastatin on LDL oxidation and antioxidants in normocholesterolemic type 2 diabetic patients.
Oxidative stress in diabetes increases lipid peroxidation, which stimulates the development of atherosclerosis.. We investigated in a 3-month placebo-controlled study with 19 normocholesterolemic type 2 diabetic patients whether treatment with 10-mg atorvastatin influenced antioxidants and reduced LDL oxidizability, assessed by in vitro production of conjugated dienes after copper-induced LDL oxidation.. The lag phase, as a measure of the resistance of LDL to oxidation, did not change (62.8+/-8.2 respectively 59.6+/-9.7 min, p=n.s.), while conjugated dienes decreased (512+/-74 respectively 487+/-50 nmol, p=0.012). Plasma alpha-tocopherol and ubiquinol levels decreased, while their ratios to LDL cholesterol remained stable.. Atorvastatin favourably influences some parameters of LDL oxidation. Whether this effect is clinically relevant remains to be determined. Topics: Aged; Anticholesteremic Agents; Antioxidants; Atorvastatin; Blood Glucose; Cholesterol, LDL; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Glycated Hemoglobin; Heptanoic Acids; Humans; Lipids; Male; Middle Aged; Oxidation-Reduction; Pyrroles; Ubiquinone; Vitamin E | 2001 |
Effect of combined coenzyme Q10 and d-alpha-tocopheryl acetate supplementation on exercise-induced lipid peroxidation and muscular damage: a placebo-controlled double-blind study in marathon runners.
To test the effects of combined coenzyme Q10 (Q10) and d-alpha-tocopheryl acetate supplementation on exercise-induced oxidative stress and muscular damage we conducted a double-blind study in 37 moderately trained male marathon runners. These were randomly allocated to receive either an antioxidant cocktail: 90 mg of Q10 and 13.5 mg of d-alpha-tocopheryl acetate daily (18 men) or placebo (19 men) for three weeks before a marathon (42km) run. Just before the run, plasma Q10 was 282% (p < 0.0001) and plasma vitamin E 16% (p < 0.007) higher in the supplemented group, than in the placebo group. Also the proportion of plasma ubiquinol of total Q10, an indication of plasma redox status in vivo, was significantly higher in the supplemented group. Furthermore, the susceptibility of the VLDL + LDL fraction, to copper-induced oxidation, was significantly reduced in the supplemented group, compared to the placebo group. The exercise increased lipid peroxidation significantly in both study groups, as assessed by the elevated proportion LDL of LDL and the increased susceptibility of lipoproteins to copper induced oxidation. However, the supplementation had no effect on lipid peroxidation or on the muscular damage (increase in serum creatine kinase activity or in plasma lactate levels) induced by exhaustive exercise. Plasma ascorbate, Q10, whole blood glutathione and serum uric acid concentrations increased during the exercise, elevating significantly the TRAP value of plasma by 10.3% and the proportion of plasma ubiquinol of total Q10 by 4.9%. These results suggest that even though exercise increases plasma lipid peroxidation, it also elevates the antioxidative capacity of plasma, as assessed by the increased plasma TRAP and the proportion of Q10H2 of total Q10. However, prior supplementation with small doses of Q10 and d-alpha-tocopheryl acetate neither attenuates the oxidation of lipoproteins nor muscular damage induced by exhaustive exercise such as encountered in a marathon run. Topics: Administration, Oral; Adult; alpha-Tocopherol; Antioxidants; Blood; Coenzymes; Creatine Kinase; Dose-Response Relationship, Drug; Double-Blind Method; Exercise; Humans; Lactic Acid; Lipid Peroxidation; Lipoproteins, LDL; Lipoproteins, VLDL; Male; Middle Aged; Muscle, Skeletal; Oxidative Stress; Running; Tocopherols; Ubiquinone; Uric Acid; Vitamin E | 1998 |
Enhanced oxidizability of ubiquinol and alpha-tocopherol during lovastatin treatment.
A double-blinded, placebo-controlled cross-over trial was carried out with 27 hypercholesterolemic men with coronary heart disease. During the 6-week treatment period lovastatin (60 mg/day) decreased fasting serum LDL cholesterol by 45%, LDL phosphorus by 38% and apoB by 33%. Ubiquinol content diminished by 13% as measured per LDL phosphorus. When LDL was oxidized ex vivo with AMVN both LDL ubiquinol and alpha-tocopherol were exhausted faster after lovastatin treatment compared to placebo, by 24% (P < 0.005) and 36% (P < 0.0001), respectively. Lag time in copper-induced oxidation of LDL decreased by 7% (P < 0.01). This suggests diminished antioxidant-dependent resistance of LDL to the early phase of oxidative stress. Topics: Adult; Aged; Anticholesteremic Agents; Antioxidants; Apolipoproteins A; Apolipoproteins B; Cholesterol; Cholesterol, LDL; Copper; Coronary Disease; Cross-Over Studies; Double-Blind Method; Humans; Hypercholesterolemia; Lovastatin; Male; Middle Aged; Oxidation-Reduction; Triglycerides; Ubiquinone; Vitamin E | 1997 |
332 other study(ies) available for ubiquinone and ubiquinol
Article | Year |
---|---|
Benefit of mountain spa rehabilitation and ubiquinol treatment in patients with post-COVID-19 syndrome.
SARS-CoV-2 infection is associated with inflammation, decrease in antioxidants and oxidative damage. We aimed to investigate whether ubiquinol, reduced form of coenzyme Q10 (CoQ10), with mountain spa rehabilitation (MR) will contribute to recovering of patients with post-COVID-19 syndrome.. The study included 36 patients on MR lasting 16-18 days. Twenty‑two patients were supplemented with ubiquinol 2x100 mg/day (MRQ), 14 underwent MR without supplementation. The control group consisted of 15 healthy volunteers. Concentrations of total CoQ10 (ubiquinone + ubiquinol), α- and γ-tocopherol were determined in platelets (PLT), in blood and plasma, also β-carotene was determined. Plasma concentration of thiobarbituric acid‑reactive substances (TBARS) was used as the oxidative stress marker. Clinical symptoms were evaluated by questionnaire.. MRQ group showed a significant increase in CoQ10, namely in PLT by 68 %, in blood by 194 %, and in plasma by 232 %. In MR group, CoQ10 stayed unchanged. In both groups, the initially increased concentrations of tocopherols in PLT returned nearly to the control values. β-carotene levels decreased in both groups while TBARS decreased slightly in the MRQ group. More clinical symptoms disappeared in the MRQ group.. Accelerated recovery of patients with post-COVID-19 syndrome was proven after mountain spa rehabilitation and ubiquinol supplementation. Increased systemic and cellular CoQ10 concentration alleviated clinical symptoms and improved antioxidant protection of the patients. We draw attention to the importance of monitoring and ensuring adequate levels of CoQ10 in post-COVID-19 syndrome (Tab. 2, Fig. 1, Ref. 45). Text in PDF www.elis.sk Keywords: COVID-19, mountain spa rehabilitation, ubiquinol, coenzyme Q10, vitamins, TBARS. Topics: Antioxidants; beta Carotene; COVID-19; Humans; Post-Acute COVID-19 Syndrome; SARS-CoV-2; Thiobarbituric Acid Reactive Substances; Ubiquinone | 2023 |
Rieske head domain dynamics and indazole-derivative inhibition of Candida albicans complex III.
Electron transfer between respiratory complexes drives transmembrane proton translocation, which powers ATP synthesis and membrane transport. The homodimeric respiratory complex III (CIII Topics: Candida albicans; Cryoelectron Microscopy; Electron Transport; Electron Transport Complex III; Fungal Proteins; Indazoles; Models, Molecular; Protein Binding; Protein Conformation; Protein Domains; Protein Multimerization; Ubiquinone | 2022 |
The Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase is required during normal seed development and germination.
The importance of the alternative donation of electrons to the ubiquinol pool via the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex has been demonstrated. However, the functional significance of this pathway during seed development and germination remains to be elucidated. To assess the function of this pathway, we performed a detailed metabolic and transcriptomic analysis of Arabidopsis mutants to test the molecular consequences of a dysfunctional ETF/ETFQO pathway. We demonstrate that the disruption of this pathway compromises seed germination in the absence of an external carbon source and also impacts seed size and yield. Total protein and storage protein content is reduced in dry seeds, whilst sucrose levels remain invariant. Seeds of ETFQO and related mutants were also characterized by an altered fatty acid composition. During seed development, lower levels of fatty acids and proteins accumulated in the etfqo-1 mutant as well as in mutants in the alternative electron donors isovaleryl-CoA dehydrogenase (ivdh-1) and d-2-hydroxyglutarate dehydrogenase (d2hgdh1-2). Furthermore, the content of several amino acids was increased in etfqo-1 mutants during seed development, indicating that these mutants are not using such amino acids as alternative energy source for respiration. Transcriptome analysis revealed alterations in the expression levels of several genes involved in energy and hormonal metabolism. Our findings demonstrated that the alternative pathway of respiration mediated by the ETF/ETFQO complex affects seed germination and development by directly adjusting carbon storage during seed filling. These results indicate a role for the pathway in the normal plant life cycle to complement its previously defined roles in the response to abiotic stress. Topics: Amino Acids; Arabidopsis; Arabidopsis Proteins; Carbon; Electron-Transferring Flavoproteins; Germination; Iron-Sulfur Proteins; Mutation; Oxidoreductases Acting on CH-NH Group Donors; Seeds; Ubiquinone | 2022 |
Schistosomiasis mansoni: A new therapeutic target for ubiquinol, a natural inhibitor of neutral magnesium-dependent sphingomyelinase in murine model.
Topics: Animals; Disease Models, Animal; Female; Magnesium; Mice; Pharmaceutical Preparations; Praziquantel; Schistosoma mansoni; Schistosomiasis mansoni; Sphingomyelin Phosphodiesterase; Ubiquinone | 2022 |
Comparative effects of tocopherol and ubiquinol on arsenic induced nephrotoxicity in sprague dawley rats.
Millions of the people worldwide are drinking arsenic polluted water. The need of time is to find out the mitigation strategies to cope with this issue. To evaluate the effects of tocopherol and ubiquinol individually and collectively on arsenic induced nephrotoxicity in Sprague Dawley rats. 150 Sprague Dawley rats were divided into 5 groups randomly. Animals of group I were provided with distilled water and sterile diet pellets. All other groups were given arsenic contaminated water (5mg/L) ad libitum. Moreover, ubiquinol and tocopherol (250mg/kg each) were given to group III and IV rats respectively. Whereas, both tocopherol and ubiquinol (125mg/kg each) was given to rats of group V. After 2 weeks of intervention period, serum RFTs were evaluated on micro lab. After exposure to arsenic, animals of group II showed a significant (p<0.01) elevation of serum RFTs. Treatment with ubiquinol in group III animals and tocopherol in group IV animals reduced the levels (p<0.01) of serum RFTs in these groups. Whereas, the combined effects of both these antioxidants reversed these changes to normal values (p>0.05). Both tocopherol and ubiquinol (synergistically) are more efficient in minimizing the nephrotoxicity induced by arsenic. Topics: Animals; Antioxidants; Arsenic; Rats; Rats, Sprague-Dawley; Tocopherols; Ubiquinone; Vitamin E; Water | 2022 |
Catalytic machinery of methane oxidation in particulate methane monooxygenase (pMMO).
In this focused review, we portray the recently reported 2.5 Å cyro-EM structure of the particulate methane monooxygenase (pMMO) from M. capsulatus (Bath). The structure of the functional holo-pMMO near atomic resolution has uncovered the sites of the copper cofactors including the location of the active site in the enzyme. The three coppers seen in the original X-ray crystal structures of the enzyme are now augmented by additional coppers in the transmembrane domain as well as in the water-exposed C-terminal subdomain of the PmoB subunit. The cryo-EM structure offers the first glimpse of the catalytic machinery capable of methane oxidation with high selectivity and efficiency. The findings are entirely consistent with the biochemical and biophysical findings previously reported in the literature, including the chemistry of hydrocarbon hydroxylation, regeneration of the catalyst for multiple turnovers, and the mechanism of aborting non-productive cycles to ensure kinetic competence. Topics: Biocatalysis; Catalytic Domain; Copper; Hydroquinones; Methane; Methylococcus capsulatus; NAD; Oxidation-Reduction; Oxygenases; Protein Conformation, alpha-Helical; Protein Domains; Protein Subunits; Ubiquinone | 2021 |
Fumarate is a terminal electron acceptor in the mammalian electron transport chain.
For electrons to continuously enter and flow through the mitochondrial electron transport chain (ETC), they must ultimately land on a terminal electron acceptor (TEA), which is known to be oxygen in mammals. Paradoxically, we find that complex I and dihydroorotate dehydrogenase (DHODH) can still deposit electrons into the ETC when oxygen reduction is impeded. Cells lacking oxygen reduction accumulate ubiquinol, driving the succinate dehydrogenase (SDH) complex in reverse to enable electron deposition onto fumarate. Upon inhibition of oxygen reduction, fumarate reduction sustains DHODH and complex I activities. Mouse tissues display varying capacities to use fumarate as a TEA, most of which net reverse the SDH complex under hypoxia. Thus, we delineate a circuit of electron flow in the mammalian ETC that maintains mitochondrial functions under oxygen limitation. Topics: Animals; Cell Hypoxia; Cell Line; Cell Line, Tumor; Dihydroorotate Dehydrogenase; Electron Transport; Electron Transport Complex I; Electron Transport Complex III; Electron Transport Complex IV; Electrons; Female; Fumarates; Humans; Mice; Mice, Inbred C57BL; Mitochondria; Oxidation-Reduction; Oxygen; Succinate Dehydrogenase; Ubiquinone | 2021 |
Ultrafast structural changes within a photosynthetic reaction centre.
Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography Topics: Bacteriochlorophylls; Binding Sites; Chlorophyll; Crystallography; Cytoplasm; Electron Transport; Electrons; Hyphomicrobiaceae; Lasers; Models, Molecular; Oxidation-Reduction; Pheophytins; Photosynthetic Reaction Center Complex Proteins; Protons; Ubiquinone; Vitamin K 2 | 2021 |
Effects of Feeding Coenzyme Q10-Ubiquinol on Plasma Coenzyme Q10 Concentrations and Semen Quality in Stallions.
Although coenzyme Q10 (CoQ10) serves as an antioxidant and energy source for spermatozoa when added to stallion semen before cooling or freezing, the effects of feeding CoQ10 on semen quality have not been studied. We assessed the effects of daily oral ingestion of CoQ10-ubiquinol by stallions on their plasma CoQ10 concentrations and semen quality. Seven mature Andalusian stallions ate 1g ubiquinol/day for 4 weeks followed by a 4-week washout period. Four horses initially completed an additional 4-week control period without ubiquinol. Blood was sampled weekly for determination of plasma CoQ10 concentrations. Ejaculates were collected every two weeks and assessed for total motility (TM), progressive motility (PM), and viability (V) after cooling for 24hours (T Topics: Animals; Horses; Male; Plasma; Semen Analysis; Semen Preservation; Ubiquinone | 2021 |
Mitochondrial resuscitation after cardiac arrest.
Topics: Double-Blind Method; Heart Arrest; Humans; Resuscitation; Ubiquinone | 2021 |
Solubilized ubiquinol for preserving corneal function.
Defective cellular metabolism, impaired mitochondrial function, and increased cell death are major problems that adversely affect donor tissues during hypothermic preservation prior to transplantation. These problems are thought to arise from accumulated reactive oxygen species (ROS) inside cells. Oxidative stress acting on the cells of organs and tissues preserved in hypothermic conditions before surgery, as is the case for cornea transplantation, is thought to be a major reason behind cell death prior to surgery and decreased graft survival after transplantation. We have recently discovered that ubiquinol - the reduced and active form of coenzyme Q10 and a powerful antioxidant - significantly enhances mitochondrial function and reduces apoptosis in human donor corneal endothelial cells. However, ubiquinol is highly lipophilic, underscoring the need for an aqueous-based formulation of this molecule. Herein, we report a highly dispersible and stable formulation comprising a complex of ubiquinol and gamma cyclodextrin (γ-CD) for use in aqueous-phase ophthalmic products. Docking studies showed that γ-CD has the strongest binding affinity with ubiquinol compared to α- or β-CD. Complexed ubiquinol showed significantly higher stability compared to free ubiquinol in different aqueous ophthalmic products including Optisol-GS® corneal storage medium, balanced salt solution for intraocular irrigation, and topical Refresh® artificial tear eye drops. Greater ROS scavenging activity was noted in a cell model with high basal metabolism and ROS generation (A549) and in HCEC-B4G12 human corneal endothelial cells after treatment with ubiquinol/γ-CD compared to free ubiquinol. Furthermore, complexed ubiquinol was more effective at lowering ROS, and at far lower concentrations, compared to free ubiquinol. Complexed ubiquinol inhibited lipid peroxidation and protected HCEC-B4G12 cells against erastin-induced ferroptosis. No evidence of cellular toxicity was detected in HCEC-B4G12 cells after treatment with complexed ubiquinol. Using a vertical diffusion system, a topically applied inclusion complex of γ-CD and a lipophilic dye (coumarin-6) demonstrated transcorneal penetrance in porcine corneas and the capacity for the γ-CD vehicle to deliver drug to the corneal endothelium. Using the same model, topically applied ubiquinol/γ-CD complex penetrated the entire thickness of human donor corneas with markedly greater ubiquinol retention in the endothelium compared to free ubiqui Topics: Animals; Cornea; Corneal Transplantation; Culture Media, Serum-Free; Dextrans; Endothelial Cells; Endothelium, Corneal; Gentamicins; Humans; Organ Preservation; Swine; Ubiquinone | 2021 |
A new insight into the molecular hydrogen effect on coenzyme Q and mitochondrial function of rats.
Topics: Animals; Antioxidants; Electron Transport Complex I; Hydrogen; Lipid Peroxidation; Male; Mitochondria; Oxidation-Reduction; Oxidative Phosphorylation; Oxidative Stress; Rats; Rats, Wistar; Reactive Oxygen Species; Ubiquinone | 2020 |
The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol.
The DNA of human cells suffers about 1.000-100.000 oxidative lesions per day. One of the most common defects in this category is represented by 7,8-dihydro-8-oxoguanine. There are numerous exogenous effects on DNA that induce the intracellular generation of 7, 8-dihydro-8-oxoguanine. Therefore, a quantitatively sufficient repair of all occurring oxidative damaged guanine bases is often only partially feasible, especially in advanced age. Inadequate removal of these damages can subsequently lead to mutations and thus to serious diseases. All these aspects represent a dangerous situation for an organism. However, it is suspected that the amount of the 8-oxoguanine DNA glycosylase can be actively regulated on the level of gene expression by the redox-active properties of ubiquinol and thus its protein expression can be controlled. Using an real-time base excision repair assay including a melting curve analysis, the activity of the human 8-oxoguanine DNA glycosylase 1 was measured under the influence of ubiquinol. It was possible to observe a concentration-dependent increase in the activity of the 8-oxoguanine DNA glycosylase 1 under the influence of ubiquinol for the first time, both on purified and commercially acquired enzyme as well as on enzyme isolated from mitochondria of human fibroblasts. An increase in activity of this enzyme based on a change in cellular redox state caused by ubiquinol could not be confirmed. In addition, an increased gene expression of 8-oxoguanine-DNA glycosylase 1 under ubiquinol could not be observed. However, there was a change in bifunctionality in favor of an increased N-glycosylase activity and a direct interaction between ubiquinol and 8-oxoguanine DNA glycosylase 1. We suggest that ubiquinol contributes to the dissolution of a human 8-oxoguanine DNA glycosylase 1 end-product complex that forms after cutting into the sugar-phosphate backbone of the DNA with the resulting unsaturated 3'-phospho-α, β-aldehyde end and thereby inhibits further enzymatic steps. Topics: DNA Damage; DNA Glycosylases; DNA Repair; Gene Expression; Guanine; Humans; Oxidation-Reduction; Transcription Factors; Ubiquinone | 2020 |
Mutational analysis of the Q
The respiratory cytochrome bc Topics: Cytochromes b; Cytochromes c1; Electron Transport; Hydroquinones; Kinetics; Models, Molecular; Mutation; Oxidation-Reduction; Oxygen; Proton-Motive Force; Protons; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Ubiquinone | 2020 |
AIFM2 blocks ferroptosis independent of ubiquinol metabolism.
Ferroptosis is a multi-step regulated cell death that is characterized by excessive iron accumulation and lipid peroxidation. Cancer cells can acquire resistance to ferroptosis by the upregulation of anti-ferroptotic proteins or by the downregulation of pro-ferroptotic proteins. Apoptosis-inducing factor mitochondria-associated 2 (AIFM2, also known as FSP1 or PRG3) has been recently demonstrated as an endogenous ferroptosis suppressor, but its mechanism remains obscure. Here, we show that AIFM2 blocks erastin-, sorafenib-, and RSL3-induced ferroptotic cancer cell death through a mechanism independent of ubiquinol, the reduced and active antioxidant form of coenzyme Q10. In contrast, AIFM2-dependent endosomal sorting complexes required for transport (ESCRT)-III recruitment in the plasma membrane is responsible for ferroptosis resistance through the activation of a membrane repair mechanism that regulates membrane budding and fission. Importantly, the genetic inhibition of the AIFM2-dependent ESCRT-III pathway increases the anticancer activity of sorafenib in a xenograft tumor mouse model. These findings shed new light on the mechanism involved in ferroptosis resistance during tumor therapy. Topics: Animals; Antioxidants; Apoptosis Regulatory Proteins; Cell Line, Tumor; Cell Membrane; Endosomal Sorting Complexes Required for Transport; Ferroptosis; Humans; Mice, Nude; Mitochondrial Proteins; Ubiquinone | 2020 |
The long Q-loop of Escherichia coli cytochrome bd oxidase is required for assembly and structural integrity.
Cytochrome bd-I oxidase is a terminal reductase of bacterial respiratory chains produced under low oxygen concentrations, oxidative stress, and during pathogenicity. While the bulk of the protein forms transmembrane helices, a periplasmic domain, the Q-loop, is expected to be involved in binding and oxidation of (ubi)quinol. According to the length of the Q-loop, bd oxidases are classified into the S (short)- and the L (long)-subfamilies. Here, we show that either shortening the Q-loop of the Escherichia coli oxidase from the L-subfamily or replacing it by one from the S-subfamily leads to the production of labile and inactive variants, indicating a role for the extended Q-loop in the stability of the enzyme. Topics: Amino Acid Sequence; Cytochrome b Group; Electron Transport Chain Complex Proteins; Enzyme Stability; Escherichia coli; Escherichia coli Proteins; Models, Molecular; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidation-Reduction; Oxidoreductases; Ubiquinone | 2020 |
Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q
Mutations of many PDSS and COQ genes are associated with primary coenzyme Q Topics: Alkyl and Aryl Transferases; Antibody Specificity; Biosynthetic Pathways; Cell Line, Tumor; Electron Transport; Humans; Mitochondria; Mitochondrial Proteins; Molecular Weight; Protein Stability; Protein Transport; Ubiquinone | 2020 |
[Neuroprotective mechanisms of the ubiquinol action in experimental focal ischemia].
Ischemic stroke is one of the most socially important diseases characterized by impaired cerebral circulation with focal damage of the brain tissue and decreased functionality. Despite the successes of modern pharmacology, possibilities of pharmacotherapy for stroke remain limited, and the research for new drugs with neuroprotective effects that can prevent brain cell death is still relevant. In this study we have investigated the neuroprotective activity of ubiquinol as a part of an innovative form on a rat model of irreversible 24 h-cerebral ischemia with evaluation of the mechanisms of its neuroprotective effect. Ubiquinol (30 mg/kg), administered intravenously in the acute period of irreversible 24 h focal cerebral ischemia, had a direct neuroprotective effect, characterized by a decrease in the volume of brain tissue necrosis. The protective effect of ubiquinol is due to its ability to inhibit the development of oxidative stress by the direct anti-radical action, preventing the increase in the lipid hydroperoxide content in the brain tissue adjacent to the focus of necrosis, lowering the lipid oxidation rate in plasma against under conditions of increased total antioxidant activity in the brain and blood of experimental animals. In vitro experiments have shown the ability of ubiquinol to prevent cell death in primary culture of cerebral neurons of rat brain under 4 h oxygen/glucose deprivation followed by 20 h reoxygenation.. Ishemicheskiĭ insul't – odno iz naibolee sotsial'no-znachimykh zabolevaniĭ, kharakterizuiushchikhsia narusheniem mozgovogo krovoobrashcheniia s ochagovym povrezhdeniem tkani golovnogo mozga i narusheniem ego funktsiĭ. Nesmotria na uspekhi sovremennoĭ farmakologii, vozmozhnosti farmakoterapii insul'ta ostaiutsia ogranichennymi, i aktual'nym iavliaetsia poisk novykh lekarstvennykh preparatov neĭroprotektornogo deĭstviia, sposobnykh predotvratit' gibel' kletok golovnogo mozga. V dannoĭ rabote provedeno izuchenie neĭroprotektornoĭ aktivnosti ubikhinola v sostave innovatsionnoĭ formy na modeli neobratimoĭ 24 ch ishemii golovnogo mozga u krys s otsenkoĭ mekhanizmov ego neĭroprotektornogo deĭstviia. Pri vnutrivennom vvedenii v doze 30 mg/kg v ostrom periode 24 ch neobratimoĭ fokal'noĭ ishemii golovnogo mozga ubikhinol okazyval priamoe neĭroprotektornoe deĭstvie, kharakterizuiushcheesia umen'sheniem ob"ema ochaga nekroza tkani golovnogo mozga. Zashchitnyĭ éffekt ubikhinola obuslovlen sposobnost'iu prepiatstvovat' razvitiiu okislitel'nogo stressa za schet priamogo antiradikal'nogo deĭstviia putem predotvrashcheniia rosta lipidnykh gidroperekiseĭ v tkani mozga, prilezhashcheĭ k ochagu nekroza, snizheniia skorosti okisleniia lipidov v plazme krovi na fone povysheniia obshcheĭ antioksidantnoĭ aktivnosti kak v mozge, tak i krovi éksperimental'nykh zhivotnykh. V éksperimentakh in vitro pokazana sposobnost' ubikhinola predotvrashchat' gibel' neĭronov pervichnoĭ kul'tury kory bol'shikh polushariĭ golovnogo mozga krysy v usloviiakh 4 ch gliukozo-kislorodnoĭ deprivatsii s 20 ch reoksigenatsieĭ. Topics: Animals; Antioxidants; Brain Ischemia; Neurons; Neuroprotective Agents; Oxidative Stress; Primary Cell Culture; Rats; Ubiquinone | 2020 |
Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals.
Topics: Adult; Dietary Supplements; Double-Blind Method; Fatigue; Female; Healthy Volunteers; Humans; Male; Middle Aged; Motivation; Nutritional Physiological Phenomena; Oxidative Stress; Relaxation; Surveys and Questionnaires; Ubiquinone | 2020 |
Ubiquinol Supplementation of Donor Tissue Enhances Corneal Endothelial Cell Mitochondrial Respiration.
To determine whether ubiquinol improves mitochondrial function and cell viability in human donor corneal endothelial cells during hypothermic corneal tissue storage.. Endothelial cell Descemet membrane tissues were treated with 10 μM ubiquinol, the reduced form of the antioxidant coenzyme Q10, for 5 days in Optisol-GS storage media before assaying for mitochondrial activity using extracellular flux analysis of oxygen consumption. In addition, endothelial cell Descemet membrane tissues were analyzed for cell viability using apoptosis and necrosis assays. Control tissues from mate corneas were treated with diluent only, and comparisons were analyzed for differences.. A total of 13 donor corneal tissues with a mean (SEM) preservation time of 11.8 days (0.4) were included for the analysis. Treatment with 10 μM ubiquinol increased spare respiratory capacity by 174% (P = 0.001), maximal respiration by 93% (P = 0.003), and proton leak by 80% (P = 0.047) compared with controls. Cells treated with ubiquinol had no significant change in cell necrosis or apoptosis.. Preliminary testing in donor corneal tissue at specified doses indicates that ubiquinol may be a useful biocompatible additive to hypothermic corneal storage media that increases corneal endothelial cell mitochondrial function. Additional investigations are indicated to further study and optimize the dose and formulation of ubiquinol for use in preserving donor corneal tissue function during hypothermic storage. Topics: Aged; Cell Count; Cell Respiration; Cell Survival; Chondroitin Sulfates; Complex Mixtures; Cryopreservation; Descemet Membrane; Dextrans; Endothelium, Corneal; Female; Gentamicins; Humans; Male; Micronutrients; Middle Aged; Mitochondria; Organ Preservation; Organ Preservation Solutions; Tissue Donors; Ubiquinone | 2020 |
Kinetic and structural characterisation of the ubiquinol-binding site and oxygen reduction by the trypanosomal alternative oxidase.
The alternative oxidase (AOX) is a monotopic di‑iron carboxylate protein which acts as a terminal respiratory chain oxidase in a variety of plants, fungi and protists. Of particular importance is the finding that both emerging infectious diseases caused by human and plant fungal pathogens, the majority of which are multi-drug resistant, appear to be dependent upon AOX activity for survival. Since AOX is absent in mammalian cells, AOX is considered a viable therapeutic target for the design of specific fungicidal and anti-parasitic drugs. In this work, we have mutated conserved residues within the hydrophobic channel (R96, D100, R118, L122, L212, E215 and T219), which crystallography has indicated leads to the active site. Our data shows that all mutations result in a drastic reduction in V Topics: Binding Sites; Enzyme Inhibitors; Kinetics; Mitochondrial Proteins; Molecular Docking Simulation; Mutation; Oxidation-Reduction; Oxidoreductases; Oxygen; Plant Proteins; Protein Conformation; Trypanosoma brucei brucei; Ubiquinone | 2020 |
Ascorbate maintains a low plasma oxygen level.
In human blood, oxygen is mainly transported by red blood cells. Accordingly, the dissolved oxygen level in plasma is expected to be limited, although it has not been quantified yet. Here, by developing dedicated methods and tools, we determined that human plasma pO Topics: Animals; Ascorbic Acid; Cell Line; Cell Lineage; Erythrocytes; Guinea Pigs; HEK293 Cells; Hep G2 Cells; Humans; Hypoxia; Oxidation-Reduction; Oxygen; Plasma; Solubility; Ubiquinone | 2020 |
Mitochondrial ubiquinol oxidation is necessary for tumour growth.
The mitochondrial electron transport chain (ETC) is necessary for tumour growth Topics: Animals; Cell Line, Tumor; Cell Proliferation; Ciona intestinalis; Citric Acid Cycle; Cytosol; Dihydroorotate Dehydrogenase; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex III; Humans; Levilactobacillus brevis; Male; Mice; Mitochondria; Mitochondrial Proteins; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Neoplasms; Oxidative Phosphorylation; Oxidoreductases; Oxidoreductases Acting on CH-CH Group Donors; Plant Proteins; Ubiquinone | 2020 |
Synthesis and controlled drug delivery studies of a novel Ubiquinol-Polyethylene glycol-Vitamin E adduct.
CoQ10 and Vitamin E are used in medicinal applications, but they are both lipophilic molecules and the poor solubility in aqueous media results in an inefficient administration, poor bioavailability and potential toxicity. A mixed conjugate Ubiquinol-Polyethylene glycol-Vitamin E was synthesized and characterized to improve the bioavailability of CoQ10 and Vitamin E. The synthesized mixed PEG conjugate was characterized by Topics: Antioxidants; Biological Availability; Drug Carriers; Drug Compounding; Drug Liberation; Drug Therapy, Combination; Humans; Polyethylene Glycols; Solubility; Succinic Acid; Ubiquinone; Vitamin E | 2020 |
The Ubiquinol Binding Site of Cytochrome
Cytochrome Topics: Binding Sites; Cytochrome b Group; Escherichia coli; Escherichia coli Proteins; Kinetics; Plastoquinone; Protein Binding; Ubiquinone; Vitamin K 2 | 2019 |
Ubiquinol Supplementation Alters Exercise Induced Fatigue by Increasing Lipid Utilization in Mice.
Topics: Animal Feed; Animals; Dietary Supplements; Fatigue; Lipid Metabolism; Male; Mice; Mice, Inbred ICR; Muscle Strength; Physical Conditioning, Animal; Specific Pathogen-Free Organisms; Swimming; Ubiquinone | 2019 |
Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization.
Bioavailability of supplements with coenzyme Q10 (CoQ. We tested seven different supplement formulations containing 100 mg of CoQ. Bioavailability of the formulations showed large differences that were statistically significant. The two best absorbable formulations were soft-gel capsules containing ubiquinone (oxidized CoQ. This study highlights the importance of individually adapted selection of best formulations to reach the highest bioavailability of CoQ Topics: Administration, Oral; Adolescent; Adult; Area Under Curve; Biological Availability; Capsules; Cross-Over Studies; Dietary Supplements; Double-Blind Method; Drug Carriers; Female; Humans; Lipids; Male; Solubility; Ubiquinone; Young Adult | 2019 |
Infantile Presentation of Leber Hereditary Optic Neuropathy "Plus" Disease.
Topics: Administration, Oral; Child, Preschool; Citrulline; DNA, Mitochondrial; Humans; Magnetic Resonance Imaging; Male; Mitochondrial Diseases; Mutation; Optic Atrophy, Hereditary, Leber; Tomography, Optical Coherence; Ubiquinone; Visual Acuity | 2019 |
Insights into the ubiquinol/dioxygen binding and proton relay pathways of the alternative oxidase.
The alternative oxidase (AOX) is a monotopic diiron carboxylate protein which catalyzes the four-electron reduction of dioxygen to water by ubiquinol. Although we have recently determined the crystal structure of Trypanosoma brucei AOX (TAO) in the presence and absence of ascofuranone (AF) derivatives (which are potent mixed type inhibitors) the mechanism by which ubiquinol and dioxygen binds to TAO remain inconclusive. In this article, ferulenol was identified as the first competitive inhibitor of AOX which has been used to probe the binding of ubiquinol. Surface plasmon resonance reveals that AF is a quasi-irreversible inhibitor of TAO whilst ferulenol binding is completely reversible. The structure of the TAO-ferulenol complex, determined at 2.7 Å, provided insights into ubiquinol binding and has also identified a potential dioxygen molecule bound in a side-on conformation to the diiron center for the first time. Topics: Coumarins; Mitochondrial Proteins; Oxidoreductases; Oxygen; Plant Proteins; Protozoan Proteins; Surface Plasmon Resonance; Trypanosoma brucei brucei; Ubiquinone | 2019 |
Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism.
Following traumatic brain injury (TBI), there is significant secondary damage to cerebral tissue from increased free radicals and impaired mitochondrial function. This imbalance between reactive oxygen species (ROS) production and the effectiveness of cellular antioxidant defenses is termed oxidative stress. Often there are insufficient antioxidants to scavenge ROS, leading to alterations in cerebral structure and function. Attenuating oxidative stress following a TBI by administering an antioxidant may decrease secondary brain injury, and currently many drugs and supplements are being investigated. We explored an over-the-counter supplement called ubiquinol (reduced form of coenzyme Q10), a potent antioxidant naturally produced in brain mitochondria. We administered intra-arterial ubiquinol to rats to determine if it would reduce mitochondrial damage, apoptosis, and severity of a contusive TBI. Adult male F344 rats were randomly assigned to one of three groups: (1) Saline-TBI, (2) ubiquinol 30 minutes before TBI (UB-PreTBI), or (3) ubiquinol 30 minutes after TBI (UB-PostTBI). We found when ubiquinol was administered before or after TBI, rats had an acute reduction in brain mitochondrial damage, apoptosis, and two serum biomarkers of TBI severity, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, in vivo neurometabolic assessment with proton magnetic resonance spectroscopy did not show attenuated injury-induced changes. These findings are the first to show that ubiquinol preserves mitochondria and reduces cellular injury severity after TBI, and support further study of ubiquinol as a promising adjunct therapy for TBI. Topics: Animals; Apoptosis; Brain Injuries, Traumatic; Glial Fibrillary Acidic Protein; Male; Mitochondria; Random Allocation; Rats; Rats, Inbred F344; Ubiquinone; Ubiquitin Thiolesterase | 2018 |
Ubiquinone, ubiquinol, 4-hydroxybenzoic acid… What 'coenzyme Q10' should we care about in multiple system atrophy?
Topics: Humans; Multiple System Atrophy; Parabens; Ubiquinone | 2018 |
[Evaluation of the cardioprotective effect of ubiquinol on the model of reperfusion injury of rat myocardium].
The cardioprotective effect of ubiquinol on the model of myocardium reperfusion injury in rats was investigated. The study was carried out using mature males of outbred rats. Myocardial ischemia-reperfusion injury was performed after 30-minute ligation of the left coronary artery followed by reperfusion. The main criteria for assessing the development of pathology included the results of electrocardiography, biochemical analysis of blood plasma, histological and histochemical study of the myocardium. Development of the reperfusion damage of the myocardium caused specific changes in non-treated animals. The best therapeutic effect on biochemical indices was provided by a drug with the known cardioprotective activity - Mexidolâ and the tested object ubiquinol at doses of 2-6 mg/kg. Evaluation of the results of electrocardiography allowed to confirm the development of ischemic myocardial damage in all groups. The results of histochemical and histological examination of the myocardium suggest a high cardioprotective activity of ubiquinol at a dose of 3 mg/kg and a potential cardioprotective effect of ubiquinol in doses closest to the therapeutic doses of 2 and 6 mg/kg. Ubiquinol is a dose 9 mg/kg showed signs of prooxidant activity, manifested in the form of aggravation of reperfusion injury of the myocardium. The most effective in the conditions of experimental pathology is 1% solution of ubiquinol, at a dose of 3 mg/kg, whose cardioprotective effect is comparable or higher than that for the reference drug Mexidolâ at the therapeutic dose. In doses that are greater than therapeutic ubiquinol is able to act as a pro-oxidant.. V stat'e predstavleny rezul'taty éksperimental'nogo doklinicheskogo issledovaniia, tsel'iu kotorogo iavlialas' otsenka kardioprotektornogo deĭstviia 1% rastvora ubikhinola pri vnutrivennom vvedenii v usloviiakh éksperimental'nogo reperfuzionnogo povrezhdeniia miokarda krys. Issledovanie provodilos' s ispol'zovaniem polovozrelykh samtsov autbrednykh krys, modelirovanie ishemii-reperfuzii miokarda osushchestvlialos' putem 30-minutnogo ligirovaniia levoĭ koronarnoĭ arterii s posleduiushcheĭ reperfuzieĭ. V kachestve kriteriev otsenki razvitiia patologii ispol'zovali rezul'taty élektrokardiografii, biokhimicheskogo analiza plazmy krovi, gistologicheskoe i gistokhimicheskoe issledovanie miokarda. Na fone razvitiia reperfuzionnogo povrezhdeniia miokarda razvivalis' kharakternye priznaki ishemii miokarda u zhivotnykh, ne poluchavshikh lechenie. Nailuchshiĭ terapevticheskiĭ éffekt v otnoshenii biokhimicheskikh pokazateleĭ okazali standartnyĭ ob"ekt Meksidolâ i testiruemyĭ ob"ekt Ubikhinol v dozakh 2-6 mg/kg. Otsenka rezul'tatov élektrokardiografii vo vtorom standartnom otvedenii pozvolila podtverdit' razvitie ishemicheskogo povrezhdeniia miokarda vo vsekh gruppakh. Rezul'taty gistokhimicheskogo i gistologicheskogo issledovaniia miokarda pozvoliaiut sdelat' vyvod o vysokoĭ kardioprotektornoĭ aktivnosti ubikhinola v doze 3 mg/kg i potentsial'nom kardioprotektornom éffekte ubikhinola v dozakh, naibolee blizkikh k terapevticheskoĭ – 2 i 6 mg/kg. Ubikhinol v doze 9 mg/kg proiavil priznaki prooksidantnoĭ aktivnosti, proiavivshiesia v vide usugubleniia razvitiia reperfuzionnogo porazheniia miokarda. Naibolee éffektivnymi v usloviiakh éksperimental'noĭ patologii iavliaetsia preparat ubikhinol, 1% rastvor, v doze 3 mg/kg, kardioprotektornyĭ éffekt kotorogo sopostavim, libo prevyshaet takovoĭ dlia referentnogo preparata Meksidolâ v terapevticheskoĭ doze. V dozakh, mnogokratno prevyshaiushchikh terapevticheskuiu, ubikhinol sposoben vystupat' v roli prooksidanta. Topics: Animals; Cardiotonic Agents; Disease Models, Animal; Heart; Male; Myocardial Reperfusion Injury; Myocardium; Rats; Ubiquinone | 2018 |
Sex-dependent co-occurrence of hypoxia and β-amyloid plaques in hippocampus and entorhinal cortex is reversed by long-term treatment with ubiquinol and ascorbic acid in the 3 × Tg-AD mouse model of Alzheimer's disease.
Structural and functional abnormalities in the cerebral microvasculature have been observed in Alzheimer's disease (AD) patients and animal models. One cause of hypoperfusion is the thickening of the cerebrovascular basement membrane (CVBM) due to increased collagen-IV deposition around capillaries. This study investigated whether these and other alterations in the cerebrovascular system associated with AD can be prevented by long-term dietary supplementation with the antioxidant ubiquinol (Ub) stabilized with Kaneka QH P30 powder containing ascorbic acid (ASC) in a mouse model of advanced AD (3 × Tg-AD mice, 12 months old). Animals were treated from prodromal stages of disease (3 months of age) with standard chow without or with Ub + ASC or ASC-containing vehicle and compared to wild-type (WT) mice. The number of β-amyloid (Aβ) plaques in the hippocampus and entorhinal cortex was higher in female than in male 3 × Tg-AD mice. Extensive regions of hypoxia were characterized by a higher plaque burden in females only. This was abolished by Ub + ASC and, to a lesser extent, by ASC treatment. Irrespective of Aβ burden, increased collagen-IV deposition in the CVBM was observed in both male and female 3 × Tg-AD mice relative to WT animals; this was also abrogated in Ub + ASC- and ASC-treated mice. The chronic inflammation in the hippocampus and oxidative stress in peripheral leukocytes of 3 × Tg-AD mice were likewise reversed by antioxidant treatment. These results provide strong evidence that long-term antioxidant treatment can mitigate plasma oxidative stress, amyloid burden, and hypoxia in the AD brain parenchyma. Topics: Alzheimer Disease; Animals; Antioxidants; Ascorbic Acid; Cell Hypoxia; Entorhinal Cortex; Female; Hippocampus; Male; Mice; Mice, Inbred C57BL; Plaque, Amyloid; Ubiquinone | 2018 |
Ubiquinol promotes retinal ganglion cell survival and blocks the apoptotic pathway in ischemic retinal degeneration.
Topics: Animals; Antioxidants; Apoptosis; Astrocytes; bcl-2-Associated X Protein; bcl-Associated Death Protein; bcl-X Protein; Caspase 3; Cell Survival; Disease Models, Animal; Female; Gene Expression Regulation; Intraocular Pressure; Mice; Mice, Inbred C57BL; Microglia; Oxidative Stress; Phosphorylation; Reactive Oxygen Species; Reperfusion Injury; Retinal Degeneration; Retinal Ganglion Cells; Signal Transduction; Ubiquinone | 2018 |
A Pilot Clinical Study of Liquid Ubiquinol Supplementation on Cardiac Function in Pediatric Dilated Cardiomyopathy.
Pediatric dilated cardiomyopathy (PDCM) is a life-threatening type of cardiac muscle dysfunction in children. Ubiquinone is a lipid-soluble nutrient that participates in energy synthesis. Recently, a novel hydrophilic ubiquinol supplement was developed. The purpose of this study was to assess the effect of liquid ubiquinol supplementation (10 mg/kg body weight/day) on cardiac function in children with PDCM.. Ten children diagnosed with PDCM were recruited to this study and administered with liquid ubiquinol for 24 weeks. The cardiac function was measured by echocardiography. The New York Heart Association (NYHA) functional classification was used to assess symptoms of heart failure. Plasma coenzyme Q10 levels were measured during the study.. Ejection fraction (EF) and fractional shortening (FS) were significantly higher than the baseline values until week 16 of supplementation. Subjects who had higher plasma coenzyme Q10 concentration had significantly better EF and FS values. In addition, 30% of the subjects showed improvement in the NYHA classification after 24 weeks of supplementation.. Liquid ubiquinol supplementation is associated with an increase the level of coenzyme Q10 to complementary improve cardiac function (particularly EF and FS) and ameliorate the symptoms of heart failure in children with PDCM. Topics: Adolescent; Anthropometry; Cardiomyopathy, Dilated; Child; Child, Preschool; Dietary Supplements; Dose-Response Relationship, Drug; Echocardiography; Female; Humans; Male; Pilot Projects; Ubiquinone | 2018 |
Combination of Coenzyme Q
Topics: Animals; Autophagy; Blotting, Western; Cell Survival; Disease Models, Animal; Flow Cytometry; Mice; Mitochondria, Muscle; Mitochondrial Diseases; Oxidative Stress; Physical Conditioning, Animal; Ubiquinone | 2018 |
Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1.
Ferroptosis is a recently discovered iron-dependent form of non-apoptotic cell death caused by the accumulation of membrane lipid peroxidation products, which is involved in various pathological conditions of the brain, kidney, liver and heart. A potent spiroquinoxalinamine derivative named liproxstatin-1 is discovered by high-throughput screening, which is able to suppress ferroptosis via lipid peroxide scavenging in vivo. Thus, molecular simulations, density functional theory (DFT) and variational transition-state theory with a small-curvature tunneling (SCT) coefficient are utilized to elucidate the detailed mechanisms of inactivation of a lipid peroxide radical by liproxstatin-1. H-atom abstracted from liproxstatin-1 by a CH Topics: Free Radicals; Iron; Kinetics; Lipid Peroxides; Molecular Dynamics Simulation; Phosphatidylcholines; Quantum Theory; Quinoxalines; Spiro Compounds; Structure-Activity Relationship; Thermodynamics; Ubiquinone | 2017 |
Imaging mass spectrometry analysis of ubiquinol localization in the mouse brain following short-term administration.
We analyzed the localization of ubiquinol, the reduced form of coenzyme Q10 (Re-CoQ10), in mouse brain sections using matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance imaging mass spectrometry (IMS) to evaluate the effect of dietary Re-CoQ10 in mouse brain. Mice were orally administered Re-CoQ10 for 14 days and brain Re-CoQ10 content was subsequently quantified using liquid chromatography-mass spectrometry. IMS was employed to visualize Re-CoQ10 at a resolution of 150 μm in the mouse brain. Increased Re-CoQ10 was observed in the corpus callosum, hippocampus, midbrain, cerebellum, brain stem, substantia nigra and striatum. These regions are related to movement, memory and vital life functions. Thus, we demonstrated the effect of Re-CoQ10 administration on the specific localization of Re-CoQ10 in the brain. Topics: Animals; Brain; Chromatography, Ion Exchange; Chromatography, Liquid; Female; Imaging, Three-Dimensional; Mice, Inbred ICR; Time Factors; Ubiquinone | 2017 |
African trypanosomiasis: Synthesis & SAR enabling novel drug discovery of ubiquinol mimics for trypanosome alternative oxidase.
African trypanosomiasis is a parasitic disease affecting 5000 humans and millions of livestock animals in sub-Saharan Africa every year. Current treatments are limited, difficult to administer and often toxic causing long term injury or death in many patients. Trypanosome alternative oxidase is a parasite specific enzyme whose inhibition by the natural product ascofuranone (AF) has been shown to be curative in murine models. Until now synthetic methods to AF analogues have been limited, this has restricted both understanding of the key structural features required for binding and also how this chemotype could be developed to an effective therapeutic agent. The development of 3 amenable novel synthetic routes to ascofuranone-like compounds is described. The SAR generated around the AF chemotype is reported with correlation to the inhibition of T. b. brucei growth and corresponding selectivity in cytotoxic assessment in mammalian HepG2 cell lines. These methods allow access to greater synthetic diversification and have enabled the synthesis of compounds that have and will continue to facilitate further optimisation of the AF chemotype into a drug-like lead. Topics: Dose-Response Relationship, Drug; Drug Discovery; Enzyme Inhibitors; Humans; Mitochondrial Proteins; Molecular Structure; Oxidoreductases; Plant Proteins; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma; Trypanosoma brucei brucei; Trypanosomiasis, African; Ubiquinone | 2017 |
Correlating kinetic and structural data on ubiquinone binding and reduction by respiratory complex I.
Respiratory complex I (NADH:ubiquinone oxidoreductase), one of the largest membrane-bound enzymes in mammalian cells, powers ATP synthesis by using the energy from electron transfer from NADH to ubiquinone-10 to drive protons across the energy-transducing mitochondrial inner membrane. Ubiquinone-10 is extremely hydrophobic, but in complex I the binding site for its redox-active quinone headgroup is ∼20 Å above the membrane surface. Structural data suggest it accesses the site by a narrow channel, long enough to accommodate almost all of its ∼50-Å isoprenoid chain. However, how ubiquinone/ubiquinol exchange occurs on catalytically relevant timescales, and whether binding/dissociation events are involved in coupling electron transfer to proton translocation, are unknown. Here, we use proteoliposomes containing complex I, together with a quinol oxidase, to determine the kinetics of complex I catalysis with ubiquinones of varying isoprenoid chain length, from 1 to 10 units. We interpret our results using structural data, which show the hydrophobic channel is interrupted by a highly charged region at isoprenoids 4-7. We demonstrate that ubiquinol-10 dissociation is not rate determining and deduce that ubiquinone-10 has both the highest binding affinity and the fastest binding rate. We propose that the charged region and chain directionality assist product dissociation, and that isoprenoid stepping ensures short transit times. These properties of the channel do not benefit the exhange of short-chain quinones, for which product dissociation may become rate limiting. Thus, we discuss how the long channel does not hinder catalysis under physiological conditions and the possible roles of ubiquinone/ubiquinol binding/dissociation in energy conversion. Topics: Amino Acid Motifs; Animals; Binding Sites; Biocatalysis; Cattle; Electron Transport Complex I; Gene Expression; Hydrophobic and Hydrophilic Interactions; Kinetics; Mitochondria, Heart; Models, Molecular; Oxidoreductases; Protein Binding; Protein Interaction Domains and Motifs; Protein Structure, Secondary; Proteolipids; Recombinant Proteins; Static Electricity; Substrate Specificity; Swine; Terpenes; Thermodynamics; Thermus thermophilus; Ubiquinone | 2017 |
Three-Year Follow-Up of High-Dose Ubiquinol Supplementation in a Case of Familial Multiple System Atrophy with Compound Heterozygous COQ2 Mutations.
We report a 3-year follow-up of high-dose ubiquinol supplementation in a case of familial multiple system atrophy (MSA) with compound heterozygous nonsense (R387X) and missense (V393A) mutations in COQ2. A high-dose ubiquinol supplementation substantially increased total coenzyme Q Topics: Follow-Up Studies; Humans; Male; Middle Aged; Multiple System Atrophy; Mutation; Ubiquinone | 2017 |
Coenzyme Q10 redox state predicts the concentration of c-reactive protein in a large caucasian cohort.
In the present study the relationship between the CoQ10 redox state (% oxidized form of CoQ10 ) and the serum level of c-reactive protein (CRP) was investigated in a large Caucasian study population (n = 1319). In order to evaluate independently the influence of the variables that predict the outcome of CRP, an analysis of covariance (ANCOVA) was performed with CRP as the dependent variable. Gender was taken as an independent factor and CoQ10 redox and BMI as independent covariates. Results were substantiated with findings from a human intervention study (n = 53), receiving 150 mg/day ubiquinol for 14 days. Spearman's correlation revealed a significant (P < 0.001) association between the CoQ10 redox state and CRP concentrations in the whole study population. Thus, higher CRP concentrations were found in subjects having more oxidized CoQ10 . Similar results were evident for further inflammatory markers (interleukin-6, number of leucocytes). The ANCOVA revealed a significant (P < 0.001) prediction of CRP concentrations by CoQ10 redox state, after controlling for the effect of BMI and separately for gender. In the intervention study it was further found that the oral intake of ubiquinol increased its proportion significantly (P < 0.001), with the highest increase in those persons having a low basal serum ubiquinol content (<92.3%). Here it was discovered that the ubiquinol status significantly correlated to the concentration of the inflammation marker monocyte chemotactic protein 1. It is concluded that CoQ10 redox state predicts the concentration of CRP. Persons at risk with lower ubiquinol status, higher BMI, and low grade inflammation may benefit from ubiquinol supplementation. © 2016 BioFactors, 42(3):268-276, 2016. Topics: Adolescent; Adult; Body Mass Index; C-Reactive Protein; Chemokine CCL2; Dietary Supplements; Humans; Inflammation; Interleukin-6; Leukocyte Count; Male; Middle Aged; Oxidation-Reduction; Statistics, Nonparametric; Ubiquinone | 2016 |
Ubiquinol and plastoquinol triphenylphosphonium conjugates can carry electrons through phospholipid membranes.
Many mitochondria-targeted antioxidants (MTAs) that comprise a quinol moiety covalently attached through an aliphatic carbon chain to the lipophilic triphenylphosphonium cation are widely used for evaluating the role of mitochondria in pathological processes involving oxidative stress. The potency of MTAs to carry electrons across biological membranes and thereby mediate transmembrane redox processes was unknown. To assess this, we measured the rate of ferricyanide reduction inside liposomes by external ascorbate. Here, we show that MTAs containing ubiquinone (MitoQ series) or plastoquinone (SkQ series) can carry electrons through lipid membranes, with the rate being inversely proportional to the length of the hydrocarbon linker group. Furthermore, this process was stimulated by the hydrophobic anion tetraphenylborate suggesting that permeation of the cationic MTA through the membrane was the rate-limiting step of the process. This conclusion was supported by the observation that the rate of MTA-induced electron transfer was insensitive to nigericin, in contrast to electron transfer mediated by neutral quinone derivatives. These findings indicate that MTAs can be utilized to transfer electrons across lipid membranes and this may be applicable to the study of the electron-transport chain in mitochondria and other natural membranes exhibiting redox processes. Topics: Cell Membrane; Electron Transport; Ferricyanides; Lipid Bilayers; Phospholipids; Plastoquinone; Ubiquinone | 2016 |
Impact of Antioxidants on Cardiolipin Oxidation in Liposomes: Why Mitochondrial Cardiolipin Serves as an Apoptotic Signal?
Molecules of mitochondrial cardiolipin (CL) get selectively oxidized upon oxidative stress, which triggers the intrinsic apoptotic pathway. In a chemical model most closely resembling the mitochondrial membrane-liposomes of pure bovine heart CL-we compared ubiquinol-10, ubiquinol-6, and alpha-tocopherol, the most widespread naturally occurring antioxidants, with man-made, quinol-based amphiphilic antioxidants. Lipid peroxidation was induced by addition of an azo initiator in the absence and presence of diverse antioxidants, respectively. The kinetics of CL oxidation was monitored via formation of conjugated dienes at 234 nm. We found that natural ubiquinols and ubiquinol-based amphiphilic antioxidants were equally efficient in protecting CL liposomes from peroxidation; the chromanol-based antioxidants, including alpha-tocopherol, were 2-3 times less efficient. Amphiphilic antioxidants, but not natural ubiquinols and alpha-tocopherol, were able, additionally, to protect the CL bilayer from oxidation by acting from the water phase. We suggest that the previously reported therapeutic efficiency of mitochondrially targeted amphiphilic antioxidants is owing to their ability to protect those CL molecules that are inaccessible to natural hydrophobic antioxidants, being trapped within respiratory supercomplexes. The high susceptibility of such occluded CL molecules to oxidation may have prompted their recruitment as apoptotic signaling molecules by nature. Topics: alpha-Tocopherol; Antioxidants; Apoptosis; Cardiolipins; Hydrophobic and Hydrophilic Interactions; Kinetics; Lipid Peroxidation; Liposomes; Mitochondria, Heart; Mitochondrial Membranes; Models, Chemical; Oxidation-Reduction; Oxidative Stress; Signal Transduction; Surface-Active Agents; Ubiquinone | 2016 |
Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.
Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice.. Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue.. VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue. Topics: Adenocarcinoma; Animals; Antioxidants; Colonic Neoplasms; Fatigue; Female; Mice; Motor Activity; Muscle, Skeletal; Neoplasms, Experimental; Oxidative Stress; Ubiquinone | 2015 |
Identification of ubiquinol binding motifs at the Qo-site of the cytochrome bc1 complex.
Enzymes of the bc1 complex family power the biosphere through their central role in respiration and photosynthesis. These enzymes couple the oxidation of quinol molecules by cytochrome c to the transfer of protons across the membrane, to generate a proton-motive force that drives ATP synthesis. Key for the function of the bc1 complex is the initial redox process that involves a bifurcated electron transfer in which the two electrons from a quinol substrate are passed to different electron acceptors in the bc1 complex. The electron transfer is coupled to proton transfer. The overall mechanism of quinol oxidation by the bc1 complex is well enough characterized to allow exploration at the atomistic level, but details are still highly controversial. The controversy stems from the uncertain binding motifs of quinol at the so-called Qo active site of the bc1 complex. Here we employ a combination of classical all atom molecular dynamics and quantum chemical calculations to reveal the binding modes of quinol at the Qo-site of the bc1 complex from Rhodobacter capsulatus. The calculations suggest a novel configuration of amino acid residues responsible for quinol binding and support a mechanism for proton-coupled electron transfer from quinol to iron-sulfur cluster through a bridging hydrogen bond from histidine that stabilizes the reaction complex. Topics: Amino Acid Motifs; Electron Transport; Electron Transport Complex III; Molecular Dynamics Simulation; Protein Binding; Quantum Theory; Rhodobacter capsulatus; Ubiquinone; Water | 2015 |
Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Topics: Animals; Benzoquinones; Cytochromes c; Electron Transport; Humans; Mitochondria; Oxidation-Reduction; Signal Transduction; Ubiquinone | 2015 |
Dietary restriction decreases coenzyme Q and ubiquinol potentially via changes in gene expression in the model organism C. elegans.
Dietary restriction (DR) is a robust intervention that extends both health span and life span in many organisms. Ubiquinol and ubiquinone represent the reduced and oxidized forms of coenzyme Q (CoQ). CoQ plays a central role in energy metabolism and functions in several cellular processes including gene expression. Here we used the model organism Caenorhabditis elegans to determine level and redox state of CoQ and expression of genes in response to DR. We found that DR down-regulates the steady-state expression levels of several evolutionary conserved genes (i.e. coq-1) that encode key enzymes of the mevalonate and CoQ-synthesizing pathways. In line with this, DR decreases the levels of total CoQ and ubiquinol. This CoQ-reducing effect of DR is obvious in adult worms but not in L4 larvae and is also evident in the eat-2 mutant, a genetic model of DR. In conclusion, we propose that DR reduces the level of CoQ and ubiquinol via gene expression in the model organism C. elegans. Topics: Aging; Animals; Caenorhabditis elegans; Caenorhabditis elegans Proteins; Caloric Restriction; Energy Metabolism; Gene Expression Regulation; Longevity; Molecular Sequence Annotation; Oxidation-Reduction; Signal Transduction; Ubiquinone | 2015 |
Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex.
Electron transfers within and between protein complexes are core processes of the electron transport chains occurring in thylakoid (chloroplast), mitochondrial, and bacterial membranes. These electron transfers involve a number of cofactors. Here we describe the derivation of molecular mechanics parameters for the cofactors associated with the function of the photosystem II core complex: plastoquinone, plastoquinol, heme b, chlorophyll A, pheophytin, and β-carotene. Parameters were also obtained for ubiquinol and ubiquinone, related cofactors involved in the respiratory chain. Parameters were derived at both atomistic and coarse grain (CG) resolutions, compatible with the building blocks of the GROMOS united-atom and Martini CG force fields, respectively. Structural and thermodynamic properties of the cofactors were compared to experimental values when available. The topologies were further tested in molecular dynamics simulations of the cofactors in their physiological environment, e.g., either in a lipid membrane environment or in complex with the heme binding protein bacterioferritin. Topics: beta Carotene; Chlorophyll; Chlorophyll A; Heme; Lipid Bilayers; Molecular Dynamics Simulation; Molecular Structure; Octanols; Pheophytins; Photosystem II Protein Complex; Plastoquinone; Protein Conformation; Thermodynamics; Ubiquinone; Water | 2015 |
Omental adipocyte hypertrophy relates to coenzyme Q10 redox state and lipid peroxidation in obese women.
Occurrence of oxidative stress in white adipose tissues contributes to its dysfunction and the development of obesity-related metabolic complications. Coenzyme Q10 (CoQ10) is the single lipophilic antioxidant synthesized in humans and is essential for electron transport during mitochondrial respiration. To understand the role of CoQ10 in adipose tissue physiology and dysfunction, the abundance of the oxidized and reduced (CoQ10red) isoforms of the CoQ10 were quantified in subcutaneous and omental adipose tissues of women covering the full range of BMI (from 21.5 to 53.2 kg/m(2)). Lean women displayed regional variations of CoQ10 redox state between the omental and subcutaneous depot, despite similar total content. Obese women had reduced CoQ10red concentrations in the omental depot, leading to increased CoQ10 redox state and higher levels of lipid hydroperoxide. Women with low omental CoQ10 content had greater visceral and subcutaneous adiposity, increased omental adipocyte diameter, and higher circulating interleukin-6 and C-reactive protein levels and were more insulin resistant. The associations between abdominal obesity-related cardiometabolic risk factors and CoQ10 content in the omental depot were abolished after adjustment for omental adipocyte diameter. This study shows that hypertrophic remodeling of visceral fat closely relates to depletion of CoQ10, lipid peroxidation, and inflammation. Topics: Adipocytes; Dietary Supplements; Female; Humans; Hypertrophy; Intra-Abdominal Fat; Lipid Peroxidation; Middle Aged; Obesity; Omentum; Oxidation-Reduction; Reactive Oxygen Species; Subcutaneous Fat; Surveys and Questionnaires; Ubiquinone | 2015 |
Ubiquinol supplementation protects against renal ischemia and reperfusion injury in rats.
Generation of toxic oxygen metabolites followed by oxidant- and inflammatory-mediated tissue injury plays a crucial role in the pathogenesis of ischemia and reperfusion (IR). Ubiquinol, the reduced form of coenzyme Q10, is recognized for its potent antioxidant and anti-inflammatory properties in biological membranes. The present study was established to examine the possible protective effect of ubiquinol against renal IR injury. Groups of male Wistar rats were assigned into sham, ubiquinol, IR (45-min bilateral renal ischemia followed by 24-h reperfusion), and ubiquinol+ IR (ubiquinol 300 mg/kg given orally for 7 consecutive days before IR induction). Renal morphology, function, oxidative stress, and inflammatory markers were evaluated at the end of reperfusion. IR caused renal dysfunction as shown by significant increases in blood urea nitrogen, plasma creatinine, and a decrease in creatinine clearance. Light and electron microscopic examinations exhibited severe tubular damages and abnormal mitochondrial structure. IR-induced renal injuries were associated with significant increases in malondialdehyde, nitric oxide, tumor necrosis factor-α, but decreases in antioxidant thiols and superoxide dismutase. Pretreatment with ubiquinol obviously attenuated all the changes caused by IR, whereas it had no considerable effect in the sham-operated rats. These findings indicate that supplementation of ubiquinol prior to IR incidence confers functional and morphological protection to the ischemic kidney by maintaining the redox balance and regulating the generation of inflammatory mediator. The outcomes suggest that ubiquinol may be a potential candidate to counteract organ dysfunction in conditions involving IR injury. Topics: Animals; Antioxidants; Blood Urea Nitrogen; Dietary Supplements; Drug Evaluation, Preclinical; Ischemia; Kidney; Male; Malondialdehyde; Nitric Oxide; Oxidative Stress; Rats; Rats, Wistar; Reperfusion Injury; Sulfhydryl Compounds; Superoxide Dismutase; Tumor Necrosis Factor-alpha; Ubiquinone | 2014 |
Critical role of deep hydrogen tunneling to accelerate the antioxidant reaction of ubiquinol and vitamin E.
In biomembranes a variety of antioxidants work to suppress oxidative damage. Vitamin E and ubiquinol are among the most important lipid-soluble antioxidants, which trap lipid peroxyl radicals directly or work cooperatively in the regeneration of vitamin E radicals by ubiquinol. Here, we investigate the latter regeneration reaction by using variational transition-state theory with multidimensional tunneling corrections. The result shows that the system forms a compact H-bonded complex by significantly rearranging the donor and acceptor moieties, which leads to a rather narrow potential barrier for H transfer and a very large tunneling effect with a transmission coefficient >4000. In accord with experiment, the Arrhenius activation energy is found to be very small (∼1 kcal/mol), which is interpreted here in terms of mean tunneling energy through the barrier. Regarding the electronic structure, we demonstrate that the present reaction proceeds via a proton-coupled electron transfer (PCET) mechanism and suggest that the PCET character also contributes to the large tunneling effect by sharpening the potential barrier. Finally, a systematic comparison is made among relevant reactions and it is indicated that the antioxidant defense of biomembranes may benefit rather significantly from quantum tunneling to enhance the reaction efficiency. Topics: Antioxidants; Hydrogen; Molecular Structure; Quantum Theory; Ubiquinone; Vitamin E | 2014 |
Probing the ubiquinol-binding site of recombinant Sauromatum guttatum alternative oxidase expressed in E. coli membranes through site-directed mutagenesis.
In the present paper we have investigated the effect of mutagenesis of a number of highly conserved residues (R159, D163, L177 and L267) which we have recently shown to line the hydrophobic inhibitor/substrate cavity in the alternative oxidases (AOXs). Measurements of respiratory activity in rSgAOX expressed in Escherichia coli FN102 membranes indicate that all mutants result in a decrease in maximum activity of AOX and in some cases (D163 and L177) a decrease in the apparent Km (O2). Of particular importance was the finding that when the L177 and L267 residues, which appear to cause a bottleneck in the hydrophobic cavity, are mutated to alanine the sensitivity to AOX antagonists is reduced. When non-AOX anti-malarial inhibitors were also tested against these mutants widening the bottleneck through removal of isobutyl side chain allowed access of these bulkier inhibitors to the active-site and resulted in inhibition. Results are discussed in terms of how these mutations have altered the way in which the AOX's catalytic cycle is controlled and since maximum activity is decreased we predict that such mutations result in an increase in the steady state level of at least one O2-derived AOX intermediate. Such mutations should therefore prove to be useful in future stopped-flow and electron paramagnetic resonance experiments in attempts to understand the catalytic cycle of the alternative oxidase which may prove to be important in future rational drug design to treat diseases such as trypanosomiasis. Furthermore since single amino acid mutations in inhibitor/substrate pockets have been found to be the cause of multi-drug resistant strains of malaria, the decrease in sensitivity to main AOX antagonists observed in the L-mutants studied in this report suggests that an emergence of drug resistance to trypanosomiasis may also be possible. Therefore we suggest that the design of future AOX inhibitors should have structures that are less reliant on the orientation by the two-leucine residues. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Topics: Amino Acid Sequence; Araceae; Binding Sites; Cell Membrane; Escherichia coli; Mitochondrial Proteins; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation, Missense; Oxidoreductases; Plant Proteins; Recombinant Proteins; Terpenes; Ubiquinone | 2014 |
Purification and characterisation of recombinant DNA encoding the alternative oxidase from Sauromatum guttatum.
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in mitochondria of all higher plants studied to date. Structural and functional characterisation of this important but enigmatic plant diiron protein has been hampered by an inability to obtain sufficient native protein from plant sources. In the present study recombinant SgAOX (rSgAOX), overexpressed in a ΔhemA-deficient Escherichia coli strain (FN102), was solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. The kinetics of ubiquinol-1 oxidation by purified rSgAOX showed typical Michaelis-Menten kinetics (K(m) of 332 μM and Vmax of 30 μmol(-1) min(-1) mg(-1)), a turnover number 20 μmol s(-1) and a remarkable stability. The enzyme was potently inhibited not only by conventional inhibitors such as SHAM and n-propyl gallate but also by the potent TAO inhibitors ascofuranone, an ascofuranone-derivative colletochlorin B and the cytochrome bc1 inhibitor ascochlorin. Circular dichroism studies revealed that AOX was approximately 50% α-helical and furthermore such studies revealed that rSgAOX and rTAO partially retained the helical absorbance signal even at 90 °C (58% and 64% respectively) indicating a high conformational stability. It is anticipated that highly purified and active AOX and its mutants will facilitate investigations into the structure and reaction mechanisms of AOXs through the provision of large amounts of purified protein for crystallography and contribute to further progress of the study on this important plant terminal oxidase. Topics: Araceae; Circular Dichroism; Cloning, Molecular; Enzyme Inhibitors; Enzyme Stability; Escherichia coli; Gene Expression; Hot Temperature; Kinetics; Mitochondrial Proteins; Oxidation-Reduction; Oxidoreductases; Plant Proteins; Protein Conformation; Protein Stability; Recombinant Proteins; Ubiquinone | 2014 |
Effects of ubiquinol with fluid resuscitation following haemorrhagic shock on rat lungs, diaphragm, heart and kidneys.
Haemorrhagic shock (HS) and fluid resuscitation can lead to increased reactive oxygen species (ROS), contributing to ischaemia-reperfusion injury and organ damage. Ubiquinol is a potent antioxidant that decreases ROS. This study examined the effects of ubiquinol administered with fluid resuscitation following controlled HS. Adult male Sprague-Dawley rats were randomly assigned to treatment [ubiquinol, 1 mg (100 g body weight)(-1)] or control groups. Rats were subjected to 60 min of HS by removing 40% of the total blood volume to a mean arterial pressure ∼45-55 mmHg. The animals were resuscitated with blood and lactated Ringer solution, with or without ubiquinol, and monitored for 120 min. At the end of the experiments, the rats were killed and the lungs, diaphragm, heart and kidneys harvested. Leucocytes were analysed for mitochondrial superoxide at baseline, end of shock and 120 min following fluid resuscitation using MitoSOX Red. Diaphragms were examined for hydrogen peroxide using dihydrofluorescein diacetate and confocal microscopy. The apoptosis in lungs, diaphragm, heart and kidneys was measured using fluorescence microscopy with acridine orange and ethidium bromide. Leucocyte mitochondrial superoxide levels were significantly lower in rats that received ubiquinol than in the control animals. Production of hydrogen peroxide and apoptosis were significantly reduced in the organs of rats treated with ubiquinol. These findings suggest that ubiquinol, administered with fluid resuscitation after HS, attenuates ROS production and apoptosis. Thus, ubiquinol is a potent antioxidant that may be used as a potential treatment to reduce organ injury following haemorrhagic events. Topics: Animals; Antioxidants; Apoptosis; Diaphragm; Fluid Therapy; Heart; Hydrogen Peroxide; Kidney; Leukocytes; Lung; Male; Mitochondria; Myocardium; Rats, Sprague-Dawley; Reperfusion Injury; Resuscitation; Shock, Hemorrhagic; Superoxides; Ubiquinone | 2014 |
Increased bioavailability of ubiquinol compared to that of ubiquinone is due to more efficient micellarization during digestion and greater GSH-dependent uptake and basolateral secretion by Caco-2 cells.
The oral bioavailability of ubiquinol recently has been reported to be greater than that of ubiquinone in healthy adults. The basis for this influence of redox state of coenzyme Q (CoQ) on bioavailability has been investigated using the coupled in vitro digestion/Caco-2 cell model. Solubilized ubiquinol and ubiquinone were added to yogurt and subjected to simulated gastric and small intestinal digestion. Partitioning of CoQ in mixed micelles during small intestinal digestion was significantly greater during digestion of yogurt enriched with ubiquinol. Similarly, apical uptake from mixed micelles and transepithelial transport of CoQ by Caco-2 cells were significantly greater after digestion of the ubiquinol-rich yogurt compared to digested ubiquinone-rich yogurt. Reduction of cellular GSH significantly decreased cell uptake and basolateral secretion of both ubiquinol and ubiquinone, although the adverse impact was much greater for ubiquinol. These data suggest that the enhanced bioaccessibility and bioavailability of ubiquinol compared to ubiquinone results from reduced coenzyme being more efficiently incorporated into mixed micelles during digestion and its greater uptake and basolateral secretion in a glutathione-dependent mechanism. Topics: Biological Availability; Caco-2 Cells; Chromatography, High Pressure Liquid; Glutathione; Humans; Micelles; Oxidation-Reduction; Ubiquinone | 2014 |
The molecular evolution of the Qo motif.
Quinol oxidation in the catalytic quinol oxidation site (Q(o) site) of cytochrome (cyt) bc(1) complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell's chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Q(o) site architecture formed by cyt b and Rieske iron-sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Q(o) motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Q(o) motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus-Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc(1) complexes with PEWY as Q(o) motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc(1) complex. Topics: Amino Acid Motifs; Evolution, Molecular; Models, Biological; Oxidation-Reduction; Phylogeny; Ubiquinone | 2014 |
Prevention of peroxidation of cardiolipin liposomes by quinol-based antioxidants.
In mammalian mitochondria, cardiolipin molecules are the primary targets of oxidation by reactive oxygen species. The interaction of oxidized cardiolipin molecules with the constituents of the apoptotic cascade may lead to cell death. In the present study, we compared the effects of quinol-containing synthetic and natural amphiphilic antioxidants on cardiolipin peroxidation in a model system (liposomes of bovine cardiolipin). We found that both natural ubiquinol and synthetic antioxidants, even being introduced in micro- and submicromolar concentrations, fully protected the liposomal cardiolipin from peroxidation. The duration of their action, however, varied; it increased with the presence of either methoxy groups of ubiquinol or additional reduced redox groups (in the cases of rhodamine and berberine derivates). The concentration of ubiquinol in the mitochondrial membrane substantially exceeds the concentrations of antioxidants we used and would seem to fully prevent peroxidation of membrane cardiolipin. In fact, this does not happen: cardiolipin in mitochondria is oxidized, and this process can be blocked by amphiphilic cationic antioxidants (Y. N. Antonenko et al. (2008) Biochemistry (Moscow), 73, 1273-1287). We suppose that a fraction of mitochondrial cardiolipin could not be protected by natural ubiquinol; in vivo, peroxidation most likely threatens those cardiolipin molecules that, being bound within complexes of membrane proteins, are inaccessible to the bulky hydrophobic ubiquinol molecules diffusing in the lipid bilayer of the inner mitochondrial membrane. The ability to protect these occluded cardiolipin molecules from peroxidation may explain the beneficial therapeutic action of cationic antioxidants, which accumulate electrophoretically within mitochondria under the action of membrane potential. Topics: Animals; Antioxidants; Cardiolipins; Cattle; Hydroquinones; Lipid Peroxidation; Liposomes; Molecular Structure; Ubiquinone | 2014 |
Ubiquinol rescues simvastatin-suppression of mitochondrial content, function and metabolism: implications for statin-induced rhabdomyolysis.
Statin medications diminish cholesterol biosynthesis and are commonly prescribed to reduce cardiovascular disease. Statins also reduce production of ubiquinol, a vital component of mitochondrial energy production; ubiquinol reduction may contribute to rhabdomyolysis. Human rhabdomyosarcoma cells were treated with either ethanol and dimethyl sulfoxide (DMSO) control, or simvastatin at 5 µM or 10 µM, or simvastatin at 5 µM with ubiquinol at 0.5 µM or 1.0 µM for 24 h or 48 h. PGC-1α RNA levels were determined using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Mitochondrial content was determined using flow cytometry and immunocytochemistry. Metabolism was determined by quantification of extracellular acidification rate and oxygen consumption rate. Treatment of human rhabdomyosarcoma cells with simvastatin significantly reduced oxidative, total metabolism, and cellular ATP content in a time- and dose-dependent manner which was rescued by concurrent treatment with ubiquinol. Treatment with simvastatin significantly reduced mitochondrial content as well as cell viability which were both rescued by simultaneous treatment with ubiquinol. This work demonstrates that the addition of ubiquinol to current statin treatment regimens may protect muscle cells from myopathies. Topics: Adenosine Triphosphate; Biomarkers; Cell Line, Tumor; Cell Proliferation; Cell Survival; Gene Expression Regulation; Glycolysis; Humans; Mitochondria; Oxidation-Reduction; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Rhabdomyolysis; Simvastatin; Time Factors; Transcription Factors; Ubiquinone | 2013 |
Evidence for a key role of cytochrome bo3 oxidase in respiratory energy metabolism of Gluconobacter oxydans.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans oxidizes a variety of substrates in the periplasm by membrane-bound dehydrogenases, which transfer the reducing equivalents to ubiquinone. Two quinol oxidases, cytochrome bo3 and cytochrome bd, then catalyze transfer of the electrons from ubiquinol to molecular oxygen. In this study, mutants lacking either of these terminal oxidases were characterized. Deletion of the cydAB genes for cytochrome bd had no obvious influence on growth, whereas the lack of the cyoBACD genes for cytochrome bo3 severely reduced the growth rate and the cell yield. Using a respiration activity monitoring system and adjusting different levels of oxygen availability, hints of a low-oxygen affinity of cytochrome bd oxidase were obtained, which were supported by measurements of oxygen consumption in a respirometer. The H(+)/O ratio of the ΔcyoBACD mutant with mannitol as the substrate was 0.56 ± 0.11 and more than 50% lower than that of the reference strain (1.26 ± 0.06) and the ΔcydAB mutant (1.31 ± 0.16), indicating that cytochrome bo3 oxidase is the main component for proton extrusion via the respiratory chain. Plasmid-based overexpression of cyoBACD led to increased growth rates and growth yields, both in the wild type and the ΔcyoBACD mutant, suggesting that cytochrome bo3 might be a rate-limiting factor of the respiratory chain. Topics: Bacterial Proteins; Electron Transport; Electron Transport Complex IV; Energy Metabolism; Gene Expression Regulation, Bacterial; Genes, Bacterial; Gluconobacter oxydans; Molecular Sequence Data; Oligonucleotide Array Sequence Analysis; Oxidation-Reduction; Oxidoreductases; Oxygen; Oxygen Consumption; Ubiquinone | 2013 |
A mouse model of familial ALS has increased CNS levels of endogenous ubiquinol9/10 and does not benefit from exogenous administration of ubiquinol10.
Oxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS), a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ) complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties. In this study we compared the effects of ubiquinone10 and a new stabilized formulation of ubiquinol10 on the disease course of SOD1(G93A) transgenic mice, an experimental model of fALS. Chronic treatments (800 mg/kg/day orally) started from the onset of disease until death, to mimic the clinical trials that only include patients with definite ALS symptoms. Although the plasma levels of CoQ10 were significantly increased by both treatments (from <0.20 to 3.0-3.4 µg/mL), no effect was found on the disease progression and survival of SOD1(G93A) mice. The levels of CoQ10 in the brain and spinal cord of ubiquinone10- or ubiquinol10-treated mice were only slightly higher (≤10%) than the endogenous levels in vehicle-treated mice, indicating poor CNS availability after oral dosing and possibly explaining the lack of pharmacological effects. To further examine this issue, we measured the oxidized and reduced forms of CoQ9/10 in the plasma, brain and spinal cord of symptomatic SOD1(G93A) mice, in comparison with age-matched SOD1(WT). Levels of ubiquinol9/10, but not ubiquinone9/10, were significantly higher in the CNS, but not in plasma, of SOD1(G93A) mice, suggesting that CoQ redox system might participate in the mechanisms trying to counteract the pathology progression. Therefore, the very low increases of CoQ10 induced by oral treatments in CNS might be not sufficient to provide significant neuroprotection in SOD1(G93A) mice. Topics: Amyotrophic Lateral Sclerosis; Animals; Brain; Central Nervous System; Disease Models, Animal; Disease Progression; Humans; Mice; Mice, Transgenic; Spinal Cord; Superoxide Dismutase; Ubiquinone | 2013 |
Peer attachment formation by systemic redox regulation with social training after a sensitive period.
Attachment formation is the most pivotal factor for humans and animals in the growth and development of social relationships. However, the developmental processes of attachment formation mediated by sensory-motor, emotional, and cognitive integration remain obscure. Here we developed an animal model to understand the types of social interactions that lead to peer-social attachment formation. We found that the social interaction in a sensitive period was essential to stabilise or overwrite the initially imprinted peer affiliation state and that synchronised behaviour with others based on common motivations could be a driver of peer social attachment formation. Furthermore, feeding experience with supplementation of ubiquinol conferred peer social attachment formation even after the sensitive period. Surprisingly, the experience of feeding beyond the cage window was also effective to reduce the required amount ubiquinol, suggesting that peri-personal space modulation may affect socio-emotional cognition and there by lead to attachment formation. Topics: Administration, Oral; Animals; Chickens; Dietary Supplements; Emotions; Interpersonal Relations; Learning; Object Attachment; Oxidation-Reduction; Peer Group; Social Behavior; Ubiquinone | 2013 |
Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV.
Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III(2)IV(1) were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III(2)IV(1) supercomplex trimer and III(2)IV(2) supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo. Topics: Cardiolipins; Cytochrome Reductases; Electron Transport Complex III; Electron Transport Complex IV; Lipids; Microscopy, Electron; Mitochondria; Phospholipases; Protein Binding; Proteolipids; Saccharomyces cerevisiae; Spectrometry, Mass, Electrospray Ionization; Ubiquinone | 2013 |
Alternative oxidase expression in the mouse enables bypassing cytochrome c oxidase blockade and limits mitochondrial ROS overproduction.
Cyanide-resistant non-phosphorylating respiration is known in mitochondria from plants, fungi, and microorganisms but is absent in mammals. It results from the activity of an alternative oxidase (AOX) that conveys electrons directly from the respiratory chain (RC) ubiquinol pool to oxygen. AOX thus provides a bypath that releases constraints on the cytochrome pathway and prevents the over-reduction of the ubiquinone pool, a major source of superoxide. RC dysfunctions and deleterious superoxide overproduction are recurrent themes in human pathologies, ranging from neurodegenerative diseases to cancer, and may be instrumental in ageing. Thus, preventing RC blockade and excess superoxide production by means of AOX should be of considerable interest. However, because of its energy-dissipating properties, AOX might produce deleterious effects of its own in mammals. Here we show that AOX can be safely expressed in the mouse (MitAOX), with major physiological parameters being unaffected. It neither disrupted the activity of other RC components nor decreased oxidative phosphorylation in isolated mitochondria. It conferred cyanide-resistance to mitochondrial substrate oxidation and decreased reactive oxygen species (ROS) production upon RC blockade. Accordingly, AOX expression was able to support cyanide-resistant respiration by intact organs and to afford prolonged protection against a lethal concentration of gaseous cyanide in whole animals. Taken together, these results indicate that AOX expression in the mouse is innocuous and permits to overcome a RC blockade, while reducing associated oxidative insult. Therefore, the MitAOX mice represent a valuable tool in order to investigate the ability of AOX to counteract the panoply of mitochondrial-inherited diseases originating from oxidative phosphorylation defects. Topics: Animals; Ciona intestinalis; Electron Transport; Electron Transport Complex IV; Gene Expression Regulation; Humans; Mice; Mice, Transgenic; Mitochondria; Oxidation-Reduction; Oxidative Phosphorylation; Oxidoreductases; Reactive Oxygen Species; Superoxides; Ubiquinone | 2013 |
Heme-copper terminal oxidase using both cytochrome c and ubiquinol as electron donors.
The cytochrome c oxidase Cox2 has been purified from native membranes of the hyperthermophilic eubacterium Aquifex aeolicus. It is a cytochrome ba(3) oxidase belonging to the family B of the heme-copper containing terminal oxidases. It consists of three subunits, subunit I (CoxA2, 63.9 kDa), subunit II (CoxB2, 16.8 kDa), and an additional subunit IIa of 5.2 kDa. Surprisingly it is able to oxidize both reduced cytochrome c and ubiquinol in a cyanide sensitive manner. Cox2 is part of a respiratory chain supercomplex. This supercomplex contains the fully assembled cytochrome bc(1) complex and Cox2. Although direct ubiquinol oxidation by Cox2 conserves less energy than ubiquinol oxidation by the cytochrome bc(1) complex followed by cytochrome c oxidation by a cytochrome c oxidase, ubiquinol oxidation by Cox2 is of advantage when all ubiquinone would be completely reduced to ubiquinol, e.g., by the sulfidequinone oxidoreductase, because the cytochrome bc(1) complex requires the presence of ubiquinone to function according to the Q-cycle mechanism. In the case that all ubiquinone has been reduced to ubiquinol its reoxidation by Cox2 will enable the cytochrome bc(1) complex to resume working. Topics: Amino Acid Sequence; Bacterial Proteins; Chemoautotrophic Growth; Copper; Cyanides; Cytochromes c; Electron Transport; Electron Transport Complex IV; Electrons; Energy Metabolism; Heme; Molecular Sequence Data; Multienzyme Complexes; Oxidation-Reduction; Protein Subunits; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Ubiquinone | 2012 |
New insights into the medical management of idiopathic male infertility--what works, what does not and does it matter?
Topics: Antioxidants; Azoospermia; Female; Hormone Replacement Therapy; Humans; Infertility, Male; Male; Microdissection; Pregnancy; Semen Analysis; Sperm Retrieval; Testosterone; Ubiquinone | 2012 |
Oxygen dependent electron transfer in the cytochrome bc(1) complex.
The effect of molecular oxygen on the electron transfer activity of the cytochrome bc(1) complex was investigated by determining the activity of the complex under the aerobic and anaerobic conditions. Molecular oxygen increases the activity of Rhodobacter sphaeroides bc(1) complex up to 82%, depending on the intactness of the complex. Since oxygen enhances the reduction rate of heme b(L), but shows no effect on the reduction rate of heme b(H), the effect of oxygen in the electron transfer sequence of the cytochrome bc(1) complex is at the step of heme b(L) reduction during bifurcated oxidation of ubiquinol. Topics: Electron Transport; Electron Transport Complex III; Heme; Kinetics; Oxidation-Reduction; Oxygen; Rhodobacter sphaeroides; Superoxides; Ubiquinone | 2012 |
Increased ubiquinone concentration after intracerebroventricularly-administered ubiquinol to selected rat brain regions.
Brain coenzyme Q10 (CoQ10) concentration can influence the activity of several brain regions, including those which participate in the regulation of cardiovascular circadian rhythms, food intake, neuroendocrine stress response, activity and sleep regulation. However, the effect of supplemented ubiquinol (reduced CoQ) into brain regions is not known. This study determined baseline levels of ubiquinone (oxidized CoQ) in various rat brain regions and proved the bioavailability of the liposomal ubiquinol to selected brain regions after its administration into right brain ventricle. Our data indicate that administration of ubiquinol may create the basis for modulation of neuronal activities in specific brain regions. Topics: Animals; Brain; Dose-Response Relationship, Drug; Infusions, Intraventricular; Rats; Tissue Distribution; Ubiquinone; Up-Regulation | 2012 |
Ubiquinol (QH(2)) functions as a negative regulator of purine nucleotide inhibition of Acanthamoeba castellanii mitochondrial uncoupling protein.
We compared the influence of different adenine and guanine nucleotides on the free fatty acid-induced uncoupling protein (UCP) activity in non-phosphorylating Acanthamoeba castellanii mitochondria when the membranous ubiquinone (Q) redox state was varied. The purine nucleotides exhibit an inhibitory effect in the following descending order: GTP>ATP>GDP>ADP≫GMP>AMP. The efficiency of guanine and adenine nucleotides to inhibit UCP-sustained uncoupling in A. castellanii mitochondria depends on the Q redox state. Inhibition by purine nucleotides can be increased with decreasing Q reduction level (thereby ubiquinol, QH₂ concentration) even with nucleoside monophosphates that are very weak inhibitors at the initial respiration. On the other hand, the inhibition can be alleviated with increasing Q reduction level (thereby QH₂ concentration). The most important finding was that ubiquinol (QH₂) but not oxidised Q functions as a negative regulator of UCP inhibition by purine nucleotides. For a given concentration of QH₂, the linoleic acid-induced GTP-inhibited H(+) leak was the same for two types of A. castellanii mitochondria that differ in the endogenous Q content. When availability of the inhibitor (GTP) or the negative inhibition modulator (QH₂) was changed, a competitive influence on the UCP activity was observed. QH₂ decreases the affinity of UCP for GTP and, vice versa, GTP decreases the affinity of UCP for QH₂. These results describe the kinetic mechanism of regulation of UCP affinity for purine nucleotides by endogenous QH₂ in the mitochondria of a unicellular eukaryote. Topics: Acanthamoeba castellanii; Adenine Nucleotides; Benzoquinones; Fatty Acids, Nonesterified; Guanine Nucleotides; Homeostasis; Ion Channels; Membrane Potentials; Mitochondria; Mitochondrial Proteins; Oxidation-Reduction; Oxygen Consumption; Purine Nucleotides; Ribonucleotides; Ubiquinone; Uncoupling Protein 1 | 2011 |
Altered redox status of coenzyme Q9 reflects mitochondrial electron transport chain deficiencies in Caenorhabditis elegans.
Mitochondrial disorders are often associated with primary or secondary CoQ10 decrease. In clinical practice, Coenzyme Q10 (CoQ10) levels are measured to diagnose deficiencies and to direct and monitor supplemental therapy. CoQ10 is reduced by complex I or II and oxidized by complex III in the mitochondrial respiratory chain. Therefore, the ratio between the reduced (ubiquinol) and oxidized (ubiquinone) CoQ10 may provide clinically significant information in patients with mitochondrial electron transport chain (ETC) defects. Here, we exploit mutants of Caenorhabditis elegans (C. elegans) with defined defects of the ETC to demonstrate an altered redox ratio in Coenzyme Q9 (CoQ9), the native quinone in these organisms. The percentage of reduced CoQ9 is decreased in complex I (gas-1) and complex II (mev-1) deficient animals, consistent with the diminished activity of these complexes that normally reduce CoQ9. As anticipated, reduced CoQ9 is increased in the complex III deficient mutant (isp-1), since the oxidase activity of the complex is severely defective. These data provide proof of principle of our hypothesis that an altered redox status of CoQ may be present in respiratory complex deficiencies. The assessment of CoQ10 redox status in patients with mitochondrial disorders may be a simple and useful tool to uncover and monitor specific respiratory complex defects. Topics: Animals; Antioxidants; Caenorhabditis elegans; Disease Models, Animal; Gas Chromatography-Mass Spectrometry; Humans; Mitochondria; Mitochondrial Diseases; Oxidation-Reduction; Ubiquinone | 2011 |
Renal preservation effect of ubiquinol, the reduced form of coenzyme Q10.
The aim of this study was to evaluate the renal preservation effect of ubiquinol, the reduced form of coenzyme Q10 (CoQ10).. Three-week-old heminephrectomized male Sprague-Dawley rats were divided into three groups (10 animals each): diet with normal (0.3%) salt, high (8%) salt, and high salt plus 600 mg/kg body weight/day of ubiquinol, for 4 weeks. Systolic blood pressure (SBP), urinary albumin (u-alb), superoxide anion generation (lucigenin chemiluminescence) and ubiquinol levels in renal tissues were examined.. Salt loading increased SBP (111.0 ± 3.6 vs. 169.4 ± 14.3 mmHg, p < 0.01) and u-alb (43.8 ± 28.0 vs. 2528.7 ± 1379.0 µg/day, p < 0.02). These changes were associated with stimulation of superoxide generation in the kidney (866.3 ± 102.8 vs. 2721.4 ± 973.3 RLU/g kidney, p < 0.01). However, ubiquinol decreased SBP (143.9 ± 29.0 mmHg, p < 0.05), u-alb (256.1 ± 122.1 µg/day, p < 0.02), and renal superoxide production (877.8 ± 195.6 RLU/g kidney, p < 0.01), associated with an increase in renal ubiquinol levels.. Ubiquinol, the reduced form of CoQ10, effectively ameliorates renal function, probably due to its antioxidant effect. Thus, ubiquinol may be a candidate for the treatment of patients with kidney disease. Topics: Animals; Antioxidants; Humans; Kidney; Kidney Failure, Chronic; Male; Oxidative Stress; Rats; Rats, Sprague-Dawley; Sodium, Dietary; Ubiquinone | 2011 |
Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution.
Two-dimensional correlation analysis was carried out in combination with multivariate curve resolution-alternating least squares (MCR-ALS) to analyse time-resolved infrared (IR) difference spectra probing photoinduced ubiquinol formation in detergent-isolated reaction centres from Rhodobacter sphaeroides. The dynamic 2D IR correlation spectra have not only allowed the determination of the concomitance or non-concomitance of different chemical events through known marker bands but also have helped identify new vibrational bands related to the complex series of photochemical and redox reactions. In particular, a strong positive band located at 1565 cm⁻¹ was found to be synchronous with the process of ubiquinol formation. In addition, a tailored MCR-ALS analysis was performed using a priori chemical knowledge of the system, in particular including the pure spectrum of one species obtained from an external measurement. Enhancing the MCR-ALS performance in this way in time-dependent processes is relevant, especially when other essential pieces of information, such as kinetic models, are unavailable. The results give evidence of four independent spectral contributions. Three of them show marker bands for a monoelectronic reduction of the primary quinone QA (QA⁻/QA transition, first contribution), for a monoelectronic reduction of a secondary quinone QB (QB⁻/QB transition, second contribution) and for ubiquinol formation (third contribution). The results obtained also confirm that a key rate-limiting factor is the slow ubiquinone and ubiquinol exchange among micelles, which strongly influences the kinetic profiles of the involved species. Topics: Kinetics; Models, Chemical; Multivariate Analysis; Oxidation-Reduction; Photosynthetic Reaction Center Complex Proteins; Rhodobacter sphaeroides; Spectroscopy, Fourier Transform Infrared; Spectrum Analysis; Ubiquinone | 2011 |
Electrocatalytic reduction of nitrate and selenate by NapAB.
Bacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2. The level of a periplasmic ubiquinol-dependent nitrate reductase, NAP, is up-regulated in the presence of highly reduced carbon substrates. NAP oxidizes ubiquinol at the periplasmic face of the cytoplasmic membrane and reduces nitrate in the periplasm. Thus its activity counteracts the accumulation of excess reducing equivalents in ubiquinol, thereby maintaining the redox poise of the ubiquinone/ubiquinol pool without contributing to the protonmotive force across the cytoplasmic membrane. Although P. pantotrophus NapAB shows a high level of substrate specificity towards nitrate, the enzyme has also been reported to reduce selenate in spectrophotometric solution assays. This transaction draws on our current knowledge concerning the bacterial respiratory nitrate reductases and extends the application of PFE (protein film electrochemistry) to resolve and quantify the selenate reductase activity of NapAB. Topics: Bacterial Proteins; Electrochemical Techniques; Isoenzymes; Models, Molecular; Nitrate Reductases; Nitrates; Oxidation-Reduction; Paracoccus pantotrophus; Periplasm; Protein Conformation; Selenic Acid; Selenium; Selenium Compounds; Ubiquinone | 2011 |
Ubiquinol-induced gene expression signatures are translated into altered parameters of erythropoiesis and reduced low density lipoprotein cholesterol levels in humans.
Studies in vitro and in mice indicate a role for Coenzyme Q(10) (CoQ(10) ) in gene expression. To determine this function in relationship to physiological readouts, a 2-week supplementation study with the reduced form of CoQ(10) (ubiquinol, Q(10) H(2) , 150 mg/d) was performed in 53 healthy males. Mean CoQ(10) plasma levels increased 4.8-fold after supplementation. Transcriptomic and bioinformatic approaches identified a gene-gene interaction network in CD14-positive monocytes, which functions in inflammation, cell differentiation, and peroxisome proliferator-activated receptor-signaling. These Q(10) H(2) -induced gene expression signatures were also described previously in liver tissues of SAMP1 mice. Biochemical and NMR-based analyses showed a reduction of low density lipoprotein (LDL) cholesterol plasma levels after Q(10) H(2) supplementation. This effect was especially pronounced in atherogenic small dense LDL particles (19-21 nm, 1.045 g/L). In agreement with gene expression signatures, Q(10) H(2) reduces the number of erythrocytes but increases the concentration of reticulocytes. In conclusion, Q(10) H(2) induces characteristic gene expression patterns, which are translated into reduced LDL cholesterol levels and altered parameters of erythropoiesis in humans. Topics: Adult; Cholesterol, LDL; Chromatography, High Pressure Liquid; Enzyme-Linked Immunosorbent Assay; Erythropoiesis; Gene Expression; Humans; Magnetic Resonance Spectroscopy; Middle Aged; Oligonucleotide Array Sequence Analysis; Polymerase Chain Reaction; Ubiquinone | 2011 |
Physiological importance of cytochrome c peroxidase in ethanologenic thermotolerant Zymomonas mobilis.
Zymomonas mobilis ZmCytC as a peroxidase bearing three heme c-binding motifs was investigated with ΔZmcytC constructed. The mutant exhibited filamentous shapes and reduction in growth under a shaking condition at a high temperature compared to the parental strain and became hypersensitive to exogenous H(2)O(2). Under the same condition, the mutation caused increased expression of genes for three other antioxidant enzymes. Peroxidase activity, which was detected in membrane fractions with ubiquinol-1 as a substrate but not with reduced horse heart cytochrome c, was almost abolished in ΔZmcytC. Peroxidase activity was also detected with NADH as a substrate, which was significantly inhibited by antimycin A. NADH oxidase activity of ΔZmcytC was found to be about 80% of that of the parental strain. The results suggest the involvement of ZmCytC in the aerobic respiratory chain via the cytochrome bc(1) complex in addition to the previously proposed direct interaction with ubiquinol and its contribution to protection against oxidative stress. Topics: Amino Acid Sequence; Cell Membrane; Cytochrome-c Peroxidase; Ethanol; Gene Deletion; Gene Expression Profiling; Glucose; Hydrogen Peroxide; Microscopy; Molecular Sequence Data; NAD; Oxidative Stress; Reverse Transcriptase Polymerase Chain Reaction; Sequence Homology, Amino Acid; Spectrophotometry; Ubiquinone; Zymomonas | 2011 |
Direct demonstration of half-of-the-sites reactivity in the dimeric cytochrome bc1 complex: enzyme with one inactive monomer is fully active but unable to activate the second ubiquinol oxidation site in response to ligand binding at the ubiquinone reducti
We previously proposed that the dimeric cytochrome bc(1) complex exhibits half-of-the-sites reactivity for ubiquinol oxidation and rapid electron transfer between bc(1) monomers (Covian, R., Kleinschroth, T., Ludwig, B., and Trumpower, B. L. (2007) J. Biol. Chem. 282, 22289-22297). Here, we demonstrate the previously proposed half-of-the-sites reactivity and intermonomeric electron transfer by characterizing the kinetics of ubiquinol oxidation in the dimeric bc(1) complex from Paracoccus denitrificans that contains an inactivating Y147S mutation in one or both cytochrome b subunits. The enzyme with a Y147S mutation in one cytochrome b subunit was catalytically fully active, whereas the activity of the enzyme with a Y147S mutation in both cytochrome b subunits was only 10-16% of that of the enzyme with fully wild-type or heterodimeric cytochrome b subunits. Enzyme with one inactive cytochrome b subunit was also indistinguishable from the dimer with two wild-type cytochrome b subunits in rate and extent of reduction of cytochromes b and c(1) by ubiquinol under pre-steady-state conditions in the presence of antimycin. However, the enzyme with only one mutated cytochrome b subunit did not show the stimulation in the steady-state rate that was observed in the wild-type dimeric enzyme at low concentrations of antimycin, confirming that the half-of-the-sites reactivity for ubiquinol oxidation can be regulated in the wild-type dimer by binding of inhibitor to one ubiquinone reduction site. Topics: Animals; Antimycin A; Binding Sites; Chromatography, Affinity; Electron Transport Complex III; Enzyme Activation; Horses; Kinetics; Ligands; Mutagenesis; Mutant Proteins; Operon; Oxidation-Reduction; Paracoccus denitrificans; Protein Multimerization; Titrimetry; Ubiquinone | 2010 |
Modifications of protein environment of the [2Fe-2S] cluster of the bc1 complex: effects on the biophysical properties of the rieske iron-sulfur protein and on the kinetics of the complex.
The rate-determining step in the overall turnover of the bc(1) complex is electron transfer from ubiquinol to the Rieske iron-sulfur protein (ISP) at the Q(o)-site. Structures of the ISP from Rhodobacter sphaeroides show that serine 154 and tyrosine 156 form H-bonds to S-1 of the [2Fe-2S] cluster and to the sulfur atom of the cysteine liganding Fe-1 of the cluster, respectively. These are responsible in part for the high potential (E(m)(,7) approximately 300 mV) and low pK(a) (7.6) of the ISP, which determine the overall reaction rate of the bc(1) complex. We have made site-directed mutations at these residues, measured thermodynamic properties using protein film voltammetry to evaluate the E(m) and pK(a) values of ISPs, explored the local proton environment through two-dimensional electron spin echo envelope modulation, and characterized function in strains S154T, S154C, S154A, Y156F, and Y156W. Alterations in reaction rate were investigated under conditions in which concentration of one substrate (ubiquinol or ISP(ox)) was saturating and the other was varied, allowing calculation of kinetic terms and relative affinities. These studies confirm that H-bonds to the cluster or its ligands are important determinants of the electrochemical characteristics of the ISP, likely through electron affinity of the interacting atom and the geometry of the H-bonding neighborhood. The calculated parameters were used in a detailed Marcus-Brønsted analysis of the dependence of rate on driving force and pH. The proton-first-then-electron model proposed accounts naturally for the effects of mutation on the overall reaction. Topics: Antimycin A; Biophysics; Circular Dichroism; Electrochemistry; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Hydrogen Bonding; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Models, Chemical; Mutagenesis, Site-Directed; Mutation; Rhodobacter sphaeroides; Ubiquinone | 2010 |
Purification and kinetic characterization of recombinant alternative oxidase from Trypanosoma brucei brucei.
The trypanosome alternative oxidase (TAO) functions in the African trypanosomes as a cytochrome-independent terminal oxidase, which is essential for their survival in the mammalian host and as it does not exist in the mammalian host is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in a haem-deficient Escherichia coli strain has been solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. Analysis of bound iron detected by inductively coupled plasma-mass spectrometer (ICP-MS) reveals a stoichiometry of two bound iron atoms per monomer of rTAO. Confirmation that the rTAO was indeed a diiron protein was obtained by EPR analysis which revealed a signal, in the reduced forms of rTAO, with a g-value of 15. The kinetics of ubiquiol-1 oxidation by purified rTAO showed typical Michaelis-Menten kinetics (K(m) of 338microM and V(max) of 601micromol/min/mg), whereas ubiquinol-2 oxidation showed unusual substrate inhibition. The specific inhibitor, ascofuranone, inhibited the enzyme in a mixed-type inhibition manner with respect to ubiquinol-1. Topics: Catalysis; Electron Spin Resonance Spectroscopy; Electrophoresis, Polyacrylamide Gel; Enzyme Inhibitors; Escherichia coli; Kinetics; Mass Spectrometry; Mitochondrial Proteins; Oxidation-Reduction; Oxidoreductases; Plant Proteins; Protozoan Proteins; Recombinant Proteins; Sesquiterpenes; Substrate Specificity; Trypanosoma brucei brucei; Ubiquinone | 2010 |
Ubiquinol-binding site in the alternative oxidase: mutagenesis reveals features important for substrate binding and inhibition.
The alternative oxidase (AOX) is a non-protonmotive ubiquinol oxidase that is found in all plants, some fungi, green algae, bacteria and pathogenic protozoa. The lack of AOX in the mammalian host renders this protein an important potential therapeutic target in the treatment of pathogenic protozoan infections. Bioinformatic searches revealed that, within a putative ubiquinol-binding crevice in AOX, Gln242, Asn247, Tyr253, Ser256, His261 and Arg262 were highly conserved. To confirm that these amino-acid residues are important for ubiquinol-binding and hence activity substitution mutations were generated and characterised. Assessment of AOX activity in isolated Schizosaccharomyces pombe mitochondria revealed that mutation of either Gln242, Ser256, His261 and Arg262 resulted in >90% inhibition of antimycin A-insensitive respiration suggesting that hydroxyl, guanidino, imidazole groups, polar and charged residues in addition to the size of the amino-acid chain are important for ubiquinone-binding. Substitution of Asn247 with glutamine or Tyr253 with phenylalanine had little effect upon the respiratory rate indicating that these residues are not critical for AOX activity. However replacement of Tyr253 by alanine resulted in a 72% loss of activity suggesting that the benzoquinone group and not hydroxyl group is important for quinol binding. These results provide important new insights into the ubiquinol-binding site of the alternative oxidase, the identity of which maybe important for future rational drug design. Topics: Amino Acid Sequence; Amino Acid Substitution; Antimycin A; Binding Sites; Biocatalysis; Blotting, Western; Mitochondrial Proteins; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Oxidoreductases; Oxygen Consumption; Plant Proteins; Protein Binding; Protein Structure, Secondary; Schizosaccharomyces; Schizosaccharomyces pombe Proteins; Sequence Homology, Amino Acid; Substrate Specificity; Ubiquinone | 2010 |
Characterization of the semiquinone radical stabilized by the cytochrome aa3-600 menaquinol oxidase of Bacillus subtilis.
Cytochrome aa(3)-600 is one of the principle respiratory oxidases from Bacillus subtilis and is a member of the heme-copper superfamily of oxygen reductases. This enzyme catalyzes the two-electron oxidation of menaquinol and the four-electron reduction of O(2) to 2H(2)O. Cytochrome aa(3)-600 is of interest because it is a very close homologue of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli, except that it uses menaquinol instead of ubiquinol as a substrate. One question of interest is how the proteins differ in response to the differences in structure and electrochemical properties between ubiquinol and menaquinol. Cytochrome bo(3) has a high affinity binding site for ubiquinol that stabilizes a ubi-semiquinone. This has permitted the use of pulsed EPR techniques to investigate the protein interaction with the ubiquinone. The current work initiates studies to characterize the equivalent site in cytochrome aa(3)-600. Cytochrome aa(3)-600 has been cloned and expressed in a His-tagged form in B. subtilis. After isolation of the enzyme in dodecylmaltoside, it is shown that the pure enzyme contains 1 eq of menaquinone-7 and that the enzyme stabilizes a mena-semiquinone. Pulsed EPR studies have shown that there are both similarities as well as significant differences in the interactions of the mena-semiquinone with cytochrome aa(3)-600 in comparison with the ubi-semiquinone in cytochrome bo(3). Our data indicate weaker hydrogen bonds of the menaquinone in cytochrome aa(3)-600 in comparison with ubiquinone in cytochrome bo(3). In addition, the electronic structure of the semiquinone cyt aa(3)-600 is more shifted toward the anionic form from the neutral state in cyt bo(3). Topics: Bacillus subtilis; Benzoquinones; Chromatography, High Pressure Liquid; Electrochemistry; Electron Spin Resonance Spectroscopy; Electron Transport Complex IV; Escherichia coli; Hydrogen Bonding; Models, Chemical; Mutagenesis, Site-Directed; Nitrogen; Photosystem I Protein Complex; Ubiquinone; Vitamin K; Vitamin K 2 | 2010 |
Reaction mechanism of superoxide generation during ubiquinol oxidation by the cytochrome bc1 complex.
In addition to its main functions of electron transfer and proton translocation, the cytochrome bc(1) complex (bc(1)) also catalyzes superoxide anion (O(2)(*)) generation upon oxidation of ubiquinol in the presence of molecular oxygen. The reaction mechanism of superoxide generation by bc(1) remains elusive. The maximum O(2)(*) generation activity is observed when the complex is inhibited by antimycin A or inactivated by heat treatment or proteinase K digestion. The fact that the cytochrome bc(1) complex with less structural integrity has higher O(2)(*)-generating activity encouraged us to speculate that O(2)(*) is generated inside the complex, perhaps in the hydrophobic environment of the Q(P) pocket through bifurcated oxidation of ubiquinol by transferring its two electrons to a high potential electron acceptor, iron-sulfur cluster, and a low potential heme b(L) or molecular oxygen. If this speculation is correct, then one should see more O(2)(*) generation upon oxidation of ubiquinol by a high potential oxidant, such as cytochrome c or ferricyanide, in the presence of phospholipid vesicles or detergent micelles than in the hydrophilic conditions, and this is indeed the case. The protein subunits, at least those surrounding the Q(P) pocket, may play a role either in preventing the release of O(2)(*) from its production site to aqueous environments or in preventing O(2) from getting access to the hydrophobic Q(P) pocket and might not directly participate in superoxide production. Topics: Animals; Anions; Electron Transport Complex III; Electrons; Endopeptidase K; Heme; Horses; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Models, Biological; Myocardium; Oxygen; Phospholipids; Superoxides; Ubiquinone | 2010 |
Tunneling effect in regeneration reaction of vitamin E by ubiquinol.
A kinetic study of the regeneration reaction of vitamin E by ubiquinol was carried out by means of double-mixing stopped-flow spectroscopy. A substantial deuterium kinetic-isotope effect was observed on the second-order rate constant and the activation energy. In the regeneration reaction of alpha-tocopherol, deuteration of ubiquinol increased and decreased the activation energy and the second-order rate constant by 6.1 kJ/mol and a factor of 18.3, respectively. From this result, it is considered that proton tunneling plays an important role in the regeneration reaction of vitamin E by ubiquinol. The conditions under which the tunneling effect becomes an important factor were discussed in conjunction of our experimental results. Topics: alpha-Tocopherol; Deuterium; Kinetics; Protons; Thermodynamics; Ubiquinone; Vitamin E | 2010 |
The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli.
Cytochrome bo(3) is the major respiratory oxidase located in the cytoplasmic membrane of Escherichia coli when grown under high oxygen tension. The enzyme catalyzes the 2-electron oxidation of ubiquinol-8 and the 4-electron reduction of dioxygen to water. When solubilized and isolated using dodecylmaltoside, the enzyme contains one equivalent of ubiquinone-8, bound at a high affinity site (Q(H)). The quinone bound at the Q(H) site can form a stable semiquinone, and the amino acid residues which hydrogen bond to the semiquinone have been identified. In the current work, it is shown that the tightly bound ubiquinone-8 at the Q(H) site is not displaced by ubiquinol-1 even during enzyme turnover. Furthermore, the presence of high affinity inhibitors, HQNO and aurachin C1-10, does not displace ubiquinone-8 from the Q(H) site. The data clearly support the existence of a second binding site for ubiquinone, the Q(L) site, which can rapidly exchange with the substrate pool. HQNO is shown to bind to a single site on the enzyme and to prevent formation of the stable ubisemiquinone, though without displacing the bound quinone. Inhibition of the steady state kinetics of the enzyme indicates that aurachin C1-10 may compete for binding with quinol at the Q(L) site while, at the same time, preventing formation of the ubisemiquinone at the Q(H) site. It is suggested that the two quinone binding sites may be adjacent to each other or partially overlap. Topics: Binding Sites; Binding, Competitive; Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Models, Biological; Molecular Structure; Mutagenesis, Site-Directed; Mutation; Oxidation-Reduction; Oxidoreductases; Oxygen; Protein Binding; Quinolones; Quinones; Substrate Specificity; Ubiquinone | 2010 |
An electronic bus bar lies in the core of cytochrome bc1.
The ubiquinol-cytochrome c oxidoreductases, central to cellular respiration and photosynthesis, are homodimers. High symmetry has frustrated resolution of whether cross-dimer interactions are functionally important. This has resulted in a proliferation of contradictory models. Here, we duplicated and fused cytochrome b subunits, and then broke symmetry by introducing independent mutations into each monomer. Electrons moved freely within and between monomers, crossing an electron-transfer bridge between two hemes in the core of the dimer. This revealed an H-shaped electron-transfer system that distributes electrons between four quinone oxidation-reduction terminals at the corners of the dimer within the millisecond time scale of enzymatic turnover. Free and unregulated distribution of electrons acts like a molecular-scale bus bar, a design often exploited in electronics. Topics: Bacterial Proteins; Cytochromes c; Electron Transport; Electron Transport Complex III; Electrons; Models, Molecular; Mutant Proteins; Oxidation-Reduction; Point Mutation; Protein Conformation; Protein Multimerization; Protein Subunits; Rhodobacter capsulatus; Ubiquinone | 2010 |
Ubiquinol-10 and ubiquinone-10 levels in umbilical cord blood of healthy foetuses and the venous blood of their mothers.
Despite their being good markers of oxidative stress for clinical use, little is known about ubiquinol-10 (reduced coenzyme Q10) and ubiquinone-10 (oxidized coenzyme Q10) levels in foetuses and their mothers. This study investigates oxidative stress in 10 healthy maternal venous, umbilical arterial and venous bloods after vaginal delivery by measuring ubiquinol-10 and ubiquinone-10 levels. Serum ubiquinol-10 and ubiquinone-10 levels were measured by HPLC with a highly sensitive electrochemical detector. Maternal venous ubiquinol-10 and ubiquinone-10 levels were significantly higher than umbilical arterial and venous levels (all p < 0.001). However, the ubiquinone-10/total coenzyme Q10 (CoQ10) ratio, which reflects the redox status, was significantly higher in umbilical arterial and umbilical venous blood compared to maternal venous blood (all p < 0.001). The ubiquinone-10/total CoQ10 ratio was higher in umbilical arterial than in umbilical venous blood (p < 0.01). The present study demonstrated that foetuses were under higher oxidative stress than their mothers. Topics: Adult; Chromatography, High Pressure Liquid; Cross-Sectional Studies; Female; Fetal Blood; Fetus; Humans; Mothers; Pregnancy; Ubiquinone; Young Adult | 2010 |
Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ENOX2).
ECTO-NOX proteins are growth-related cell surface proteins that catalyze both hydroquinone or NADH oxidation and protein disulfide interchange and exhibit time-keeping and prion-like properties. A bacterially expressed truncated recombinant 46 kDa ENOX2 with full ENOX2 activity bound ca 2 moles copper and 2 moles of zinc per mole of protein. Unfolding of the protein in trifluoroacetic acid in the presence of the copper chelator bathocuproine resulted in reversible loss of both enzymatic activities and of a characteristic pattern in the Amide I to Amide II ratios determined by FTIR with restoration by added copper. The H546-V-H together with His 562 form one copper binding site and H582 represents a second copper site as determined from site-directed mutagenesis. Bound copper emerges as having an essential role in ENOX2 both for enzymatic activity and for the structural changes that underly the periodic alternations in activity that define the time-keeping cycle of the protein. Topics: Binding Sites; Blotting, Western; Copper; Escherichia coli; Humans; Models, Biological; Mutagenesis, Site-Directed; NAD; NADH, NADPH Oxidoreductases; Oligonucleotides; Oxygen; Periodicity; Phenanthrolines; Protein Disulfide-Isomerases; Spectrophotometry, Infrared; Spectroscopy, Fourier Transform Infrared; Ubiquinone; Zinc | 2010 |
The reduced form of coenzyme Q10 mediates distinct effects on cholesterol metabolism at the transcriptional and metabolite level in SAMP1 mice.
Studies in humans and mice indicate a role for coenzyme Q(10) (CoQ(10)) in gene expression. To analyze this function in relation to metabolism, SAMP1 mice were supplemented with the reduced (ubiquinol) or oxidized (ubiquinone) form of CoQ(10) (500 mg/kg BW/d) for 14 months. Microarray analyses in liver tissues of SAMP1 mice identified 946 genes as differentially expressed between ubiquinol-treated and control animals (≥1.5-fold, P < 0.05). Text mining analyses revealed for a part of the ubiquinol-regulated genes, a functional connection in PPARα and LXR/RXR signalling pathways. Because these pathways are involved in cholesterol homeostasis, relevant metabolites were determined by gas chromatography/mass spectrometry (GC/MS). We found a significant increase of desmosterol (2.0-fold, P < 0.001) in the liver of ubiquinol-supplemented SAMP1 mice when related to control animals. In agreement, cholesterol concentrations were also distinctly increased (1.3-fold, P = 0.057). The Q(10)H(2)-induced PPARα and LXR/RXR gene expression signatures and effects on cholesterol metabolism were not apparent for the oxidized form of CoQ(10). In conclusion, the reduced form of CoQ(10) mediates distinct effects on cholesterol metabolism at the transcriptional and metabolite level in SAMP1 mice. Topics: Animals; Cholesterol; Desmosterol; Female; Gas Chromatography-Mass Spectrometry; Gene Expression Profiling; Liver; Mice; Oxidation-Reduction; PPAR alpha; Retinoid X Receptors; Ubiquinone | 2010 |
RegB kinase activity is controlled in part by monitoring the ratio of oxidized to reduced ubiquinones in the ubiquinone pool.
RegB is a membrane-spanning sensor kinase responsible for redox regulation of a wide variety of metabolic processes in numerous proteobacterial species. Here we show that full-length RegB purified from Escherichia coli membranes contains bound ubiquinone. Four conserved residues in the membrane-spanning domain of RegB are shown to have important roles in ubiquinone binding in vitro and redox sensing in vivo. Isothermal titration calorimetry measurements, coupled with kinase assays under oxidizing and reducing conditions, indicate that RegB weakly binds both oxidized ubiquinone and reduced ubiquinone (ubiquinol) with nearly equal affinity and that oxidized ubiquinone inhibits kinase activity without promoting a redox reaction. We propose a model in which ubiquinone/ubiquinol bound to RegB readily equilibrates with ubiquinones/ubiquinols in the membrane, allowing the kinase activity to be tuned by the redox state of the ubiquinone pool. This noncatalytic role of ubiquinone in controlling RegB activity is distinct from that of other known ubiquinone-binding proteins, which use ubiquinone as an electron donor or acceptor. Topics: Amino Acid Sequence; Bacterial Proteins; Escherichia coli; Models, Biological; Molecular Sequence Data; Oxidation-Reduction; Protein Binding; Protein Kinases; Recombinant Proteins; Sequence Alignment; Ubiquinone | 2010 |
Converting NADH to NAD+ by nicotinamide nucleotide transhydrogenase as a novel strategy against mitochondrial pathologies during aging.
Mitochondrial DNA defects are involved supposedly via free radicals in many pathologies including aging and cancer. But, interestingly, free radical production was not found increased in prematurely aging mice having higher mutation rate in mtDNA. Therefore, some other mechanisms like the increase of mitochondrial NADH/NAD(+) and ubiquinol/ubiquinone ratios, can be in action in respiratory chain defects. NADH/NAD(+) ratio can be normalized by the activation or overexpression of nicotinamide nucleotide transhydrogenase (NNT), a mitochondrial enzyme catalyzing the following very important reaction: NADH + NADP(+ )<--> NADPH + NAD(+). The products NAD(+) and NADPH are required in many critical biological processes, e.g., NAD(+) is used by histone deacetylase Sir2 which regulates longevity in different species. NADPH is used in a number of biosynthesis reactions (e.g., reduced glutathione synthesis), and processes like apoptosis. Increased ubiquinol/ubiquinone ratio interferes the function of dihydroorotate dehydrogenase, the only mitochondrial enzyme involved in ubiquinone mediated de novo pyrimidine synthesis. Uridine and its prodrug triacetyluridine are used to compensate pyrimidine deficiency but their bioavailability is limited. Therefore, the normalization of the ubiquinol/ubiquinone ratio can be accomplished by allotopic expression of alternative oxidase, a mitochondrial ubiquinol oxidase which converts ubiquinol to ubiquinone. Topics: Aging; Animals; Dihydroorotate Dehydrogenase; DNA Damage; DNA, Mitochondrial; Humans; Mice; Mitochondria; Mitochondrial Proteins; NAD; NADP Transhydrogenases; Oxidoreductases; Oxidoreductases Acting on CH-CH Group Donors; Plant Proteins; Ubiquinone | 2009 |
Reactivity of ubiquinone and ubiquinol with superoxide and the hydroperoxyl radical: implications for in vivo antioxidant activity.
Endogenous ubiquinones (UQ) such as coenzyme Q(10) are essential electron carriers in the mitochondrial respiratory chain, and the reduced ubiquinol form (UQH(2)) is a chain-breaking antioxidant, decreasing oxidative damage caused by lipid peroxidation within mitochondria. Consequently, exogenous UQ are used as therapies to decrease mitochondrial oxidative damage. The proximal radical produced during mitochondrial oxidative stress is superoxide (O(2)(.-)) and the reaction between UQ and O(2)(.-) to form the ubisemiquinone radical anion (UQ(.-)) may also be important for the scavenging of O(2)(.-) by exogenous UQ. The situation in vivo is that many UQ are predominantly located in the hydrophobic membrane core, from which O(2)(.-) will be excluded but its conjugate acid, HOO(.), can enter. The reactivity of UQ or UQH(2) with HOO(.) has not been reported previously. Here a pulse radiolysis study on the reactions between UQ/UQH(2) and O(2)(.-)/HOO(.) in water and in solvent systems mimicking the surface and core of biological membranes has been undertaken. O(2)(.-) reacts very rapidly with UQ, suggesting that this may contribute to the scavenging of O(2)(.-) in vivo. In contrast, UQH(2) reacts relatively slowly with HOO(.), but rapidly with other oxygen- and carbon-centered radicals, indicating that the antioxidant role of UQH(2) is mainly in preventing lipid peroxidation. Topics: Antioxidants; Cytoprotection; Electron Transport; Hydrogen Peroxide; Lipid Peroxidation; Mitochondria; Mitochondrial Membranes; Models, Chemical; Oxidative Stress; Pulse Radiolysis; Superoxides; Ubiquinone; Water | 2009 |
The Electron Transfer Pathway of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae.
The Na(+)-pumping NADH:quinone oxidoreductase (Na(+)-NQR) is the only respiratory enzyme that operates as a Na(+) pump. This redox-driven Na(+) pump is amenable to experimental approaches not available for H(+) pumps, providing an excellent system for mechanistic studies of ion translocation. An understanding of the internal electron transfer steps and their Na(+) dependence is an essential prerequisite for such studies. To this end, we analyzed the reduction kinetics of the wild type Na(+)-NQR, as well as site-directed mutants of the enzyme, which lack specific cofactors. NADH and ubiquinol were used as reductants in separate experiments, and a full spectrum UV-visible stopped flow kinetic method was employed. The results make it possible to define the complete sequence of redox carriers in the electrons transfer pathway through the enzyme. Electrons flow from NADH to quinone through the FAD in subunit F, the 2Fe-2S center, the FMN in subunit C, the FMN in subunit B, and finally riboflavin. The reduction of the FMN(C) to its anionic flavosemiquinone state is the first Na(+)-dependent process, suggesting that reduction of this site is linked to Na(+) uptake. During the reduction reaction, two FMNs are transformed to their anionic flavosemiquinone in a single kinetic step. Subsequently, FMN(C) is converted to the flavohydroquinone, accounting for the single anionic flavosemiquinone radical in the fully reduced enzyme. A model of the electron transfer steps in the catalytic cycle of Na(+)-NQR is presented to account for the kinetic and spectroscopic data. Topics: Bacterial Proteins; Cation Transport Proteins; Electron Transport; Electron Transport Complex I; Flavin Mononucleotide; Flavin-Adenine Dinucleotide; Kinetics; Mutagenesis, Site-Directed; Mutation, Missense; NAD; Oxidation-Reduction; Sodium; Spectrophotometry, Ultraviolet; Ubiquinone; Vibrio cholerae | 2009 |
The rate-limiting step in the cytochrome bc1 complex (Ubiquinol-Cytochrome c Oxidoreductase) is not changed by inhibition of cytochrome b-dependent deprotonation: implications for the mechanism of ubiquinol oxidation at center P of the bc1 complex.
Quinol oxidation at center P of the cytochrome bc(1) complex involves bifurcated electron transfer to the Rieske iron-sulfur protein and cytochrome b. It is unknown whether both electrons are transferred from the same domain close to the Rieske protein, or if an unstable semiquinone anion intermediate diffuses rapidly to the vicinity of the b(L) heme. We have determined the pre-steady state rate and activation energy (E(a)) for quinol oxidation in purified yeast bc(1) complexes harboring either a Y185F mutation in the Rieske protein, which decreases the redox potential of the FeS cluster, or a E272Q cytochrome b mutation, which eliminates the proton acceptor in cytochrome b. The rate of the bifurcated reaction in the E272Q mutant (<10% of the wild type) was even lower than that of the Y185F enzyme ( approximately 20% of the wild type). However, the E272Q enzyme showed the same E(a) (61 kJ mol(-1)) with respect to the wild type (62 kJ mol(-1)), in contrast with the Y185F mutation, which increased E(a) to 73 kJ mol(-1). The rate and E(a) of the slow reaction of quinol with oxygen that are observed after cytochrome b is reduced were unaffected by the E272Q substitution, whereas the Y185F mutation modified only its rate. The Y185F/E272Q double mutation resulted in a synergistic decrease in the rate of quinol oxidation (0.7% of the wild type). These results are inconsistent with a sequential "movable semiquinone" mechanism but are consistent with a model in which both electrons are transferred simultaneously from the same domain in center P. Topics: Amino Acid Substitution; Cytochromes b; Electron Transport Complex III; Electrons; Kinetics; Mutation; Oxidation-Reduction; Protons; Saccharomyces cerevisiae; Thermodynamics; Ubiquinone | 2009 |
Theoretical analysis of the unusual temperature dependence of the kinetic isotope effect in quinol oxidation.
In this paper we present theoretical calculations on model biomimetic systems for quinol oxidation. In these model systems, an excited-state [Ru(bpy)(2)(pbim)](+) complex (bpy = 2,2'-dipyridyl, pbim = 2-(2-pyridyl)benzimidazolate) oxidizes a ubiquinol or plastoquinol analogue in acetonitrile. The charge transfer reaction occurs via a proton-coupled electron transfer (PCET) mechanism, in which an electron is transferred from the quinol to the Ru and a proton is transferred from the quinol to the pbim(-) ligand. The experimentally measured average kinetic isotope effects (KIEs) at 296 K are 1.87 and 3.45 for the ubiquinol and plastoquinol analogues, respectively, and the KIE decreases with temperature for plastoquinol but increases with temperature for ubiquinol. The present calculations provide a possible explanation for the differences in magnitudes and temperature dependences of the KIEs for the two systems and, in particular, an explanation for the unusual inverse temperature dependence of the KIE for the ubiquinol analogue. These calculations are based on a general theoretical formulation for PCET reactions that includes quantum mechanical effects of the electrons and transferring proton, as well as the solvent reorganization and proton donor-acceptor motion. The physical properties of the system that enable the inverse temperature dependence of the KIE are a stiff hydrogen bond, which corresponds to a high-frequency proton donor-acceptor motion, and small inner-sphere and solvent reorganization energies. The inverse temperature dependence of the KIE may be observed if the 0/0 pair of reactant/product vibronic states is in the inverted Marcus region, while the 0/1 pair of reactant/product vibronic states is in the normal Marcus region and is the dominant contributor to the overall rate. In this case, the free energy barrier for the dominant transition is lower for deuterium than for hydrogen because of the smaller splittings between the vibronic energy levels for deuterium, and the KIE increases with increasing temperature. The temperature dependence of the KIE is found to be very sensitive to the interplay among the driving force, the reorganization energy, and the vibronic coupling in this regime. Topics: 2,2'-Dipyridyl; Benzimidazoles; Biomimetic Materials; Hydrogen Bonding; Hydroquinones; Kinetics; Models, Chemical; Organometallic Compounds; Oxidation-Reduction; Plastoquinone; Ruthenium; Temperature; Thermodynamics; Ubiquinone | 2009 |
Toward a rational design of multitarget-directed antioxidants: merging memoquin and lipoic acid molecular frameworks.
Novel multitargeted antioxidants 3-6 were designed by combining the antioxidant features, namely, a benzoquinone fragment and a lipoyl function, of two multifunctional lead candidates. They were then evaluated to determine their profile against Alzheimer's disease. They showed antioxidant activity, improved following enzymatic reduction, in mitochondria and T67 cell line. They also displayed a balanced inhibitory profile against amyloid-beta aggregation and acetylcholinesterase, emerging as promising molecules for neuroprotectant lead discovery. Topics: Alkanes; Alzheimer Disease; Amyloid beta-Peptides; Antioxidants; Cell Line, Tumor; Drug Design; Electron Transport; Ethylamines; Humans; Ligands; Protein Binding; Reactive Oxygen Species; Submitochondrial Particles; Thioctic Acid; Ubiquinone | 2009 |
Validation and application of an HPLC-EC method for analysis of coenzyme Q10 in blood platelets.
Previous studies have indicated that analysis of coenzyme Q10 (CoQ10) in platelets may be clinically useful. The study objectives are to describe, validate and provide application of an HPLC-EC method for platelet CoQ10 analysis. This method analyzes oxidized (ubiquinone-10) and reduced (ubiquinol-10) forms of CoQ10 using two separate injections with the electrochemical analytical cell set at neutral and oxidizing potentials. Results showed that chromatograms were free of interfering peaks. Calibration curves were constructed over a concentration range 116-2317 nmol/L (r(2) = 0.99). The extraction recovery was >95%. The within-run precision CV% was < or =4.2%, and the day-to-day precision was < or =9.9%. Platelets were isolated by differential centrifugation, and frozen at -70 degrees C until analysis. The application of the method was used to compare accumulation of CoQ10 in platelets vs plasma in eight adult volunteers during a 28 day supplementation period (5 mg/kg/day of ubiquinol-10). Mean platelet total CoQ10 was 164 pmol/10(9) cells, and ubiquinol-10:total CoQ10 ratio was 0.56. During supplementation platelet CoQ10 levels were more consistent and predictable than plasma CoQ10 levels. The results indicate that this validated method for platelet ubiquinol-10 and ubiquinone-10 analysis is acceptable for use in the clinical laboratory, and that platelet CoQ10 may have important advantages over plasma during CoQ10 supplementation. Topics: Blood Platelets; Chromatography, High Pressure Liquid; Humans; Reproducibility of Results; Ubiquinone | 2008 |
Characterization of mutations in crucial residues around the Q(o) binding site of the cytochrome bc complex from Paracoccus denitrificans.
The protonation state of residues around the Q(o) binding site of the cytochrome bc(1) complex from Paracoccus denitrificans and their interaction with bound quinone(s) was studied by a combined electrochemical and FTIR difference spectroscopic approach. Site-directed mutations of two groups of conserved residues were investigated: (a) acidic side chains located close to the surface and thought to participate in a water chain leading up to the heme b(L) edge, and (b) residues located in the vicinity of this site. Interestingly, most of the mutants retain a high degree of catalytic activity. E295Q, E81Q and Y297F showed reduced stigmatellin affinity. On the basis of electrochemically induced FTIR difference spectra, we suggest that E295 and D278 are protonated in the oxidized form or that their mutation perturbs protonated residues. Mutations Y302, Y297, E81 and E295, directly perturb signals from the oxidized quinone and of the protein backbone. By monitoring the interaction with the inhibitor stigmatellin for the wild-type enzyme at various redox states, interactions of the bound stigmatellin with amino acid side chains such as protonated acidic residues and the backbone were observed, as well as difference signals arising from the redox active inhibitor itself and the replaced quinone. The infrared difference spectra of the above Q(o) site mutations in the presence of stigmatellin confirm the previously established role of E295 as a direct interaction partner in the enzyme from P.denitrificans as well. The protonated residue E295 is proposed to change the hydrogen-bonding environment upon stigmatellin binding in the oxidized form, and is deprotonated in the reduced form. Of the residues located close to the surface, D278 remains protonated and unperturbed in the oxidized form but its frequency shifts in the reduced form. The mechanistic implications of our observations are discussed, together with previous inhibitor binding data, and referred to the published X-ray structures. Topics: Binding Sites; Electron Transport Complex III; Mutagenesis, Site-Directed; Oxidation-Reduction; Paracoccus denitrificans; Polyenes; Spectroscopy, Fourier Transform Infrared; Tyrosine; Ubiquinone | 2008 |
High-sensitivity simultaneous analysis of ubiquinol-10 and ubiquinone-10 in human plasma.
A method to determine ubiquinol-10 and ubiquinone-10 in human serum was developed by using high-performance liquid chromatography consisting of a semi-microcolumn switching system and an electrochemical detector (ECD), which requires minimized sample pre-treatments. A linear dynamic range was obtained from 1.0 to 5000 ng/mL, and recovery values of 89-105% were observed in a low-concentration region of 10-50 ng/mL. In a long operation test, a good precision was maintained during 5100 runs without any maintenance on ECD or columns. In addition, retention behaviors of other ubiquinone homologues were examined. Topics: Chromatography, High Pressure Liquid; Electrochemistry; Humans; Reproducibility of Results; Sensitivity and Specificity; Ubiquinone | 2008 |
The fully oxidized form of the cytochrome bd quinol oxidase from E. coli does not participate in the catalytic cycle: direct evidence from rapid kinetics studies.
Cytochrome bd catalyzes the two-electron oxidation of either ubiquinol or menaquinol and the four-electron reduction of O(2) to H(2)O. In the current work, the rates of reduction of the fully oxidized and oxoferryl forms of the enzyme by the 2-electron donor ubiquinol-1 and single electron donor N,N,N',N'-tetramethyl-p-phenylendiamine (TMPD) have been examined by stopped-flow techniques. Reduction of the all-ferric form of the enzyme is 1000-fold slower than required for a step in the catalytic cycle, whereas the observed rates of reduction of the oxoferryl and singly-reduced forms of the cytochrome are consistent with the catalytic turnover. The data support models of the catalytic cycle which do not include the fully oxidized form of the enzyme as an intermediate. Topics: Catalysis; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Kinetics; Models, Molecular; Oxidation-Reduction; Oxidoreductases; Tetramethylphenylenediamine; Ubiquinone | 2008 |
Mechanism on two-electron oxidation of ubiquinol at the Qp site in cytochrome bc1 complex: B3LYP study with broken symmetry.
The molecular and electronic structures of the Rieske iron-sulfur [2Fe-2S] cluster with an imidazolate and imidazole were investigated by using usual unrestricted and broken symmetry B3LYP methods for the highest and lowest spin states, respectively. The electronic structures of the lowest spin states were determined by the spin contaminations and natural orbital analyses. It was shown that the spin contamination presents the number of pairs of the antiferromagnetic spin couplings. The oxidation mechanism of the ubquinol at the Q(p) site of the cytochrome bc(1) complex was also examined by the broken symmetry B3LYP methods. In the [2Fe-2S] clusters with an imidazolate, the oxidized and lowest spin state, [(Imz(-))FeS](ox)LS, was lowest in energy among four possible states, consistent with experimental observations. In the examination of the mechanism of the ubquinol oxidation, it was confirmed that the ubiquinol docks between the imidazolate of [2Fe-2S] clusters and Glu272(-) of cytochrome b by the hydrogen bonds before the oxidation proceeds, consistent with the experimental proposals. Our results support a "Glu272-first" mechanism that Glu272 serves as an acceptor of the first proton from the ubiquinol and subsequently the proton-coupled electron transfer (PCET) occurs from the ubisemiquinone anion to the Rieske iron-sulfur [2Fe-2S] cluster. Topics: Crystallography, X-Ray; Electron Transport Complex III; Electrons; Hydrogen Bonding; Models, Molecular; Oxidation-Reduction; Protein Conformation; Ubiquinone | 2008 |
Comparison between the free-radical-scavenging activities with vitamin E and ubiquinol in biological systems based on their reaction rates: a research account.
Detailed kinetic studies have been performed for the reaction of aroxyl (ArO.) radical with vitamin E (alpha-, beta-, gamma-, delta-tocopherol, TocH), ubiquinol-10, and related antioxidants in micellar solution, using a stopped-flow spectrophotometer. The second-order reaction rates (ks) obtained increased in the order of hydroquinone < tocol Topics: Animals; Free Radical Scavengers; Humans; Hydrogen-Ion Concentration; Lipid Peroxidation; Mice; Micelles; Peroxides; Ubiquinone; Vitamin E | 2008 |
Voltammetric characterization of the aerobic energy-dissipating nitrate reductase of Paracoccus pantotrophus: exploring the activity of a redox-balancing enzyme as a function of electrochemical potential.
Paracoccus pantotrophus expresses two nitrate reductases associated with respiratory electron transport, termed NapABC and NarGHI. Both enzymes derive electrons from ubiquinol to reduce nitrate to nitrite. However, while NarGHI harnesses the energy of the quinol/nitrate couple to generate a transmembrane proton gradient, NapABC dissipates the energy associated with these reducing equivalents. In the present paper we explore the nitrate reductase activity of purified NapAB as a function of electrochemical potential, substrate concentration and pH using protein film voltammetry. Nitrate reduction by NapAB is shown to occur at potentials below approx. 0.1 V at pH 7. These are lower potentials than required for NarGH nitrate reduction. The potentials required for Nap nitrate reduction are also likely to require ubiquinol/ubiquinone ratios higher than are needed to activate the H(+)-pumping oxidases expressed during aerobic growth where Nap levels are maximal. Thus the operational potentials of P. pantotrophus NapAB are consistent with a productive role in redox balancing. A Michaelis constant (K(M)) of approx. 45 muM was determined for NapAB nitrate reduction at pH 7. This is in line with studies on intact cells where nitrate reduction by Nap was described by a Monod constant (K(S)) of less than 15 muM. The voltammetric studies also disclosed maximal NapAB activity in a narrow window of potential. This behaviour is resistant to change of pH, nitrate concentration and inhibitor concentration and its possible mechanistic origins are discussed. Topics: Catalysis; Dimerization; Electrochemistry; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Nitrate Reductase; Nitrates; Oxidation-Reduction; Paracoccus pantotrophus; Potentiometry; Spectrophotometry; Substrate Specificity; Ubiquinone | 2008 |
A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria.
Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines. Topics: Antioxidants; Biochemistry; Cations; Chromatography, High Pressure Liquid; Cyclic N-Oxides; Electron Spin Resonance Spectroscopy; Hydroxylamine; Mass Spectrometry; Mitochondria; Models, Chemical; Nitric Oxide; Oxidative Stress; Spin Labels; Superoxides; Time Factors; Ubiquinone | 2008 |
Formation of engineered intersubunit disulfide bond in cytochrome bc1 complex disrupts electron transfer activity in the complex.
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with beta-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b. Topics: Anti-Bacterial Agents; Binding Sites; Cysteine; Cytochromes c1; Disulfides; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Mercaptoethanol; Models, Molecular; Mutation; Oxidation-Reduction; Photosynthesis; Polyenes; Protein Binding; Protein Conformation; Protein Engineering; Protein Subunits; Rhodobacter sphaeroides; Sulfhydryl Reagents; Ubiquinone | 2008 |
Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
We have examined the pre-steady-state kinetics and thermodynamic properties of the b hemes in variants of the yeast cytochrome bc1 complex that have mutations in the quinone reductase site (center N). Trp-30 is a highly conserved residue, forming a hydrogen bond with the propionate on the high potential b heme (bH heme). The substitution by a cysteine (W30C) lowers the redox potential of the heme and an apparent consequence is a lower rate of electron transfer between quinol and heme at center N. Leu-198 is also in close proximity to the b(H) heme and a L198F mutation alters the spectral properties of the heme but has only minor effects on its redox properties or the electron transfer kinetics at center N. Substitution of Met-221 by glutamine or glutamate results in the loss of a hydrophobic interaction that stabilizes the quinone ligands. Ser-20 and Gln-22 form a hydrogen-bonding network that includes His-202, one of the carbonyl groups of the ubiquinone ring, and an active-site water. A S20T mutation has long-range structural effects on center P and thermodynamic effects on both b hemes. The other mutations (M221E, M221Q, Q22E and Q22T) do not affect the ubiquinol oxidation kinetics at center P, but do modify the electron transfer reactions at center N to various extents. The pre-steady reduction kinetics suggest that these mutations alter the binding of quinone ligands at center N, possibly by widening the binding pocket and thus increasing the distance between the substrate and the bH heme. These results show that one can distinguish between the contribution of structural and thermodynamic factors to center N function. Topics: Amino Acid Sequence; Binding Sites; Cytochromes b; Cytochromes c; Electron Transport; Electron Transport Complex III; Heme; Kinetics; Ligands; Mitochondria; Models, Molecular; Molecular Sequence Data; Mutation; Oxidation-Reduction; Protein Binding; Protein Conformation; Proton-Motive Force; Quinone Reductases; Thermodynamics; Ubiquinone; Yeasts | 2008 |
Purification of Saccharomyces cerevisiae mitochondria by zone electrophoresis in a free flow device.
This chapter describes the isolation of yeast mitochondria by differential centrifugation followed by mitochondrial purification through zone electrophoresis (ZE) using a free flow device (FFE). Starting from a yeast colony, cultures are grown under respiratory conditions to logarithmic phase. Cells are collected, their cell walls enzymatically disintegrated and the resulting spheroplasts are homogenized. Mitochondria are pre-fractionated from this homogenate by differential centrifugation. With the focus on further purification, pre-fractionated mitochondria are subjected to ZE-FFE. In ZE-FFE, mitochondria are transported with the buffer flow through the separation chamber and purified from contaminants by specific deflection through a perpendicularly oriented electric field. The purified mitochondria can be collected by centrifugation and used for further experiments and analysis such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), immunoblotting, 2-DE or electron microscopy. Topics: Adenosine Triphosphatases; Animals; Carrier Proteins; Centrifugation; Electron Transport Complex III; Electron Transport Complex IV; Horses; Immunoblotting; Membrane Proteins; Mitochondria; Mitochondrial Proton-Translocating ATPases; Mutation; Oxidative Phosphorylation; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Ubiquinone | 2008 |
Redox-state dynamics of ubiquinone-10 imply cooperative regulation of photosynthetic membrane expression in Rhodospirillum rubrum.
It is now well established that, for photosynthetic bacteria, the aerobic-to-microaerophilic transition activates the membrane-bound sensor kinase RegB, which subsequently phosphorylates the transcriptional activator RegA, thereby inducing elevated levels of intracellular photosynthetic membranes. The mechanism of RegB activation--in particular, the role of ubiquinone-10--is controversial at present. One problem here is that very limited quantitative in vivo data for the response of the ubiquinone redox state to different cultivation conditions exist. Here, we utilize Rhodospirillum rubrum to study the correlation of the quinone redox state to the expression level of photosynthetic membranes and determine an effective response function directly. Our results show that changes in the photosynthetic membrane levels between 50 and 95% of that maximally attainable are associated with only a twofold change in the ubiquinol/ubiquinone ratio and are not necessarily proportional to the total levels of either quinone or [NAD(+) + NADH]. There is no correlation between the redox potentials of the quinone and pyridine nucleotide pools. Hill function analysis of the photosynthetic membrane induction in response to the quinone redox state suggests that the induction process is highly cooperative. Our results are probably generally applicable to quinone redox regulation in bacteria. Topics: Aerobiosis; Bacterial Proteins; Cell Membrane; Chromatography, High Pressure Liquid; Light-Harvesting Protein Complexes; Mass Spectrometry; NAD; NADP; Oxidation-Reduction; Photosynthesis; Rhodospirillum rubrum; Ubiquinone | 2008 |
Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model.
The feasibility of using a coupled in vitro digestion-Caco-2 cell uptake as a model for examining the digestive stability and absorption of coenzyme Q10 (CoQ10) from a variety of commercially available CoQ10 products was examined. The products were first subjected to simulated digestion to mimic their passage through the GI tract to generate micelles containing CoQ10, and the micelle fractions added to monolayers of Caco-2 cells to determine CoQ10 uptake. The data demonstrate enhanced uptake of CoQ10 from formulations containing solubilized forms of CoQ10 and also from a CoQ10-gamma-cyclodextrin complex as compared with pure CoQ10 powder or tablets based on CoQ10 powder. The CoQ10 uptake by the cells was correlated with the extent of micellarization of CoQ10 during simulated digestion. Most of CoQ10 taken up by the cells was converted to ubiquinol either during or following uptake. The data also indicate a correlation between in vitro dissolution of CoQ10 products and uptake of CoQ10 by Caco-2 cells. Thus, this study demonstrates the utility of coupled in vitro digestion-Caco-2 cell model as a cost-effective screening tool that will provide useful information for the optimal design of human trials to assess the bioavailability of CoQ10 and also other bioactive compounds. Topics: Biological Availability; Biotransformation; Caco-2 Cells; Chemistry, Pharmaceutical; Coenzymes; Digestion; Drug Stability; Excipients; Feasibility Studies; gamma-Cyclodextrins; Humans; Intestinal Absorption; Intestinal Mucosa; Micelles; Powders; Solubility; Tablets; Time Factors; Ubiquinone; Vitamins | 2007 |
Mutational analysis of cytochrome b at the ubiquinol oxidation site of yeast complex III.
The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279. Substitution of Phe129 by lysine or arginine yielded a respiration-deficient phenotype and lipid-dependent catalytic activity. Increased bypass reactions were detectable for both variants, with F129K showing the more severe effects. Substitution with lysine leads to a disturbed coordination of a b heme as deduced from changes in the midpoint potential and the EPR signature. Removal of the aromatic side chain in position Tyr279 lowers the catalytic activity accompanied by a low level of bypass reactions. Pre-steady-state kinetics of the enzymes modified at Glu272 and Tyr132 confirmed the importance of their functional groups for electron transfer. Altered center N kinetics and activation of ubiquinol oxidation by binding of cytochrome c in the Y132F and E272D enzymes indicate long range effects of these mutations. Topics: Aspartic Acid; Binding Sites; Crystallization; Cytochromes b; Cytochromes c; DNA Mutational Analysis; Electron Transport Complex III; Enzyme Activation; Enzyme Stability; Glutamic Acid; Kinetics; Mutagenesis, Site-Directed; Oxidation-Reduction; Phenylalanine; Saccharomyces cerevisiae; Tyrosine; Ubiquinone | 2007 |
Solution structure of the Rhodobacter sphaeroides PufX membrane protein: implications for the quinone exchange and protein-protein interactions.
PufX membrane protein is found in Rhodobacter species of purple photosynthetic bacteria and has been known to play an essential role in ubiquinone/ubiquinol exchange between the reaction center and cytochrome bc1 complex and also contribute to the dimerization of the reaction center-light-harvesting core complex. We have determined the solution structure of the Rhodobacter sphaeroides PufX using multidimensional NMR spectroscopy. The PufX, functionally expressed in Escherichia coli, forms a stable alpha helix consisting of 21 residues over the central transmembrane domain. The overall structure of the PufX is very similar to those of the LH1 alpha- and beta-polypeptides from Rhodospirillum rubrum and LH2 polypeptides. A short segment (Lys28-Gly35) rich in Gly and Ala residues revealed a relatively fast exchange between the backbone amide protons and deuteriums in the hydroxyl groups of the solvent, indicating that the backbone of this segment is more easily accessible to the surrounding solvent molecules compared to those of its neighboring portions. The Gly- and Ala-rich segment is located in the middle of the central helix and forms an extensive groove-like conformation on the surface with the neighboring residues, where the residues with large side chains are aligned on one side of the helix, and small residues are aligned on the other face. Such a structural motif may serve as a functional site responsible for ubiquinol transport from the core complex to the membrane phase and for sequence-specific helix-helix interactions with the neighboring polypeptides. Topics: Amino Acid Motifs; Bacterial Proteins; Biological Transport; Light-Harvesting Protein Complexes; Membrane Proteins; Models, Molecular; Protein Structure, Tertiary; Recombinant Proteins; Rhodobacter sphaeroides; Ubiquinone | 2007 |
Simultaneous reduction of iron-sulfur protein and cytochrome b(L) during ubiquinol oxidation in cytochrome bc(1) complex.
The key step of the protonmotive Q-cycle mechanism of the cytochrome bc(1) complex is the bifurcated oxidation of ubiquinol at the Qp site. It was postulated that the iron-sulfur protein (ISP) accepts the first electron from ubiquinol to generate ubisemiquinone anion to reduce b(L). Because of the difficulty of following the reduction of ISP optically, direct evidence for the early involvement of ISP in ubiquinol oxidation is not available. Using the ultra-fast microfluidic mixer and the freeze-quenching device, coupled with EPR, we have been able to determine the presteady-state kinetics of ISP and cytochrome b(L) reduction by ubiquinol. The first-phase reduction of ISP starts as early as 100 micros with a t(1/2) of 250 micros. A similar reduction kinetic is also observed for cytochrome b(L), indicating a simultaneous reduction of both ISP and b(L). These results are consistent with the fact that no ubisemiquinone was detected at the Qp site during oxidation of ubiquinol. Under the same conditions, by using stopped flow, the reduction rates of cytochromes b(H) and c(1) were 403 s(-1) (t(1/2) 1.7 ms) and 164 s(-1) (t(1/2) 4.2 ms), respectively. Topics: Animals; Cattle; Coenzymes; Cytochromes b; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Heme; Iron-Sulfur Proteins; Kinetics; Microfluidics; Oxidation-Reduction; Proton-Motive Force; Time Factors; Ubiquinone | 2007 |
Specific and rapid analysis of ubiquinones using Craven's reaction and HPLC with postcolumn derivatization.
A new method for the analysis of ubiquinones in various samples was developed using an HPLC system with postcolumn derivatization. Craven's reaction, a specific color reaction for the analysis of ubiquinones, was used in the system. Because the reaction progressed in organic solvents that contained ubiquinones and ethylcyanoacetate under an alkaline condition, the selectivity for ubiquinone detection was higher than that for ubiquinone detection using the nonderivatized ultraviolet detection system at 275 nm, a system widely used for the analysis of ubiquinones. The new detection system can avoid the adverse effects of impurities. Furthermore, it can confirm specificity by stopping the color reaction under a neutral condition. The detection limit for ubiquinone-10 was 1 ng (1.2 pmol). A good linearity for the calibration curve was observed in the range of 11.7 pmol to 11.7 nmol. To investigate the possible application of this method, various samples, such as soybean capsules used as a dietary supplement and biological materials (rice as well as bovine plasma and liver samples), were applied to the system and their ubiquinone contents were quantified. This method is thought to be widely and conveniently applicable for determining the level of ubiquinones because of its high selectivity for ubiquinone detection. Topics: Animals; Cattle; Chromatography, High Pressure Liquid; Glycine max; Liver; Oryza; Ubiquinone | 2007 |
Ab initio calculation of proton-coupled electron transfer rates using the external-potential representation: a ubiquinol complex in solution.
In quantum-mechanical/molecular-mechanical (QM/MM) treatment of chemical reactions in condensed phases, one solves the electronic Schrodinger equation for the solute (or an active site) under the electrostatic field from the environment. This Schrodinger equation depends parametrically on the solute nuclear coordinates R and the external electrostatic potential V. This fact suggests that one may use R and V as natural collective coordinates for describing the entire system, where V plays the role of collective solvent variables. In this paper such an (R,V) representation of the QM/MM canonical ensemble is described, with particular focus on how to treat charge transfer processes in this representation. As an example, the above method is applied to the proton-coupled electron transfer of a ubiquinol analog with phenoxyl radical in acetonitrile solvent. Ab initio free-energy surfaces are calculated as functions of R and V using the reference interaction site model self-consistent field method, the equilibrium points and the minimum free-energy crossing point are located in the (R,V) space, and then the kinetic isotope effects (KIEs) are evaluated approximately. The results suggest that a stiffer proton potential at the transition state may be responsible for unusual KIEs observed experimentally for related systems. Topics: Electron Transport; Electrons; Kinetics; Models, Chemical; Models, Molecular; Molecular Conformation; Protons; Quantum Theory; Solvents; Thermodynamics; Ubiquinone | 2007 |
On the biologic role of the reaction of NO with oxidized cytochrome c oxidase.
The inhibition of cytochrome c oxidase (CcOX) by nitric oxide (NO) is analyzed with a mathematical model that simulates the metabolism in vivo. The main results were the following: (a) We derived novel equations for the catalysis of CcOX that can be used to predict CcOX inhibition in any tissue for any [NO] or [O(2)]; (b) Competitive inhibition (resulting from the reversible binding of NO to reduced CcOX) emerges has the sole relevant component of CcOX inhibition under state 3 in vivo; (c) In state 4, contribution of uncompetitive inhibition (resulting from the reaction of oxidized CcOX with NO) represents a significant nonmajority fraction of inhibition, being favored by high [O(2)]; and (d) The main biologic role of the reaction between NO and oxidized CcOX is to consume NO. By reducing [NO], this reaction stimulates, rather than inhibits, respiration. Finally, we propose that the biologic role of NO as an inhibitor of CcOX is twofold: in state 4, it avoids an excessive buildup of mitochondrial membrane potential that triggers rapid production of oxidants, and in state 3, increases the efficiency of oxidative phosphorylation by increasing the ADP/O ratio, supporting the therapeutic use of NO in situations in which mitochondria are dysfunctional. Topics: Catalysis; Electron Transport Complex IV; Nitric Oxide; Oxidation-Reduction; Ubiquinone | 2007 |
The farnesyl-diphosphate/geranylgeranyl-diphosphate synthase of Toxoplasma gondii is a bifunctional enzyme and a molecular target of bisphosphonates.
Farnesyl-diphosphate synthase (FPPS) catalyzes the synthesis of farnesyl diphosphate, an important precursor of sterols, dolichols, ubiquinones, and prenylated proteins. We report the cloning and characterization of two Toxoplasma gondii farnesyl-diphosphate synthase (TgFPPS) homologs. A single genetic locus produces two transcripts, TgFPPS and TgFPPSi, by alternative splicing. Both isoforms were heterologously expressed in Escherichia coli, but only TgFPPS was active. The protein products predicted from the nucleotide sequences have 646 and 605 amino acids and apparent molecular masses of 69.5 and 64.5 kDa, respectively. Several conserved sequence motifs found in other prenyl-diphosphate synthases are present in both TgFPPSs. TgFPPS was also expressed in the baculovirus system and was biochemically characterized. In contrast to the FPPS of other eukaryotic organisms, TgFPPS is bifunctional, catalyzing the formation of both farnesyl diphosphate and geranylgeranyl diphosphate. TgFPPS localizes to the mitochondria, as determined by the co-localisation of the affinity-purified antibodies against the protein with MitoTracker, and in accord with the presence of an N-terminal mitochondria-targeting signal in the protein. This enzyme is an attractive target for drug development, because the order of inhibition of the enzyme by a number of bisphosphonates is the same as that for inhibition of parasite growth. In summary, we report the first bifunctional farnesyl-diphosphate/geranylgeranyl-diphosphate synthase identified in eukaryotes, which, together with previous results, establishes this enzyme as a valid target for the chemotherapy of toxoplasmosis. Topics: Alternative Splicing; Amino Acid Motifs; Amino Acid Sequence; Animals; Baculoviridae; Bone Density Conservation Agents; Catalysis; Cloning, Molecular; Diphosphates; Diphosphonates; Diterpenes; Dolichols; Drug Design; Enzyme Inhibitors; Escherichia coli; Farnesyltranstransferase; Gene Expression; Gene Expression Regulation, Enzymologic; Geranyltranstransferase; Isoenzymes; Molecular Sequence Data; Polyisoprenyl Phosphates; Protein Prenylation; Protozoan Proteins; Quantitative Trait Loci; Recombinant Proteins; Sesquiterpenes; Sterols; Toxoplasma; Toxoplasmosis; Ubiquinone | 2007 |
Mass spectrometric analysis of the ubiquinol-binding site in cytochrome bd from Escherichia coli.
Cytochrome bd is a heterodimeric terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli. For understanding the unique catalytic mechanism of the quinol oxidation, mass spectrometry was used to identify amino acid residue(s) that can be labeled with a reduced form of 2-azido-3-methoxy-5-methyl-6-geranyl-1,4-benzoquinone or 2-methoxy-3-azido-5-methyl-6-geranyl-1,4-benzoquinone. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry demonstrated that the photo inactivation of ubiquinol-1 oxidase activity was accompanied by the labeling of subunit I with both azidoquinols. The cross-linked domain was identified by reverse-phase high performance liquid chromatography of subunit I peptides produced by in-gel double digestion with lysyl endopeptidase and endoproteinase Asp-N. Electrospray ionization quadrupole time-of-flight mass spectrometry determined the amino acid sequence of the peptide (m/z 1047.5) to be Glu(278)-Lys(283), where a photoproduct of azido-Q(2) was linked to the carboxylic side chain of I-Glu(280). This study demonstrated directly that the N-terminal region of periplasmic loop VI/VII (Q-loop) is a part of the quinol oxidation site and indicates that the 2- and 3-methoxy groups of the quinone ring are in the close vicinity of I-Glu(280). Topics: Amino Acid Sequence; Binding Sites; Chromatography, High Pressure Liquid; Cytochrome b Group; Cytochromes; Dimerization; Electron Transport Chain Complex Proteins; Electrons; Endopeptidases; Escherichia coli; Escherichia coli Proteins; Glutamic Acid; Ligands; Light; Lysine; Mass Spectrometry; Metalloendopeptidases; Models, Chemical; Molecular Sequence Data; Oxidoreductases; Peptides; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Sequence Homology, Amino Acid; Spectrometry, Mass, Electrospray Ionization; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Time Factors; Ubiquinone; Ultraviolet Rays | 2006 |
Probing the ubiquinol-binding site in cytochrome bd by site-directed mutagenesis.
To probe the structure of the quinol oxidation site in loop VI/VII of the Escherichia coli cytochrome bd, we substituted three conserved residues (Gln249, Lys252, and Glu257) in the N-terminal region and three glutamates (Glu278, Glu279, and Glu280) in the first internal repeat. We found that substitutions of Glu257 by Ala or Gln, and Glu279 and Glu280 by Gln, severely reduced the oxidase activity and the expression level of cytochrome bd. In contrast, Lys252 mutations reduced only the oxidase activity. Blue shifts in the 440 and 630 nm peaks of the reduced Lys252 mutants and in the 561 nm peak of the reduced Glu257 mutants indicate the proximity of Lys252 to the heme b(595)-d binuclear center and Glu257 to heme b(558), respectively. Perturbations of reduced heme b(558) upon binding of aurachin D support structural changes in the quinol-binding site of the mutants. Substitutions of Lys252 and Glu257 caused large changes in kinetic parameters for the ubiquinol-1 oxidation. These results indicate that Lys252 and Glu257 in the N-terminal region of the Q-loop are involved in the quinol oxidation by bd-type terminal oxidase. Topics: Amino Acid Sequence; Binding Sites; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Molecular Sequence Data; Mutagenesis, Site-Directed; Oxidation-Reduction; Oxidoreductases; Quinolones; Sequence Alignment; Ubiquinone | 2006 |
OXPHOS Supercomplexes: respiration and life-span control in the aging model Podospora anserina.
Recent biochemical evidence has indicated the existence of respiratory supercomplexes as well as ATP synthase oligomers in the inner mitochondrial membrane of different eukaryotes. We have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This aging model is able to respire by either the standard or the alternative pathway. In the latter, electrons are directly transferred from ubiquinol to the alternative oxidase (AOX) and thus bypass complexes III and IV. We showed that the two pathways are composed of distinct respiratory supercomplexes. These data are of significance for the understanding of both respiratory pathways as well as of life-span control and aging. Topics: Aging; Biochemical Phenomena; Biochemistry; Cell Respiration; Electron Transport; Electron Transport Complex III; Electron Transport Complex IV; Electrophoresis, Polyacrylamide Gel; Mitochondria; Models, Biological; Oxidative Phosphorylation; Podospora; Proton-Translocating ATPases; Ubiquinone | 2006 |
Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.
It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively. Topics: Acidithiobacillus thiooxidans; Antimycin A; Cell Membrane; Electron Transport Complex IV; Heme; Hydrogen-Ion Concentration; Hydroxyquinolines; Methacrylates; Nickel; Oxidation-Reduction; Oxidoreductases; Protein Subunits; Sodium Cyanide; Sulfites; Thiazoles; Tungsten Compounds; Ubiquinone | 2006 |
Probing the role of E272 in quinol oxidation of mitochondrial complex III.
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of complex III catalysis, but the molecular basis of this process is still not clear. E272 of the conserved cytochrome b PEWY motif has been suggested as a ligand and proton acceptor for ubiquinol oxidation at center P. We introduced the two replacement mutations, E272D and E272Q, into the mitochondrially encoded cytochrome b gene by biolistic transformation to study their effects on substrate binding and catalysis. Both substitutions resulted in a lower ubiquinol cytochrome c reductase activity and affect the KM for ubiquinol. The E272 carboxylate stabilizes stigmatellin binding, and in accordance, both variants are resistant to stigmatellin. Large structural changes in the cofactor environment as well as in the binding pocket can be excluded. The mutations do not perturb the midpoint potentials of the heme groups. The sensitivity toward the respective distal and proximal niche inhibitors HDBT and myxothiazol is retained. However, both mutations provoke subtle structural alterations detected by redox FTIR. They affect binding and oxidation of ubiquinol, and they promote electron short-circuit reactions resulting in production of reactive oxygen species. The aspartate substitution modifies the environment of the reduced Rieske protein as monitored by EPR. Both variants alter the pH dependence of the enzyme activity. Diminished activity at low pH coincides with the loss of one protonatable group with a pKa of approximately 6.2 compared to three pKa values in the wild type, supporting the role of E272 in proton transfer. The conserved glutamate appears to influence the accurate formation of the enzyme-substrate complex and to govern the efficiency of catalysis. Topics: Amino Acid Substitution; Aspartic Acid; Binding Sites; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Enzyme Stability; Glutamic Acid; Glutamine; Hydrogen-Ion Concentration; Mutagenesis, Site-Directed; Oxidation-Reduction; Potentiometry; Saccharomyces cerevisiae Proteins; Spectroscopy, Fourier Transform Infrared; Superoxides; Ubiquinone | 2006 |
Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei.
Transformation of the metabolically down-regulated mitochondrion of the mammalian bloodstream stage of Trypanosoma brucei to the ATP-producing mitochondrion of the insect procyclic stage is accompanied by the de novo synthesis of citric acid cycle enzymes and components of the respiratory chain. Because these metabolic pathways contain multiple iron-sulfur (FeS) proteins, their synthesis, including the formation of FeS clusters, is required. However, nothing is known about FeS cluster biogenesis in trypanosomes, organisms that are evolutionarily distant from yeast and humans. Here we demonstrate that two mitochondrial proteins, the cysteine desulfurase TbiscS and the metallochaperone TbiscU, are functionally conserved in trypanosomes and essential for this parasite. Knock-downs of TbiscS and TbiscU in the procyclic stage by means of RNA interference resulted in reduced activity of the marker FeS enzyme aconitase in both the mitochondrion and cytosol because of the lack of FeS clusters. Moreover, down-regulation of TbiscS and TbiscU affected the metabolism of procyclic T. brucei so that their mitochondria resembled the organelle of the bloodstream stage; mitochondrial ATP production was impaired, the activity of the respiratory chain protein complex ubiquinol-cytochrome-c reductase was reduced, and the production of pyruvate as an end product of glucose metabolism was enhanced. These results indicate that mitochondrial FeS cluster assembly is indispensable for completion of the T. brucei life cycle. Topics: Adenosine Triphosphate; Animals; Conserved Sequence; Cytochrome Reductases; Down-Regulation; Electron Spin Resonance Spectroscopy; Genetic Techniques; Genetic Vectors; Iron-Sulfur Proteins; Mitochondria; Mitochondrial Proteins; Models, Genetic; RNA Interference; Trypanosoma brucei brucei; Ubiquinone | 2006 |
Investigation of the mechanism of proton translocation by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria: does the enzyme operate by a Q-cycle mechanism?
Complex I (NADH:ubiquinone oxidoreductase) is the first enzyme of the membrane-bound electron transport chain in mitochondria. It conserves energy, from the reduction of ubiquinone by NADH, as a protonmotive force across the inner membrane, but the mechanism of energy transduction is not known. The structure of the hydrophilic arm of thermophilic complex I supports the idea that proton translocation is driven at (or close to) the point of quinone reduction, rather than at the point of NADH oxidation, with a chain of iron-sulfur clusters transferring electrons between the two active sites. Here, we describe experiments to determine whether complex I, isolated from bovine heart mitochondria, operates via a Q-cycle mechanism analogous to that observed in the cytochrome bc1 complex. No evidence for the 'reductant-induced oxidation' of ubiquinol could be detected; therefore no support for a Q-cycle mechanism was obtained. Unexpectedly, in the presence of NADH, complex I inhibited by either rotenone or piericidin A was found to catalyse the exchange of redox states between different quinone and quinol species, providing a possible route for future investigations into the mechanism of energy transduction. Topics: Animals; Cattle; Electron Transport Complex I; Energy Metabolism; Mitochondria, Heart; Models, Biological; Protons; Quinones; Ubiquinone | 2006 |
Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex.
We have obtained evidence for conformational communication between ubiquinol oxidation (center P) and ubiquinone reduction (center N) sites of the yeast bc1 complex dimer by analyzing antimycin binding and heme bH reduction at center N in the presence of different center P inhibitors. When stigmatellin was occupying center P, concentration-dependent binding of antimycin occurred only to half of the center N sites. The remaining half of the bc1 complex bound antimycin with a slower rate that was independent of inhibitor concentration, indicating that a slow conformational change needed to occur before half of the enzyme could bind antimycin. In contrast, under conditions where the Rieske protein was not fixed proximal to heme bL at center P, all center N sites bound antimycin with fast and concentration-dependent kinetics. Additionally, the extent of fast cytochrome b reduction by menaquinol through center N in the presence of stigmatellin was approximately half of that observed when myxothiazol was bound at center P. The reduction kinetics of the bH heme by decylubiquinol in the presence of stigmatellin or myxothiazol were also consistent with a model in which fixation of the Rieske protein close to heme bL in both monomers allows rapid binding of ligands only to one center N. Decylubiquinol at high concentrations was able to abolish the biphasic binding of antimycin in the presence of stigmatellin but did not slow down antimycin binding rates. These results are discussed in terms of half-of-the-sites activity of the dimeric bc1 complex. Topics: Antimycin A; Binding Sites; Cytochromes b; Dimerization; Dose-Response Relationship, Drug; Electron Transport Complex III; Heme; Iron-Sulfur Proteins; Kinetics; Models, Biological; Protein Binding; Protein Conformation; Saccharomyces cerevisiae; Time Factors; Ubiquinone | 2006 |
Localization of superoxide anion production to mitochondrial electron transport chain in 3-NPA-treated cells.
3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2- generation in mitochondria respiring on the complex I substrates pyruvate+malate, an effect fully inhibited by rotenone. Antimycin A increased O2- production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2- production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2- formation driven with the complex II substrate succinate. At 0.6 microM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2- formation; however, at 40 microM myxothiazol (which completely inhibits both complexes I and III) eliminated O2- production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2- from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II. Topics: Animals; Cell Line; Cell Line, Tumor; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Humans; Macrophages, Peritoneal; Mice; Mitochondria; Nitro Compounds; Propionates; Rats; Reactive Oxygen Species; Succinate Dehydrogenase; Superoxides; Ubiquinone | 2006 |
Adaptations to oxidative stress induced by vitamin E deficiency in rat liver.
Vitamin E deficiency in rats led to a sequence of antioxidant defense adaptations in the liver. After three weeks, alpha-tocopherol concentration was 5% of control, but ascorbate and ubiquinol concentrations were 2- to 3-fold greater than control. During the early phase of adaptation no differences in markers of lipid peroxidation were observed, but the activities of both cytochrome b5 reductase and glucose-6-phosphate dehydrogenase were significantly greater in deficient livers. By nine weeks, accumulation of lipid peroxidation end products began to occur along with declining concentrations of ascorbate, and higher NQO1 activities. At twelve weeks, rat growth ceased, and both lipid peroxidation products and cytosolic calcium-independent phospholipase A2 reached maximum concentrations. Thus, in growing rats the changes progressed from increases in both ubiquinol and quinone reductases through accumulation of lipid peroxidation products and loss of endogenous antioxidants to finally induction of lipid metabolizing enzymes and cessation of rat growth. Topics: Adaptation, Physiological; alpha-Tocopherol; Analysis of Variance; Animals; Ascorbic Acid; Cytochrome Reductases; Glucosephosphate Dehydrogenase; Lipid Peroxidation; Liver; Male; Oxidative Stress; Rats; Rats, Long-Evans; Ubiquinone; Vitamin E Deficiency | 2006 |
Glutamates 99 and 107 in transmembrane helix III of subunit I of cytochrome bd are critical for binding of the heme b595-d binuclear center and enzyme activity.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane. Topics: Aerobiosis; Amino Acid Sequence; Amino Acid Substitution; Binding Sites; Conserved Sequence; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Enzyme Activation; Escherichia coli Proteins; Glutamic Acid; Heme; Leucine; Membrane Proteins; Molecular Sequence Data; Oxidation-Reduction; Oxidoreductases; Oxygen; Oxygen Consumption; Protein Structure, Secondary; Protein Subunits; Ubiquinone | 2006 |
Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A.
The crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of one of the hemes located in the membrane anchoring subunit (NarI). This new structural information together with site-directed mutagenesis data, biochemical analyses, and molecular modeling provide the first molecular characterization of a quinol binding and oxidation site (Q-site) in NarGHI. A possible proton conduction pathway linked to electron transfer reactions has also been defined, providing fundamental atomic details of ubiquinol oxidation by NarGHI at the bacterial membrane. Topics: Binding Sites; Cell Membrane; Crystallography, X-Ray; Dose-Response Relationship, Drug; Electron Spin Resonance Spectroscopy; Escherichia coli; Heme; Histidine; Hydroxyquinolines; Kinetics; Lysine; Models, Chemical; Models, Molecular; Mutation; Naphthols; Nitrate Reductase; Nitrate Reductases; Oxidoreductases; Oxygen; Pentachlorophenol; Plasmids; Protein Binding; Protons; Terpenes; Ubiquinone | 2005 |
Cytochrome b mutations that modify the ubiquinol-binding pocket of the cytochrome bc1 complex and confer anti-malarial drug resistance in Saccharomyces cerevisiae.
Atovaquone is a new anti-malarial agent that specifically targets the cytochrome bc1 complex and inhibits parasite respiration. A growing number of failures of this drug in the treatment of malaria have been genetically linked to point mutations in the mitochondrial cytochrome b gene. To better understand the molecular basis of atovaquone resistance in malaria, we introduced five of these mutations, including the most prevalent variant found in Plasmodium falciparum (Y268S), into the cytochrome b gene of the budding yeast Saccharomyces cerevisiae and thus obtained cytochrome bc1 complexes resistant to inhibition by atovaquone. By modeling the variations in cytochrome b structure and atovaquone binding with the mutated bc1 complexes, we obtained the first quantitative explanation for the molecular basis of atovaquone resistance in malaria parasites. Topics: Amino Acid Sequence; Animals; Antimalarials; Atovaquone; Cytochromes b; Dose-Response Relationship, Drug; Electron Transport Complex III; Inhibitory Concentration 50; Kinetics; Malaria; Models, Molecular; Molecular Sequence Data; Mutation; Naphthoquinones; Oxygen Consumption; Plasmodium falciparum; Point Mutation; Protein Binding; Saccharomyces cerevisiae; Sequence Homology, Amino Acid; Time Factors; Ubiquinone | 2005 |
Sensitivities of the alternative respiratory components of potato tuber mitochondria to thiol reagents and Ca2+.
Plant mitochondria differ from those of mammals, since they incorporate an alternative electron transport pathway, which branches at ubiquinol to an alternative oxidase (AOX), characteristically inhibited by salicylhydroxamic acid (SHAM). Another feature of plant mitochondria is that besides complex I (EC 1.6.5.3) they possess alternative NAD(P)H-dehydrogenases insensitive to rotenone. Many stress conditions are known to alter the expression of the alternative electron transport pathway in plant mitochondria. In the present study we investigated the effects of some thiol reagents and Ca(2+) on potato mitochondrial respiratory chain presenting different activities of the alternative respiratory components AOX and external NADH dehydrogenase, a condition induced by previous treatment of potato tubers (Solanum tuberosum L., cv. Bintje) to cold stress. The results showed that Ca(2+) presented an inhibitory effect on AOX pathway in potato mitochondria energized with NADH or succinate, which was only now observed when the cytochrome pathway was inhibited by cyanide. When the cytochrome pathway was functional, Ca(2+) stimulated the external NADH dehydrogenase. Diamide was a potent AOX inhibitor and this effect was only now observed when the cytochrome pathway was inactive, as was the case for the calcium ion. Mersalyl inhibited the externally located NADH dehydrogenase and had no effect on AOX activity. The results may represent an important function of Ca(2+) on the alternative mitochondrial enzymes NADH-DH(ext) and AOX. Topics: Calcium; Cell Membrane; Diamide; Membrane Potentials; Mersalyl; Mitochondria; Mitochondrial Proteins; NADH Dehydrogenase; Oxidation-Reduction; Oxidoreductases; Oxygen; Plant Proteins; Solanum tuberosum; Succinic Acid; Sulfhydryl Reagents; Ubiquinone | 2005 |
Reaction intermediates of quinol oxidation in a photoactivatable system that mimics electron transfer in the cytochrome bc1 complex.
Current competing models for the two-electron oxidation of quinol (QH2) at the cytochrome bc1 complex and related complexes impose distinct requirements for the reaction intermediate. At present, the intermediate species of the enzymatic oxidation process have not been observed or characterized, probably due to their transient nature. Here, we use a biomimetic oxidant, excited-state Ru(bpy)2(pbim)+ (bpy=2,2'-dipyridyl, pbim=2-(2-pyridyl)benzimidazolate) in an aprotic medium to probe the oxidation of the ubiquinol analogue, 2,3-dimethoxy-5-methyl-1,4-benzoquinol (UQH2-0), and the plastoquinol analogue, trimethyl-1,4-benzoquinol (TMQH2-0), using time-resolved and steady-state spectroscopic techniques. Despite its simplicity, this system qualitatively reproduces key features observed during ubiquinol oxidation by the mitochondrial cytochrome bc1 complex. Comparison of isotope-dependent activation properties in the native and synthetic systems as well as analysis of the time-resolved direct-detection electron paramagnetic resonance signals in the synthetic system allows us to conclude that (1) the initial and rate-limiting step in quinol oxidation, both in the biological and biomimetic systems, involves electron and proton transfer, probably via a proton-coupled electron-transfer mechanism, (2) a neutral semiquinone intermediate is formed in the biomimetic system, and (3) oxidation of the QH*/QH2 couple for UQH2-0, but not TMQH2-0, exhibits an unusual and unexpected primary deuterium kinetic isotope effect on its Arrhenius activation energy (DeltaGTS), where DeltaGTS for the protiated form is larger than that for the deuterated form. The same behavior is observed during steady-state turnover of the cyt bc1 complex using ubiquinol, but not plastoquinol, as a substrate, leading to the conclusion that similar chemical pathways are involved in both systems. The synthetic system is an unambiguous n=1 electron acceptor, and it is thus inferred that sequential oxidation of ubiquinol (by two sequential n=1 processes) is more rapid than a truly concerted (n=2) oxidation in the cyt bc1 complex. Topics: 2,2'-Dipyridyl; Benzimidazoles; Biomimetic Materials; Deuterium Exchange Measurement; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Hydrogen Bonding; Hydroquinones; Ligands; Models, Molecular; Organometallic Compounds; Oxidants; Oxidation-Reduction; Photochemistry; Ruthenium; Thermodynamics; Ubiquinone | 2005 |
Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets.
Diverse oxidative pathways, such as direct oxidation of amino acids, glycoxidation, and lipoxidation could contribute to Alzheimer disease pathogenesis. A global survey for the amount of structurally characterized probes for these reactions is lacking and could overcome the lack of specificity derived from measurement of 2,4-dinitrophenylhydrazine reactive carbonyls. Consequently we analyzed (i) the presence and concentrations of glutamic and aminoadipic semialdehydes, N(epsilon)-(carboxymethyl)-lysine, N(epsilon)-(carboxyethyl)-lysine, and N(epsilon)-(malondialdehyde)-lysine by means of gas chromatography/mass spectrometry, (ii) the biological response through expression of the receptor for advanced glycation end products, (iii) the fatty acid composition in brain samples from Alzheimer disease patients and age-matched controls, and (iv) the targets of N(epsilon)-(malondialdehyde)-lysine formation in brain cortex by proteomic techniques. Alzheimer disease was associated with significant, although heterogeneous, increases in the concentrations of all evaluated markers. Alzheimer disease samples presented increases in expression of the receptor for advanced glycation end products with high molecular heterogeneity. Samples from Alzheimer disease patients also showed content of docosahexaenoic acid, which increased lipid peroxidizability. In accordance, N(epsilon)-(malondialdehyde)-lysine formation targeted important proteins for both glial and neuronal homeostasis such as neurofilament L, alpha-tubulin, glial fibrillary acidic protein, ubiquinol-cytochrome c reductase complex protein I, and the beta chain of ATP synthase. These data support an important role for lipid peroxidation-derived protein modifications in Alzheimer disease pathogenesis. Topics: Aged; Aged, 80 and over; Alzheimer Disease; Blotting, Western; Brain; Carbon; Cerebral Cortex; Databases as Topic; Electrophoresis, Gel, Two-Dimensional; Electrophoresis, Polyacrylamide Gel; Fatty Acids; Fatty Acids, Unsaturated; Female; Glial Fibrillary Acidic Protein; Glycation End Products, Advanced; Glycolysis; Humans; Lipid Metabolism; Lipid Peroxidation; Lysine; Male; Malondialdehyde; NADH Dehydrogenase; Oxygen; Phenylhydrazines; Proteins; Silver Staining; Ubiquinone | 2005 |
Investigation of ubiquinol formation in isolated photosynthetic reaction centers by rapid-scan Fourier transform IR spectroscopy.
Light-induced formation of ubiquinol-10 in Rhodobacter sphaeroides reaction centers was followed by rapid-scan Fourier transform IR difference spectroscopy, a technique that allows the course of the reaction to be monitored, providing simultaneously information on the redox states of cofactors and on protein response. The spectrum recorded between 4 and 29 ms after the second flash showed bands at 1,470 and 1,707 cm(-1), possibly due to a QH(-) intermediate state. Spectra recorded at longer delay times showed a different shape, with bands at 1,388 (+) and 1,433 (+) cm(-1) characteristic of ubiquinol. These spectra reflect the location of the ubiquinol molecule outside the Q(B) binding site. This was confirmed by Fourier transform IR difference spectra recorded during and after continuous illumination in the presence of an excess of exogenous ubiquinone molecules, which revealed the process of ubiquinol formation, of ubiquinone/ubiquinol exchange at the Q(B) site and between detergent micelles, and of Q(B)(-) and QH(2) reoxidation by external redox mediators. Kinetics analysis of the IR bands allowed us to estimate the ubiquinone/ubiquinol exchange rate between detergent micelles to approximately 1 s. The reoxidation rate of Q(B)(-) by external donors was found to be much lower than that of QH(2), most probably reflecting a stabilizing/protecting effect of the protein for the semiquinone form. A transient band at 1,707 cm(-1) observed in the first scan (4-29 ms) after both the first and the second flash possibly reflects transient protonation of the side chain of a carboxylic amino acid involved in proton transfer from the cytoplasm towards the Q(B) site. Topics: Cells, Cultured; Computer Systems; Kinetics; Light; Photosynthetic Reaction Center Complex Proteins; Rhodobacter sphaeroides; Spectroscopy, Fourier Transform Infrared; Ubiquinone | 2005 |
A new fluorogenic transformation: development of an optical probe for coenzyme Q.
[reaction: see text] A new fluorogenic transformation based on a quinone reduction/lactonization sequence has been developed and evaluated as a tool for probing redox phenomena in a biochemical context. The probe presented herein is an irreversible redox probe and is reduced selectively by biologically relevant quinols such as ubiquinol but is inert to reduced nicotinamides (e.g., NADH). The ensuing cyclization is fast and quantitative and provides a measurable optical response. Topics: Fluorescent Dyes; Molecular Structure; Niacinamide; Oxidation-Reduction; Ubiquinone | 2005 |
Ubiquinol: a potential biomarker for tissue energy requirements and oxidative stress.
Coenzyme Q (CoQ) has been suggested as a biomarker for tissue redox status. The aims are (1) to compare ubiquinol-9, ubiquinol-10, ubiquinone-9, ubiquinone-10, total CoQ content and CoQ redox ratio in quadriceps muscle, heart, brain and liver tissues of mdx mice with wild-type controls; and (2) to determine if ubiquinol content and CoQ redox ratio changes are associated with pathological findings in mdx mouse.. CoQ contents were determined in homogenized quadriceps muscle, heart, liver and brain of age-matched mdx and wild-type control mice by HPLC-EC. Light and electron microscopy studies were conducted using standard pathology methods.. Ubiquinol-9 and ubiquinol-10 concentrations are significantly increased in quadriceps and heart muscle of mdx mouse. Increased redox ratios of coenzyme Q(9) and coenzyme Q(10) are also evident in quadriceps, heart and liver tissues in mdx mouse, but not brain. Pathological examination shows marked myofiber regeneration and evidence of mitochondrial proliferation for mdx muscle.. Evidence that changes in ubiquinol content and CoQ redox ratio are related to pathological features in mdx skeletal and heart myofibers suggests that tissue ubiquinol content and CoQ redox ratio may be useful biomarkers for evaluating muscle disorders associated with mitochondrial proliferation and defects in oxidative phosphorylation. Topics: Animals; Biomarkers; Energy Metabolism; Mice; Mice, Mutant Strains; Microscopy, Electron; Mitochondrial Diseases; Muscular Dystrophy, Duchenne; Myofibrils; Oxidation-Reduction; Oxidative Stress; Tissue Distribution; Ubiquinone | 2005 |
Simultaneous determination of ubiquinol and ubiquinone in skeletal muscle of pediatric patients.
Topics: Child; Chromatography, High Pressure Liquid; Coenzymes; Humans; Muscle, Skeletal; Ubiquinone | 2005 |
Lipid peroxidation induced by carbon tetrachloride and its inhibition by antioxidant as evaluated by an oxidative stress marker, HODE.
We have recently proposed total hydroxyoctadecadienoic acid (HODE) as a biomarker for oxidative stress in vivo. The biological samples such as plasma, urine, and tissues were first reduced and then saponified to convert the oxidation products of linoleate to HODE. In the present study, this method was applied to measure the oxidative damage induced by the administration of carbon tetrachloride to mice and also to evaluate the capacity of antioxidant to inhibit the above damage. alpha-Tocopherol transfer protein knock out (alpha-TTP-/-) mice were used to evaluate antioxidant effect in the absence of alpha-tocopherol. The intraperitoneal administration of carbon tetrachloride to mice induced the increase in HODE in liver and plasma, which was followed by an increase in plasma glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT). F2-isoprostanes, another prevailing biomarker, were also increased similarly, but their concentration was approximately two to three orders of magnitude smaller than that of HODE. The lipophilic antioxidants such as gamma-tocopherol, gamma-tocotrienol and 2,3-dihydro-5-hydroxy-4,6-di-tert-butyl-2,2-dipentylbenzofuran (BO-653) were effective in suppressing the formation of HODE. Topics: Alanine Transaminase; alpha-Tocopherol; Animals; Antioxidants; Ascorbic Acid; Aspartate Aminotransferases; Benzofurans; Biomarkers; Carbon Tetrachloride; Carrier Proteins; Chromatography, High Pressure Liquid; Diet; Dinoprost; Fatty Acids, Unsaturated; Genotype; Injections, Intraperitoneal; Lipid Peroxidation; Lipid Peroxides; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Oxidative Stress; Specific Pathogen-Free Organisms; Thiobarbituric Acid Reactive Substances; Tocotrienols; Ubiquinone; Vitamin E | 2005 |
Ubiquinol and the papaverine derivative caroverine prevent the expression of tumour- promoting factors in adenoma and carcinoma colon cancer cells induced by dietary fat.
High consumption of dietary fat promotes colon carcinogenesis. While this effect is well known the underlying mechanism is not understood. Fatty acid hydroperoxides (LOOH) arise from unsaturated fatty acids in the presence of oxygen and elevated temperature during food processing. An approach was made starting from the assumption that LOOH are present in dietary fats as a result of boiling. LOOH undergoes homolytic cleavage in the presence of iron. We studied their effects on gene expression in colorectal tumour cells using linoleic acid hydroperoxide (LOOH) as model compound. Addition to the medium of LT97 adenoma and SW480 carcinoma cells enhanced the production of hydrogen peroxide. Both cell lines were observed to increase VEGF and COX-II expression based on mRNA. Expression of VEGF was inhibited by caroverine and ubiquinon. Topics: Adenoma; Carcinoma; Colonic Neoplasms; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Dietary Fats; Gene Expression Regulation, Neoplastic; Humans; Linoleic Acids; Lipid Peroxides; Organic Chemicals; Pyrazoles; Quinoxalines; Sulfonamides; Tumor Cells, Cultured; Ubiquinone; Vascular Endothelial Growth Factor A | 2005 |
Dynamics of lipid oxidation and antioxidant depletion in Mediterranean fish stored at different temperatures.
Numerous changes occur post-mortem in fish, affecting its chemical composition and nutritional quality. In the present paper we describe the effect of storage on ice or at -30 degrees C or -80 degrees C on 10 species of Mediterranean fish. Water and lipid soluble antioxidants, lipid pattern and products of oxidative attack on lipids, proteins and DNA were quantified for 7 consecutive days on homogenates of fish light muscle. The earliest events were oxidation of ubiquinol and vitamin C, which disappeared almost completely within 48 hours. Ubiquinol oxidation gave rise to an initial increase of ubiquinone, which peaked at the second day: thereafter ubiquinone itslef decreased, more rapidly and to a greater extent than vitamin E. The decrease in antioxidants was accompanied by significant oxidative damage to lipids, proteins and DNA. TBARS significantly increased beginning from the third day of storage in all species and were linked to a significant reduction in the n-3 PUFA of triglycerides (TG) and phospholipid fractions (PL). A remarkable elevation of protein carbonyls and 8OHdG occurred approximately 24 hours later than PUFA oxidation. For SOD, GPX and GSH significant depletions occurred for all species only at 6th or 7th day, but the final values were always higher than 50% compared to the initial ones. Deep-freezing of the same species at -30 degrees C and -80 degrees C for up to 12 months did not significantly affect the levels of enzymatic antioxidants, the redox couple GSH/GS-SG, n-3 and n-6 PUFA of TG and PL fractions of the light muscle. The only antioxidants, which at -30 degrees C and -80 degrees C appeared to be degraded after 6 and 12 months were ubiquinol and vitamin C. As expected their degradation was higher at -30 degrees C than at -80 degrees C. In fact the average decrease for ubiquinol at -80 degrees C was 42% at 6 and 12 months respectively, whereas at -30 degrees C the decrease was 61% and 87% For vitamin C the average decrease at -80 degrees C was 36% and 67% at 6 and 12 months respectively, and at -30 degrees C it was 61% and 82%. Vitamin E was considerably more stable than ubiquinol and vitamin C. The relative stability of the antioxidants, with the exceptions of ubiquionols, vitamin C and, to a certain extent, vitamin E, was accompanied by a very limited increase in oxidation products. In addition no significant hydrolysis of TG and PL fractions were observed throughout the storage time. The dynamics of lipid, protein and DNA oxi Topics: Animals; Antioxidants; Ascorbic Acid; Fishes; Food Preservation; Frozen Foods; Lipid Metabolism; Muscles; Oxidation-Reduction; Postmortem Changes; Ubiquinone; Vitamin E | 2005 |
NapGH components of the periplasmic nitrate reductase of Escherichia coli K-12: location, topology and physiological roles in quinol oxidation and redox balancing.
Nap (periplasmic nitrate reductase) operons of many bacteria include four common, essential components, napD, napA, napB and napC (or a homologue of napC ). In Escherichia coli there are three additional genes, napF, napG and napH, none of which are essential for Nap activity. We now show that deletion of either napG or napH almost abolished Nap-dependent nitrate reduction by strains defective in naphthoquinone synthesis. The residual rate of nitrate reduction (approx. 1% of that of napG+ H+ strains) is sufficient to replace fumarate reduction in a redox-balancing role during growth by glucose fermentation. Western blotting combined with beta-galactosidase and alkaline phosphatase fusion experiments established that NapH is an integral membrane protein with four transmembrane helices. Both the N- and C-termini as well as the two non-haem iron-sulphur centres are located in the cytoplasm. An N-terminal twin arginine motif was shown to be essential for NapG function, consistent with the expectation that NapG is secreted into the periplasm by the twin arginine translocation pathway. A bacterial two-hybrid system was used to show that NapH interacts, presumably on the cytoplasmic side of, or within, the membrane, with NapC. As expected for a periplasmic protein, no NapG interactions with NapC or NapH were detected in the cytoplasm. An in vitro quinol dehydrogenase assay was developed to show that both NapG and NapH are essential for rapid electron transfer from menadiol to the terminal NapAB complex. These new in vivo and in vitro results establish that NapG and NapH form a quinol dehydrogenase that couples electron transfer from the high midpoint redox potential ubiquinone-ubiquinol couple via NapC and NapB to NapA. Topics: Arginine; Base Sequence; Electron Transport; Escherichia coli; Escherichia coli Proteins; Genes, Bacterial; Molecular Sequence Data; Mutagenesis, Site-Directed; Nitrate Reductase; Nitrate Reductases; Nitrites; Operon; Oxidation-Reduction; Oxidoreductases; Periplasmic Proteins; Protein Structure, Secondary; Recombinant Fusion Proteins; Subcellular Fractions; Two-Hybrid System Techniques; Ubiquinone | 2004 |
Plasma and CSF markers of oxidative stress are increased in Parkinson's disease and influenced by antiparkinsonian medication.
We determined systemic oxidative stress in Parkinson's disease (PD) patients, patients with other neurological diseases (OND) and healthy controls by measurement of in vitro lipoprotein oxidation and levels of hydro- and lipophilic antioxidants in plasma and cerebrospinal fluid (CSF). Additionally, we investigated the influence of levodopa (LD) and dopamine agonist therapy (DA) on the oxidative status in PD patients. We found increased oxidative stress, seen as higher levels of lipoprotein oxidation in plasma and CSF, decrease of plasma levels of protein sulfhydryl (SH) groups and lower CSF levels of alpha-tocopherol in PD patients compared to OND patients and controls. Levodopa treatment did not significantly change the plasma lipoprotein oxidation but LD monotherapy tended to result in an increase of autooxidation and in a decrease of plasma antioxidants with significance for ubiquinol-10. DA monotherapy was significantly associated with higher alpha-tocopherol levels. Patients with DA monotherapy or co-medication with DA showed a trend to lower lipoprotein oxidation. These data support the concept of oxidative stress as a factor in the pathogenesis of PD and might be an indicator of a potential prooxidative role of LD and a possible antioxidative effect of DA in PD treatment. Topics: Adult; alpha-Tocopherol; Antioxidants; Antiparkinson Agents; Ascorbic Acid; Biomarkers; Brain; Dopamine; Female; Humans; Levodopa; Lipoproteins; Male; Middle Aged; Oxidative Stress; Parkinson Disease; Reference Values; Sulfhydryl Compounds; Ubiquinone; Up-Regulation | 2004 |
Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
We have investigated the interaction between monomers of the dimeric yeast cytochrome bc(1) complex by analyzing the pre-steady and steady state activities of the isolated enzyme in the presence of antimycin under conditions that allow the first turnover of ubiquinol oxidation to be observable in cytochrome c(1) reduction. At pH 8.8, where the redox potential of the iron-sulfur protein is approximately 200 mV and in a bc(1) complex with a mutated iron-sulfur protein of equally low redox potential, the amount of cytochrome c(1) reduced by several equivalents of decyl-ubiquinol in the presence of antimycin corresponded to only half of that present in the bc(1) complex. Similar experiments in the presence of several equivalents of cytochrome c also showed only half of the bc(1) complex participating in quinol oxidation. The extent of cytochrome b reduced corresponded to two b(H) hemes undergoing reduction through one center P per dimer, indicating electron transfer between the two cytochrome b subunits. Antimycin stimulated the ubiquinol-cytochrome c reductase activity of the bc(1) complex at low inhibitor/enzyme ratios. This stimulation could only be fitted to a model in which half of the bc(1) dimer is inactive when both center N sites are free, becoming active upon binding of one center N inhibitor molecule per dimer, and there is electron transfer between the cytochrome b subunits of the dimer. These results are consistent with an alternating half-of-the-sites mechanism of ubiquinol oxidation in the bc(1) complex dimer. Topics: Antimycin A; Cytochromes b; Cytochromes c; Dimerization; Electron Transport Complex III; Fungal Proteins; Heme; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Mutation; Oxidation-Reduction; Oxygen; Spectrophotometry; Time Factors; Ubiquinone; Ultraviolet Rays | 2004 |
[Protective effect of hydrophilic ubiquinone on cardiac muscle during oxidative stress].
To assess effects of long term administration of a natural antioxidant ubiquinone on isoproterenol induced myocardial injury.. Rats were given hydrophilic ubiquinone with water for 8 weeks.. Long term use of ubiquinone did not affect myocardial ultrastructure and relative myocardial weight. The dose of isoproterenol used in this study exerted moderate damaging action evidenced by disappearance of glycogen from sarcoplasm, development of edema, and partial destruction of mitochondrial cristae. These effects were associated with lowering of maximal magnitude of contractile function of the isolated heart and augmentation of superoxide radicals release in perfusate. These changes (except disappearance of glycogen) were not present in hearts of ubiquinone fed rats. Compared with controls mitochondria isolated from hearts of ubiquinone fed rats had higher respiratory control and more than twice lower rate of superoxide generation.. As damaging effects of isoproterenol are mediated by augmented generation of active forms of oxygen the results obtained allow to suggest that myocardium of ubiquinone fed animals is characterized by elevated power of the antioxidant system. Topics: Animals; Male; Muscle Contraction; Muscle, Smooth; Myocardium; Oxidative Stress; Rats; Rats, Wistar; Ubiquinone | 2004 |
Disruption of the interaction between the Rieske iron-sulfur protein and cytochrome b in the yeast bc1 complex owing to a human disease-associated mutation within cytochrome b.
The mitochondrial cytochrome b missense mutation, G167E, has been reported in a patient with cardiomyopathy. The residue G167 is located in an extramembranous helix close to the hinge region of the iron-sulfur protein. In order to characterize the effects of the mutation on the structure and function of the bc(1) complex, we introduced G167E into the highly similar yeast cytochrome b. The mutation had a severe effect on the respiratory function, with the activity of the bc(1) complex decreased to a few per cent of the wild type. Analysis of the enzyme activity indicated that the mutation affected its stability, which could be the result of an altered binding of the iron-sulfur protein on the complex. G167E had no major effect on the interaction between the iron-sulfur protein headgroup and the quinol oxidation site, as judged by the electron paramagnetic resonance signal, and only a minor effect on the rate of cytochrome b reduction, but it severely reduced the rate of cytochrome c(1) reduction. This suggested that the mutation G167E could hinder the movement of the iron-sulfur protein, probably by distorting the structure of the hinge region. The function of bc(1) was partially restored by mutations (W164L and W166L) located close to the primary change, which reduced the steric hindrance caused by G167E. Taken together, these observations suggest that the protein-protein interaction between the n-sulfur protein hinge region and the cytochrome b extramembranous cd2 helix is important for maintaining the structure of the hinge region and, by consequence, the movement of the headgroup and the integrity of the enzyme. Topics: Binding Sites; Blotting, Western; Cytochromes b; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Humans; Intracellular Membranes; Iron-Sulfur Proteins; Kinetics; Magnetics; Models, Molecular; Mutation; NADH Dehydrogenase; Protein Structure, Tertiary; Saccharomyces cerevisiae; Spectrophotometry; Ubiquinone | 2004 |
Supramolecular organization of cytochrome c oxidase- and alternative oxidase-dependent respiratory chains in the filamentous fungus Podospora anserina.
To elucidate the molecular basis of the link between respiration and longevity, we have studied the organization of the respiratory chain of a wild-type strain and of two long-lived mutants of the filamentous fungus Podospora anserina. This established aging model is able to respire by either the standard or the alternative pathway. In the latter pathway, electrons are directly transferred from ubiquinol to the alternative oxidase and thus bypass complexes III and IV. We show that the cytochrome c oxidase pathway is organized according to the mammalian "respirasome" model (Schägger, H., and Pfeiffer, K. (2000) EMBO J. 19, 1777-1783). In contrast, the alternative pathway is composed of distinct supercomplexes of complexes I and III (i.e. I(2) and I(2)III(2)), which have not been described so far. Enzymatic analysis reveals distinct functional properties of complexes I and III belonging to either cytochrome c oxidase- or alternative oxidase-dependent pathways. By a gentle colorless-native PAGE, almost all of the ATP synthases from mitochondria respiring by either pathway were preserved in the dimeric state. Our data are of significance for the understanding of both respiratory pathways as well as lifespan control and aging. Topics: Ascomycota; Biochemical Phenomena; Biochemistry; Detergents; Dimerization; Electron Transport; Electron Transport Complex IV; Electrons; Electrophoresis, Polyacrylamide Gel; Mitochondria; Mitochondrial Proteins; Oxidoreductases; Plant Proteins; Proton-Translocating ATPases; Time Factors; Ubiquinone | 2004 |
Coenzyme Q10 changes are associated with metabolic syndrome.
The purpose of this study was to determine whether coenzyme Q10 (CoQ) concentrations and redox status are associated with components of the metabolic syndrome.. This is a cross-sectional survey of 223 adults (28-78 years), who were drawn from the ongoing Princeton Follow-up Study in greater Cincinnati. Individuals were assessed for measures of fatness, blood pressure, glucose, lipid profiles, C-reactive protein (CRP), reduced CoQ (ubiquinol), oxidized CoQ (ubiquinone), total CoQ and CoQ redox ratio (ubiquinol/ubiquinone).. After adjusting for age, sex and race, we found that total CoQ, ubiquinol and CRP levels are significantly increased in metabolic syndrome. Comparison of minimal risk and high-risk metabolic syndrome groups indicates an increased CoQ redox ratio in the high risk group (p<0.05). Step-wise logistic regression analysis, using age, sex, race, (ln)CRP, total cholesterol, LDL, ubiquinol, ubiquinone and total CoQ as predictors, shows that only age (p=0.001), total CoQ adjusted for plasma lipids (p<0.0001) and (ln)CRP (p<0.005) were significant predictors of metabolic syndrome.. The presence of metabolic syndrome components are associated with increased plasma total CoQ and ubiquinol concentrations after adjusting for age, sex and race. An increase in CoQ redox ratio may indicate a gender-specific adaptive response to oxidative stress in females, but not males. Topics: Adult; Age Factors; Aged; Biomarkers; C-Reactive Protein; Case-Control Studies; Coenzymes; Cross-Sectional Studies; Female; Humans; Male; Metabolic Syndrome; Middle Aged; Oxidation-Reduction; Oxidative Stress; Predictive Value of Tests; Risk Factors; Sex Factors; Ubiquinone | 2004 |
Active oxygen chemistry within the liposomal bilayer. Part III: Locating Vitamin E, ubiquinol and ubiquinone and their derivatives in the lipid bilayer.
We have previously shown that the location and orientation of compounds intercalated within the lipid bilayer can be qualitatively determined using an NMR chemical shift-polarity correlation. We describe herein the results of our application of this method to analogs of Vitamin E, ubiquinol and ubiquinone. The results indicate that tocopherol--and presumably the corresponding tocopheroxyl radical--reside adjacent to the interface, and can, therefore, abstract a hydrogen atom from ascorbic acid. On the other hand, the decaprenyl substituted ubiquinol and ubiquinone lie substantially deeper within the lipid membrane. Yet, contrary to the prevailing literature, their location is far from being the same. Ubiquinone-10 is situated above the long-chain fatty acid "slab". Ubiquinol-10 dwells well within the lipid slab, presumably out of "striking range" of Vitamin C. Nevertheless, ubiquinol can act as an antioxidant by reducing C- or O-centered lipid radicals or by recycling the lipid-resident tocopheroxyl radical. Topics: Antioxidants; Ascorbic Acid; Free Radicals; Lipid Bilayers; Liposomes; Magnetic Resonance Spectroscopy; Models, Biological; Reactive Oxygen Species; Ubiquinone; Vitamin E; Water | 2004 |
Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults.
Coenzyme Q10 (CoQ) is an endogenous enzyme cofactor, which may provide protective benefits as an antioxidant. Because age-related CoQ changes and deficiency states have been described, there is a need to establish normal ranges in healthy children. The objectives of this study are to determine if age-related differences in reduced CoQ (ubiquinol), oxidized CoQ (ubiquinone), and CoQ redox state exist in childhood, and to establish reference intervals for these analytes in healthy children.. Apparently healthy children (n=68) were selected from individuals with no history of current acute illness, medically diagnosed disease, or current medication treatment. Self-reported healthy adults (n=106) were selected from the ongoing Princeton Follow-up Study in greater Cincinnati. Participants were assessed for lipid profiles, ubiquinol concentration, ubiquinone concentration, total CoQ concentration, and CoQ redox ratio.. Mean total CoQ and ubiquinol concentrations are similar in younger children (0.2-7.6 years) and adults (29-78 years); however, lipid-adjusted total CoQ concentrations are significantly increased in younger children. Also CoQ redox ratio is significantly increased in younger and older children compared with adults.. Elevated CoQ and redox ratios in children may be an indication of oxidative stress effects, which are associated with early development of coronary heart disease. Topics: Adolescent; Adult; Aged; Aged, 80 and over; Aging; Child; Child, Preschool; Coenzymes; Female; Humans; Infant; Lipids; Male; Middle Aged; Oxidation-Reduction; Reference Values; Ubiquinone | 2004 |
Cytochrome bc(1) regulates the mitochondrial permeability transition by two distinct pathways.
The mitochondrial permeability transition (MPT) pore is a calcium-sensitive channel in the mitochondrial inner membrane that plays a crucial role in cell death. Here we show that cytochrome bc(1) regulates the MPT in isolated rat liver mitochondria and in CEM and HL60 cells by two independent pathways. Glutathione depletion activated the MPT via increased production of reactive oxygen species (ROS) generated by cytochrome bc(1). The ROS producing mechanism in cytochrome bc(1) involves movement of the "Rieske" iron-sulfur protein subunit of the enzyme complex, because inhibition of cytochrome bc(1) by pharmacologically blocking iron-sulfur protein movement completely abolished ROS production, MPT activation, and cell death. The classical inhibitor of the MPT, cyclosporine A, had no protective effect against MPT activation. In contrast, the calcium-activated, cyclosporine A-regulated MPT in rat liver mitochondria was also blocked with inhibitors of cytochrome bc(1). These results indicate that electron flux through cytochrome bc(1) regulates two distinct pathways to the MPT, one unregulated and involving mitochondrial ROS and the other regulated and activated by calcium. Topics: Animals; Antimycin A; Calcium; Catalytic Domain; Cell Death; Electron Transport Complex III; Flow Cytometry; Glutathione; Humans; Ion Channels; Mitochondria; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Polyenes; Rats; Reactive Oxygen Species; Ubiquinone | 2004 |
Arginine 391 in subunit I of the cytochrome bd quinol oxidase from Escherichia coli stabilizes the reduced form of the hemes and is essential for quinol oxidase activity.
The cytochrome bd quinol oxidase is one of two respiratory oxidases in Escherichia coli. It oxidizes dihydroubiquinol or dihydromenaquinol while reducing dioxygen to water. The bd-type oxidases have only been found in prokaryotes and have been implicated in the survival of some bacteria, including pathogens, under conditions of low aeration. With a high affinity for dioxygen, cytochrome bd not only couples respiration to the generation of a proton motive force but also scavenges O(2). In the current work, the role of a highly conserved arginine residue is explored by site-directed mutagenesis. Four mutations were made: R391A, R391K, R391M, and R391Q. All of the mutations except R391K result in enzyme lacking ubiquinol oxidase activity. Oxidase activity using the artificial reductant N,N,N',N'-tetramethyl-p-phenylenediamine in place of ubiquinol was, however, unimpaired by the mutations, indicating that the catalytic center where O(2) is reduced is intact. UV-visible spectra of each of the mutant oxidases show no perturbations to any of the three heme components (heme b(558), heme b(595), and heme d). However, spectroelectrochemical titrations of the R391A mutant reveal that the midpoint potentials of all of the heme components are substantially lower compared with the wild type enzyme. Since Arg(391) is close to Met(393), one of the axial ligands to heme b(558), it is to be expected that the R391A mutation might destabilize the reduced form of heme b(558). The fact that the midpoint potentials of heme d and heme b(595) are also significantly lowered in the R391A mutant is consistent with these hemes being physically close together on the periplasmic side of the membrane. Topics: Amino Acid Sequence; Arginine; Binding Sites; Carbon Monoxide; Catalysis; Chromatography, High Pressure Liquid; Cytochrome b Group; Cytochromes; Electron Spin Resonance Spectroscopy; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Heme; Kinetics; Molecular Sequence Data; Mutagenesis, Site-Directed; NADPH Oxidases; Oxidation-Reduction; Oxidoreductases; Oxygen; Potentiometry; Spectrophotometry; Spectroscopy, Fourier Transform Infrared; Structure-Activity Relationship; Tetramethylphenylenediamine; Ubiquinone | 2004 |
Stability studies of ubiquinol in plasma.
Ubiquinol is a sensitive redox marker in the first line of the antioxidative defence mechanism and is increasingly being measured in oxidation studies. Because of its apparent instability during storage and processing, we compared various storage conditions.. Blood was collected from three volunteers into tubes containing EDTA; it was then separated at 4 degrees C and cryopreserved with saccharose (final concentration 6 g/L). Aliquots were stored with or without glutathione or butylated hydroxytoluene at -20 degrees C and -80 degrees C.. Ubiquinol in samples stored at -20 degrees C was not stable; however, it was stable when stored at -80 degrees C, even without addition of antioxidant. By contrast, alpha-tocopherol was stable under all conditions studied. Topics: alpha-Tocopherol; Chemistry, Clinical; Edetic Acid; Genetic Markers; Humans; Oxidation-Reduction; Oxidative Stress; Specimen Handling; Temperature; Ubiquinone | 2003 |
Effects of thyroid state on H2O2 production by rat heart mitochondria: sites of production with complex I- and complex II-linked substrates.
This work was designed to determine possible effects of altered thyroid states on rates and sites of H 2 O 2 production by rat heart mitochondria. Rates of O 2 consumption and H 2 O 2 release, capacities to remove the peroxide, lipid peroxidation, cytochrome oxidase activities and ubiquinone levels were determined in heart mitochondria from euthyroid, hypothyroid, and hyperthyroid rats. Hypothyroidism decreased, whereas hyperthyroidism increased the rates of O 2 consumption and H 2 O 2 release during both state 4 and state 3 respiration with Complex I- or Complex II-linked substrates. The percentage of O 2 released as H 2 O 2 was not significantly affected by thyroid state. However, the mitochondrial capacity to remove H 2 O 2 increased in the transition from hypothyroid to hyperthyroid state, which indicates that H 2 O 2 production did not modify in proportion to the rate of O 2 consumption. The thyroid-state-linked changes in H 2 O 2 production were well correlated with the levels of hydroperoxides. Rates of H 2 O 2 release in the presence of respiratory inhibitors indicated that changes in the H 2 O 2 production occurred at both sites at which H 2 O 2 was generated in euthyroid state. This result and the observation that ubiquinol levels and cytochrome oxidase activities increase in the transition from hypothyroid to hyperthyroid state suggest that the modifications of H 2 O 2 production are due to a modulation by thyroid hormone of mitochondrial content of autoxidisable electron carriers. Topics: Animals; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Hydrogen Peroxide; Hyperthyroidism; Hypothyroidism; Kinetics; Lipid Peroxidation; Male; Mitochondria, Heart; Oxygen Consumption; Rats; Rats, Wistar; Thyroid Gland; Ubiquinone | 2003 |
Architecture of the Qo site of the cytochrome bc1 complex probed by superoxide production.
Although several X-ray structures have been determined for the mitochondrial cytochrome (cyt) bc(1) complex, none yet shows the position of the substrate, ubiquinol, in the quinol oxidase (Q(o)) site. In this study, the interaction of molecular oxygen with the reactive intermediate Q(o) semiquinone is used to probe the Q(o) site. It has been known for some time that partial turnover of the cyt bc(1) complex in the presence of antimycin A, a Q(i) site inhibitor, results in accumulation of a semiquinone at the Q(o) site, which can reduce O(2) to superoxide (O(2)(*)(-)). It was more recently shown that myxothiazol, which binds close to the cyt b(L) heme in the proximal Q(o) niche, also induces O(2)(*)(-) production. In this work, it is shown that, in addition to myxothiazol, a number of other proximal Q(o) inhibitors [including (E)-beta-methoxyacrylate-stilbene, mucidin, and famoxadone] also induce O(2)(*)(-) production in the isolated yeast cyt bc(1) complex, at approximately 50% of the V(max) observed in the presence of antimycin A. It is proposed that proximal Q(o) site inhibitors induce O(2)(*)(-) production because they allow formation, but not oxidation, of the semiquinone at the distal niche of the Q(o) site pocket. The apparent K(m) for ubiquinol at the Q(o) site in the presence of proximal Q(o) site inhibitors suggests that the "distal niche" of the Q(o) pocket can act as a fully independent quinol binding and oxidation site. Together with the X-ray structures, these results suggest substrate ubiquinol binds in a fashion similar to that of stigmatellin with H-bonds between H161 of the Rieske iron-sulfur protein and E272 of the cyt b protein. When modeled in this way, mucidin and ubiquinol can bind simultaneously to the Q(o) site with virtually no steric hindrance, whereas progressively bulkier inhibitors exhibit increasing overlap. The fact that partial turnover of the Q(o) site is possible even with bound proximal Q(o) site inhibitors is consistent with the participation of two separate functional Q(o) binding niches, occupied simultaneously or sequentially. Topics: Animals; Antimycin A; Benzoquinones; Binding Sites; Cattle; Crystallography, X-Ray; Electron Transport Complex III; Enzyme Inhibitors; Fungal Proteins; Heme; Hydrogen Bonding; Kinetics; Methacrylates; Models, Molecular; Oxygen; Protein Binding; Software; Superoxides; Thiazoles; Ubiquinone | 2003 |
Inhibition of neutral Mg2+-dependent sphingomyelinase by ubiquinol-mediated plasma membrane electron transport.
Sphingomyelin is an abundant constituent of the plasma membranes of mammalian cells. Ceramide, its primary catabolic intermediate, has emerged as an important lipid signaling molecule. Previous work carried out by our group has documented that plasma membrane Mg(2+)-dependent neutral sphingomyelinase can be effectively inhibited by exogenous ubiquinol. In this work, we have tested whether or not plasma-membrane-associated electron transport can also achieve this inhibition through endogenous ubiquinol. Our results have shown that Mg(2+)-dependent neutral sphingomyelinase in isolated plasma membranes was inhibited by NAD(P)H under conditions where ubiquinone is reduced to ubiquinol. This inhibition was potentiated in the presence of an extra amount of NAD(P)H:(quinone acceptor) oxidoreductase 1 (EC 1.6.99.2). Depletion of plasma membranes from lipophilic antioxidants by solvent extraction abolished the inhibition by reduced pyridine nucleotides without affecting the sensitivity of the neutral sphingomyelinase to exogenous ubiquinol. Reconstitution of plasma membranes with ubiquinone restored the ability of NAD(P)H to inhibit the enzyme. Our results support that the reduction of endogenous ubiquinone to ubiquinol by NAD(P)H-driven electron transport may regulate the activity of the plasma membrane neutral sphingomyelinase. Topics: Animals; Apoptosis; Cell Membrane; Electron Transport; Liver; Magnesium; Oxidative Stress; Signal Transduction; Sphingomyelin Phosphodiesterase; Swine; Ubiquinone | 2003 |
Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound.
Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.1 of the hydroxy group in detergent micelles. Stabilizing forces for the hydroxyquinone anion inhibitor include a polarized hydrogen bond to the iron-sulfur cluster ligand His181 and on-edge interactions via weak hydrogen bonds with cytochrome b residue Tyr279. The hydroxy group of the latter contributes to stabilization of the Rieske protein in the b-position by donating a hydrogen bond. The reported pH dependence of inhibition with lower efficacy at alkaline pH is attributed to the protonation state of His181 with a pKa of 7.5. Glu272, a proposed primary ligand and proton acceptor of ubiquinol, is not bound to the carbonyl group of the hydroxydioxobenzothiazole ring but is rotated out of the binding pocket toward the heme bL propionate A, to which it is hydrogen-bonded via a single water molecule. The observed hydrogen bonding pattern provides experimental evidence for the previously proposed proton exit pathway involving the heme propionate and a chain of water molecules. Binding of the alkyl-6-hydroxy-4,7-dioxobenzothiazole is discussed as resembling an intermediate step of ubiquinol oxidation, supporting a single occupancy model at the Qo site. Topics: Binding Sites; Binding, Competitive; Crystallography, X-Ray; Electron Transport; Electron Transport Complex III; Hydrogen Bonding; Oxidation-Reduction; Phospholipids; Protein Structure, Tertiary; Saccharomyces cerevisiae; Substrate Specificity; Thiazoles; Ubiquinone | 2003 |
Molecular basis for atovaquone binding to the cytochrome bc1 complex.
Atovaquone is a substituted 2-hydroxynaphthoquinone that is used therapeutically to treat Plasmodium falciparum malaria, Pneumocystis carinii pneumonia, and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting the cytochrome bc1 complex. We have examined the interaction of atovaquone with the bc1 complex isolated from Saccharomyces cerevisiae, a surrogate, nonpathogenic fungus. Atovaquone inhibits the bc1 complex competitively with apparent Ki = 9 nm, raises the midpoint potential of the Rieske iron-sulfur protein from 285 to 385 mV, and shifts the g values in the EPR spectrum of the Rieske center. These results indicate that atovaquone binds to the ubiquinol oxidation pocket of the bc1 complex, where it interacts with the Rieske iron-sulfur protein. A computed energy-minimized structure for atovaquone liganded to the yeast bc1 complex suggests that a phenylalanine at position 275 of cytochrome b in the bovine bc1 complex, as opposed to leucine at the equivalent position in the yeast enzyme, is responsible for the decreased sensitivity of the bovine bc1 complex (Ki = 80 nm) to atovaquone. When a L275F mutation was introduced into the yeast cytochrome b, the sensitivity of the yeast enzyme to atovaquone decreased (Ki = 100 nm) with no loss in activity, confirming that the L275F exchange contributes to the differential sensitivity of these two species to atovaquone. These results provide the first molecular description of how atovaquone binds to the bc1 complex and explain the differential inhibition of the fungal versus mammalian enzymes. Topics: Amino Acid Sequence; Anti-Bacterial Agents; Atovaquone; Binding Sites; Binding, Competitive; Electron Transport Complex III; Molecular Sequence Data; Naphthoquinones; Oxidation-Reduction; Polyenes; Protein Structure, Secondary; Protein Structure, Tertiary; Saccharomyces cerevisiae; Ubiquinone | 2003 |
Elimination of the disulfide bridge in the Rieske iron-sulfur protein allows assembly of the [2Fe-2S] cluster into the Rieske protein but damages the ubiquinol oxidation site in the cytochrome bc1 complex.
The [2Fe-2S] cluster of the Rieske iron-sulfur protein is held between two loops of the protein that are connected by a disulfide bridge. We have replaced the two cysteines that form the disulfide bridge in the Rieske protein of Saccharomyces cerevisiae with tyrosine and leucine, and tyrosine and valine, to evaluate the effects of the disulfide bridge on assembly, stability, and thermodynamic properties of the Rieske iron-sulfur cluster. EPR spectra of the Rieske proteins lacking the disulfide bridge indicate the iron-sulfur cluster is assembled in the absence of the disulfide bridge, but there are significant shifts in all g values, indicating a change in the electronic structure of the [2Fe-2S] iron-sulfur center. In addition, the midpoint potential of the iron-sulfur cluster is lowered from 265 mV in the Rieske protein from wild-type yeast to 150 mV in the protein from the C164Y/C180L mutant and to 160 mV in the protein from the C164Y/C180V mutant. Ubiquinol-cytochrome c reductase activities of the bc(1) complexes with Rieske proteins lacking the disulfide bridge are less than 1% of the activity of the bc(1) complex from wild-type yeast, even though normal amounts of the iron-sulfur protein are present as judged by Western blot analysis. These activities are lower than the 105-115 mV decrease in the midpoint potential of the Rieske iron-sulfur cluster can account for. Pre-steady-state reduction of the bc(1) complexes with menadiol indicates that quinol is not oxidized through center P but is oxidized through center N. In addition, the levels of stigmatellin and UHDBT binding are markedly diminished, while antimycin binding is unaffected, in the bc(1) complexes with Rieske proteins lacking the disulfide bridge. Taken together, these results indicate that the ubiquinol oxidation site at center P is damaged in the bc(1) complexes with Rieske proteins lacking the disulfide bridge even though the iron-sulfur cluster is assembled into the Rieske protein. Topics: Amino Acid Sequence; Amino Acid Substitution; Binding Sites; Blotting, Western; Cysteine; Disulfides; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Iron-Sulfur Proteins; Mitochondria; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Potentiometry; Recombinant Proteins; Ubiquinone; Yeasts | 2003 |
Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA.
It has been shown that treating hypercholesterolemic patients (HPC) with statins leads to a decrease, at least in plasma, not only in cholesterol, but also in important non-sterol compounds such as ubiquinone (CoQ10), and possibly dolichols, that derive from the same biosynthetic pathway. Plasma CoQ10 decrease might result in impaired antioxidant protection, therefore leading to oxidative stress. In the present paper we investigated the levels in plasma, lymphocytes and erythrocytes, of ubiquinol and ubiquinone, other enzymatic and non-enzymatic lipophilic and hydrophilic antioxidants, polyunsaturated fatty acids of phosfolipids and cholesterol ester fractions, as well as unsaturated lipid and protein oxidation in 42 hypercholesterolemic patients treated for 3 months. The patients were treated with different doses of 3 different statins, i.e. atorvastatin 10 mg (n = 10) and 20 mg (n = 7), simvastatin, 10 mg (n = 5) and 20 mg (n = 10), and pravastatin, 20 mg (n = 5) and 40 mg (n = 5). Simvastatin, atorvastatin and pravastatin produced a dose dependent plasma depletion of total cholesterol (t-CH), LDL-C, CoQ10H2, and CoQ10, without affecting the CoQ10H2/CoQ10 ratio. The other lipophilic antioxidants (d-RRR-alpha-tocopherol-vit E-, gamma-tocopherol, vit A, lycopene, and beta-carotene), hydrophilic antioxidants (vit C and uric acid), as well as, TBA-RS and protein carbonyls were also unaffected. Similarly the erythrocyte concentrations of GSH and PUFA, and the activities of enzymatic antioxidants (Cu,Zn-SOD, GPx, and CAT) were not significantly different from those of the patients before therapy. In lymphocytes the reduction concerned CoQ10H2, CoQ10, and vit E; other parameters were not investigated. The observed decline of the levels of CoQ10H2 and CoQ10 in plasma and of CoQ10H2, CoQ10 and vit E in lymphocytes following a 3 month statin therapy might lead to a reduced antioxidant capacity of LDL and lymphocytes, and probably of tissues such as liver, that have an elevated HMG-CoA reductase enzymatic activity. However, this reduction did not appear to induce a significant oxidative stress in blood, since the levels of the other antioxidants, the pattern of PUFA as well as the oxidative damage to PUFA and proteins resulted unchanged. The concomitant administration of ubiquinone with statins, leading to its increase in plasma, lymphocytes and liver may cooperate in counteracting the adverse effects of statins, as already pointed out by various authors on the ba Topics: Antioxidants; Atorvastatin; Catalase; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Coenzymes; Erythrocytes; Fatty Acids, Unsaturated; Glutathione; Glutathione Peroxidase; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hyperlipidemias; Lymphocytes; Male; Middle Aged; Pravastatin; Pyrroles; Simvastatin; Superoxide Dismutase; Ubiquinone; Vitamin E | 2003 |
The protective and healing effects of a natural antioxidant formulation based on ubiquinol and Aloe vera against dextran sulfate-induced ulcerative colitis in rats.
Oxygen/nitrogen reactive species (ROS/RNS) are currently implicated in the pathogenesis of ulcerative colitis, drawing attention on the potential prophylactic and healing properties of antioxidants, scavengers, chelators. We evaluated the possible protective/curative effects of a natural antioxidant preparation based on Aloe vera and ubiquinol, against intestinal inflammation, lesions, and pathological alterations of the intestinal electrophysiological activity and motility, in a rat model of DSS-induced colitis. 5% dextrane sulfate (DDS) (3 days), followed by 1% DSS (4 days) was administered in drinking water. The antioxidant formulation (25 mg/kg) was delivered with a pre-treatment protocol, or simultaneously or post-colitis induction. Spontaneous and acetylcholine-stimulated electrical activity were impaired in the small intestine and in distal colon, upon exposure to DSS only. Severe inflammation occurred, with increased myeloperoxidase activity, and significant alterations of the oxidant/antioxidant status in colonic tissue and peritoneal cells. Lipoperoxidation, superoxide production, glutathione peroxidase and glutathione-S-transferase activities, and reduced glutathione content increased, whilst superoxide dismutase and catalase activities were sharply suppressed in colon tissue. ROS/RNS formation in peritoneal cells was strongly inhibited. Inflammation, electrical/mechanical impairment in the gut, and a great majority of oxidative stress parameters were improved substantially by pre-treatment with the antioxidant preparation, but not by simultaneous administration or post-treatment. Topics: Acetylcholine; Aloe; Animals; Antioxidants; Catalase; Colitis, Ulcerative; Colon; Dextran Sulfate; Disease Models, Animal; Electrophysiology; Glutathione; Glutathione Peroxidase; Glutathione Transferase; Intestine, Small; Lipid Peroxidation; Male; Muscle, Smooth; Rats; Rats, Wistar; Reactive Nitrogen Species; Reactive Oxygen Species; Superoxide Dismutase; Superoxides; Ubiquinone | 2003 |
Lipoyl dehydrogenase catalyzes reduction of nitrated DNA and protein adducts using dihydrolipoic acid or ubiquinol as the cofactor.
Inflamed tissues generate reactive nitrogen oxide species (RNO(x)), such as peroxynitrite (ONOO-)and nitryl chloride (NO2Cl), which lead to formation of nitrated DNA and protein adducts, including 8-nitroguanine (8NG), 8-nitroxanthine (8NX), and 3-nitrotyrosine (3NT). Once formed, the two nitrated DNA adducts are not stable in DNA and undergo spontaneous depurination. Nitration of protein tyrosine leads to inactivation of protein functions and 3NT has been detected in various disease states. We herein report that reduction of these nitro adducts to their corresponding amino analogues can be catalyzed by lipoyl dehydrogenases (EC 1.8.1.4) from Clostridium kluyveri (ck) and from porcine heart (ph) using NAD(P)H as the cofactor. We also found that dihydrolipoic acid (DHLA) and ubiquinol can be used as effective cofactors for reduction of 8NG, 8NX, and 3NT by these lipoyl dehydrogenases. The reduction efficiency of the mammalian enzyme is higher than the bacterial isozyme. The preference of cofactors by both lipoyl dehydrogenases is DHLA>NAD(P)H>ubiquinol. In all the systems examined, the nitrated purines are reduced to a greater extent than 3NT under the same conditions. We also demonstrate that this lipoyl dehydrogenase/antioxidant system is effective in reducing nitrated purine on NO2Cl-treated double stranded calf thymus DNA, and thus decreases apurinic site formation. The nitroreductase activity for lipoyl dehydrogenase might represent a possible metabolic pathway to reverse the process of biological nitration. Topics: Dihydrolipoamide Dehydrogenase; Guanine; NADP; Nitrogen Oxides; Oxidation-Reduction; Reactive Nitrogen Species; Thioctic Acid; Tyrosine; Ubiquinone; Xanthines | 2002 |
A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc(1) complex.
A refinement of the protonmotive Q cycle mechanism is proposed in which oxidation of ubiquinol is a concerted reaction and occurs by an alternating, half-of-the-sites mechanism. A concerted mechanism of ubiquinol oxidation is inferred from the finding that there is reciprocal control between the high potential and low potential redox components involved in ubiquinol oxidation. The potential of the Rieske iron-sulfur protein controls the rate of reduction of the b cytochromes, and the potential of the b cytochromes controls the rate of reduction of the Rieske protein and cytochrome c(1). A concerted mechanism of ubiquinol oxidation reconciles the findings that the ubiquinol-cytochrome c reductase kinetics of the bc(1) complex include both a pH dependence and a dependence on Rieske iron-sulfur protein midpoint potential.An alternating, half-of-the-sites mechanism for ubiquinol oxidation is inferred from the finding that some inhibitory analogs of ubiquinol that block ubiquinol oxidation by binding to the ubiquinol oxidation site in the bc(1) complex inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex. One molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme, and the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. An alternating, half-of-the-sites mechanism implies that, at least under some conditions, only half of the sites in the dimeric enzyme are reactive at any one time. This provides a raison d'être for the dimeric structure of the enzyme, in that bc(1) activity may be regulated and capable of switching between a half-of-the-sites active and a fully active enzyme. Topics: Antimycin A; Binding Sites; Cytochrome b Group; Dimerization; Electron Transport; Electron Transport Complex III; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Models, Molecular; NADH Dehydrogenase; Proton-Motive Force; Thermodynamics; Ubiquinone; Vitamin K 2 | 2002 |
Ubiquinol inhibition of neutral sphingomyelinase in liver plasma membrane: specific inhibition of the Mg(2+)-dependent enzyme and role of isoprenoid chain.
In this work, the specificity of ubiquinol as inhibitor of the neutral sphingomyelinases present at the plasma membrane (Mg(2+)-dependent and -independent) and structural requirements for such inhibition have been studied. Our results have shown that ubiquinol specifically inhibits Mg(2+)-dependent neutral sphingomyelinase activity in isolated liver plasma membranes, but no significant participation of the Mg(2+)-independent enzyme was observed. Both the reduction state of the (hydro)quinone ring and the length of the hydrophobic side chain were important determinants in neutral sphingomyelinase inhibition. Ubiquinols inhibited the nSMase more efficiently than ubiquinones, and hydrophobic homologs with six or nine isoprene units were the most effective inhibitors. Inhibition of nSMase by ubiquinols displayed similarities with inhibition by manumycin and the hydroquinones F11334's, suggesting that these compounds could act as structural analogs of ubiquinol. Beyond its participation in mitochondrial energy metabolism, and as antioxidant, this novel role for ubiquinol as a neutral sphingomyelinase inhibitor should be considered an important factor to regulate lipid signaling at the plasma membrane that could be related to its beneficial effects on cells, tissues, and organisms. Topics: Animals; Cell Membrane; Enzyme Inhibitors; Kinetics; Liver; Magnesium; Protein Prenylation; Sphingomyelin Phosphodiesterase; Swine; Ubiquinone | 2002 |
Nonoxidizable ubiquinol derivatives that are suitable for the study of the ubiquinol oxidation site in the cytochrome bc1 complex.
Recent X-ray crystallographic analyses of the mitochondrial cytochrome bc1 complex show ubiquinone binding at the Q(i) site, but attempts to show binding of ubiquinol or ubiquinone at the Q(o) site have been unsuccessful, even though the binding of noncompetitive Q(o) site inhibitors near the putative ubiquinol binding pocket is well established. We speculate that ubiquinol binds transiently to the Q(o) site only when both heme b(L) and the iron sulfur cluster are in the oxidized form, an experimental condition difficult to obtain since ubiquinol will be oxidized once bound to the site. Stable binding at the Q(o) site might be achieved by a nonoxidizable ubiquinol-like compound. For this purpose, the isomers 2,3,4-trimethoxy-5-decyl-6-methyl-phenol (TMDMP) and 2,3,4-trimethoxy-5-methyl-6-decyl-phenol (TMMDP) were synthesized from 2,3-dimethoxy-5-methyl-6-decyl-1, 4-benzoquinol (Q0C10) by controlled methylation and separated by TLC and HPLC. The structures of TMDMP and TMMDP were established by 1H-13C-two-dimensional NMR. Both are competitive inhibitors of the cytochrome bc1 complex, with TMDMP being the stronger one. Preliminary results suggest that TMDMP binds tightly enough to make X-ray crystallography of inhibitor-bc1 complex co-crystals feasible. The binding site of TMDMP does not overlap with the binding sites of stigmatellin, MOA-stilbene (MOAS), undecylhydroxydioxobenzothiazole (UHDBT) and myxothaizol. Topics: Animals; Binding Sites; Cattle; Electron Transport Complex III; Magnetic Resonance Spectroscopy; Mitochondria, Heart; Models, Molecular; Molecular Conformation; Molecular Structure; Oxidation-Reduction; Phenols; Ubiquinone | 2002 |
Inhibitory analogs of ubiquinol act anti-cooperatively on the Yeast cytochrome bc1 complex. Evidence for an alternating, half-of-the-sites mechanism of ubiquinol oxidation.
The cytochrome bc(1) complex is a dimeric enzyme that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is re-reduced at a second center, referred to as center N. To understand better the mechanism of ubiquinol oxidation, we have examined the interaction of several inhibitory analogs of ubiquinol with the yeast cytochrome bc(1) complex. Stigmatellin and methoxyacrylate stilbene, two inhibitors that block ubiquinol oxidation at center P, inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex, indicating that one molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme. This stoichiometry was obtained when the inhibitors were titrated in cytochrome c reductase assays and in reactions of quinol with enzyme in which the inhibitors block pre-steady state reduction of cytochrome b. As an independent measure of inhibitor binding, we titrated the red shift in the optical spectrum of ferrocytochrome b with methoxyacrylate stilbene and thus confirmed the results of the inhibition of activity titrations. The titration curves also indicate that the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. Because these inhibitors bind to the ubiquinol oxidation site in the bc(1) complex, we propose that the yeast cytochrome bc(1) complex oxidizes ubiquinol by an alternating, half-of-the-sites mechanism. Topics: Anti-Bacterial Agents; Antimycin A; Electron Transport Complex III; Fungal Proteins; Oxidation-Reduction; Polyenes; Saccharomyces cerevisiae; Stilbenes; Ubiquinone | 2002 |
Roles of NapF, NapG and NapH, subunits of the Escherichia coli periplasmic nitrate reductase, in ubiquinol oxidation.
The nap operon of Escherichia coli K-12, encoding a periplasmic nitrate reductase (Nap), encodes seven proteins. The catalytic complex in the periplasm, NapA-NapB, is assumed to receive electrons from the quinol pool via the membrane-bound cytochrome NapC. Like NapA, B and C, a fourth polypeptide, NapD, is also essential for Nap activity. However, none of the remaining three polypeptides, NapF, G and H, which are predicted to encode non-haem, iron-sulphur proteins, are essential for Nap activity, and their function is currently unknown. The relative rates of growth and electron transfer from physiological substrates to Nap have been investigated using strains defective in the two membrane-bound nitrate reductases, and also defective in either ubiquinone or menaquinone biosynthesis. The data reveal that Nap is coupled more effectively to menaquinol oxidation than to ubiquinol oxidation. Conversely, parallel experiments with a second set of mutants revealed that nitrate reductase A couples more effectively with ubiquinol than with menaquinol. Three further sets of strains were constructed with combinations of in frame deletions of ubiCA, menBC, napC, napF and napGH genes. NapF, NapG and NapH were shown to play no role in electron transfer from menaquinol to the NapAB complex but, in the Ubi+Men- background, deletion of napF, napGH or napFGH all resulted in total loss of nitrate-dependent growth. Electron transfer from ubiquinol to NapAB was totally dependent upon NapGH, but not on NapF. NapC was essential for electron transfer from both ubiquinol and menaquinol to NapAB. The results clearly established that NapG and H, but not NapF, are essential for electron transfer from ubiquinol to NapAB. The decreased yield of biomass resulting from loss of NapF in a Ubi+Men+ strain implicates NapF in an energy- conserving role coupled to the oxidation of ubiquinol. We propose that NapG and H form an energy- conserving quinol dehydrogenase functioning as either components of a proton pump or in a Q cycle, as electrons are transferred from ubiquinol to NapC. Topics: Energy Metabolism; Escherichia coli; Escherichia coli Proteins; Gene Deletion; Kinetics; Nitrate Reductase; Nitrate Reductases; Nitrates; Operon; Oxidation-Reduction; Protein Subunits; Ubiquinone; Vitamin K | 2002 |
Ubiquinol/ubiquinone ratio as a marker of oxidative stress.
Topics: Biomarkers; Chromatography, High Pressure Liquid; Humans; Oxidative Stress; Ubiquinone | 2002 |
Mitochondrial superoxide radical formation is controlled by electron bifurcation to the high and low potential pathways.
The generation of oxygen radicals in biological systems and their sites of intracellular release have been subject of numerous studies in the last decades. Based on these studies mitochondria are considered to be the major source of intracellular oxygen radicals. Although this finding is more or less accepted, the mechanism of univalent oxygen reduction in mitochondria is still obscure. One of the most critical electron transfer steps in the respiratory chain is the electron bifurcation at the cytochrome bc1 complex. Recent studies with genetically mutated mitochondria have made it clear that electron bifurcation from ubiquinol to the cytochrome bc1 complex requires the free mobility of the head domain of the Rieske iron-sulfur protein. On the other hand, it has been long known that inhibition of electron bifurcation by antimycin A causes leakage of single electrons to dioxygen, which results in the release of superoxide radicals. These findings lead us to study whether hindrance of the interaction of ubiquinol with the cytochrome bc1 complex is the regulator of single electron diversion to oxygen. Hindrance of electron bifurcation was observed following alterations of the physical state of membrane phospholipids in which the cytochrome bc1 complex is inserted. Irrespective of whether the fluidity of the membrane lipids was elevated or decreased, electron flow rates to the Rieske iron-sulfur protein were drastically reduced. Concomitantly superoxide radicals were released from these mitochondria, strongly suggesting an effect on the mobility of the head domain of the Rieske iron-sulfur protein. This revealed the involvement of the ubiquinol cytochrome bc1 redox couple in mitochondrial superoxide formation. The regulator, which controls leakage of electrons to oxygen, appears to be the electron-branching activity of the cytochrome bc1 complex. Topics: Animals; Antimycin A; Cattle; Cholesterol; Cytochrome b Group; Cytochromes c1; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Electrons; Erucic Acids; Hydrogen Peroxide; Iron-Sulfur Proteins; Kinetics; Male; Mitochondria, Heart; NADH Dehydrogenase; Oxidation-Reduction; Oxygen; Rats; Rats, Sprague-Dawley; Submitochondrial Particles; Superoxides; Ubiquinone | 2002 |
Ubiquinol and a coenzyme Q reducing system protect platelet mitochondrial function of transfusional buffy coats from oxidative stress.
The conditions under which Coenzyme Q (CoQ) may protect platelet mitochondrial function of transfusional buffy coats from aging and from induced oxidative stress were investigated. The Pasteur effect, i.e. the enhancement of lactate production after inhibition of mitochondrial respiratory chain, was exploited as a marker of mitochondrial function as it allows to calculate the ratio of mitochondrial ATP to glycolytic ATP. Reduced CoQ10 improves platelet mitochondrial function of transfusional buffy coats and protects the cells from induced oxidative stress. Oxidized CoQ is usually less effective, despite the presence, shown for the first time in this study, of quinone reductase activities in the platelet plasma membranes. The addition of a CoQ reducing system to platelets is effective in enhancing the protection of platelet mitochondrial function from the oxidative stress. The results support on one hand a possibility of protection of mitochondrial function in aging by exogenous CoQ intake, on the other a possible application in protection of transfusional buffy coats from storage conditions and oxidative deterioration. Topics: Aging; Antioxidants; Blood Platelets; Cell Membrane; Cell Respiration; Chromatography, High Pressure Liquid; Coenzymes; Cytoprotection; Electron Transport; Humans; Lactic Acid; Lipid Peroxidation; Mitochondria; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Oxidative Stress; Oxygen; Platelet Transfusion; Thiobarbituric Acid Reactive Substances; Ubiquinone | 2002 |
Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex.
The cytochrome (cyt) bc(1) complex is central to energy transduction in many species. Most investigators now accept a modified Q-cycle as the catalytic mechanism of this enzyme. Several thermodynamically favorable side reactions must be minimized for efficient functioning of the Q-cycle. Among these, reduction of oxygen by the Q(o) site semiquinone to produce superoxide is of special pathobiological interest. These superoxide-producing bypass reactions are most notably observed as the antimycin A- or myxothiazol-resistant reduction of cyt c. In this work, we demonstrate that these inhibitor-resistant cyt c reductase activities are largely unaffected by removal of O(2) in the isolated yeast cyt bc(1) complex. Further, increasing O(2) tension 5-fold stimulated the antimycin A-resistant reduction by a small amount ( approximately 25%), while leaving the myxothiazol-resistant reduction unchanged. This most likely indicates that the rate-limiting step in superoxide production is the formation of a reactive species (probably a semiquinone), capable of rapid O(2) reduction, and that in the absence of O(2) this species can reduce cyt c by some other pathway. We suggest as one possibility that a semiquinone escapes from the Q(o) site and reduces either O(2) or cyt c directly. The small increase in antimycin A-resistant cyt c reduction rate at high O(2) can be explained by the accumulation of a low concentration of a semiquinone inside the Q(o) site. Under aerobic conditions, addition of saturating levels of superoxide dismutase (SOD) inhibited 50% of cyt c reduction in the presence of myxothiazol, implying that essentially all bypass reactions occur with the production of superoxide. However, SOD inhibited only 35% of antimycin A-resistant cyt c reduction, suggesting the presence of a second, slower bypass reaction that does not reduce O(2). Given that myxothiazol blocks cyt b reduction whereas antimycin A promotes it, we propose that this second bypass occurs by reduction of the Q(o) site semiquinone by prereduced cyt b(L). Topics: Aerobiosis; Anaerobiosis; Antimycin A; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Enzyme Inhibitors; Methacrylates; Oxidation-Reduction; Oxidoreductases; Saccharomyces cerevisiae; Superoxides; Thiazoles; Ubiquinone | 2002 |
Direct evidence for the protonation of aspartate-75, proposed to be at a quinol binding site, upon reduction of cytochrome bo3 from Escherichia coli.
Aspartate-75 (D75) was recently suggested to participate in a ubiquinone-binding site in subunit I of cytochrome bo(3) from Escherichia coli on the basis of a structural model [Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., and Wikström, M. (2000) Nat. Struct. Biol. 7 (10), 910-917]. We studied the protonation state of D75 for the reduced and oxidized forms of the enzyme, using a combined site-directed mutagenesis, electrochemical, and FTIR spectroscopic approach. The D75H mutant is catalytically inactive, whereas the more conservative D75E substitution has quinol oxidase activity equal to that of the wild-type enzyme. Electrochemically induced FTIR difference spectra of the inactive D75H mutant enzyme show a clear decrease in the spectroscopic region characteristic of protonated aspartates and glutamates. Strong variations in the amide I region of the FTIR difference spectrum, however, reflect a more general perturbation due to this mutation of both the protein and the bound quinone. Electrochemically induced FTIR difference spectra on the highly conservative D75E mutant enzyme show a shift from 1734 to 1750 cm(-1) in direct comparison to wild type. After H/D exchange, the mode at 1750 cm(-1) shifts to 1735 cm(-1). These modes, concomitant with the reduced state of the enzyme, can be assigned to the nu(C=O) vibrational mode of protonated D75 and E75, respectively. In the spectroscopic region where signals for deprotonated acidic groups are expected, band shifts for the nu(COO(-))(s/as) modes from 1563 to 1554-1539 cm(-1) and from 1315 to 1336 cm(-1), respectively, are found for the oxidized enzyme. These signals indicate that D75 (or E75 in the mutant) is deprotonated in the oxidized form of cytochrome bo(3) and is protonated upon full reduction of the enzyme. It is suggested that upon reduction of the bound ubiquinone at the high affinity site, D75 takes up a proton, possibly sharing it with ubiquinol. Topics: Amides; Aspartic Acid; Binding Sites; Cytochrome b Group; Cytochromes; Electrochemistry; Electron Transport Complex IV; Escherichia coli; Escherichia coli Proteins; Glutamic Acid; Histidine; Mutagenesis, Site-Directed; Oxidation-Reduction; Oxidoreductases; Protons; Spectrophotometry, Ultraviolet; Spectroscopy, Fourier Transform Infrared; Ubiquinone | 2001 |
Activity of alpha-lipoic acid in the protection against oxidative stress in skin.
Topics: Antioxidants; Cells, Cultured; Culture Media, Serum-Free; Dose-Response Relationship, Drug; Humans; Keratinocytes; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species; Solubility; Thioctic Acid; Ubiquinone; Ultraviolet Rays; Vitamin E | 2001 |
Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway.
Lipoamide dehydrogenase belongs to a family of pyridine nucleotide disulfide oxidoreductases and is ubiquitous in aerobic organisms. This enzyme also reduces ubiquinone (the only endogenously synthesized lipid-soluble antioxidant) to ubiquinol, the form in which it functions as an antioxidant. The reduction of ubiquinone was linear with time and exhibited turnover numbers of 5 and 1.2 min(-1) in the presence and absence of zinc, respectively. The reaction was stimulated by zinc and cadmium but not by the other divalent ions tested. The zinc/cadmium-dependent stimulation of the reaction increased rapidly and linearly up to a concentration of 0.1 mM and was even further increased at 0.5 mM. At pH 6, the activity was three times higher than at physiological pH. Alteration of the NADPH : NADP(+) ratio revealed that the reaction is inhibited by higher concentrations of the oxidized cofactors. FAD reduced ubiquinone in a dose-dependent manner at a considerably lower rate, suggesting that the reduction of ubiquinone by lipoamide dehydrogenase involves the FAD moiety of the enzyme. Topics: Animals; Antioxidants; Cadmium; Cations, Divalent; Chromatography, High Pressure Liquid; Coenzymes; Dihydrolipoamide Dehydrogenase; Flavin-Adenine Dinucleotide; Heart; Hydrogen-Ion Concentration; Kinetics; Lipid Peroxidation; NAD; NADP; Oxidation-Reduction; Swine; Ubiquinone; Zinc | 2001 |
Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1.
Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli. Topics: Albumins; Bacterial Proteins; Electrophoresis, Polyacrylamide Gel; Enzyme Inhibitors; Hydrogen-Ion Concentration; Iron; Oxidation-Reduction; Oxidoreductases; Phosphatidylcholines; Thiobacillus; Ubiquinone | 2001 |
Neutral magnesium-dependent sphingomyelinase from liver plasma membrane: purification and inhibition by ubiquinol.
Plasma membranes isolated from pig liver contained almost no acid sphingomyelinase but significant neutral magnesium-dependent sphingomyelinase that was activated by phosphatidylserine. We report here the purification to apparent homogeneity of neutral sphingomyelinase of about 87 kDa from liver plasma membranes. The purified enzyme strictly required magnesium and had a neutral optimal pH. In contrast with neutral sphingomyelinase purified from other sources (such as brain), the enzyme purified from from liver plasma membrane was not inhibited by GSH and, strikingly, it was not activated by phosphatidylserine. Liver sphingomyelinase was inhibited by several lipophilic antioxidants in a dose-dependent way. Ubiquinol-10 was more effective than alpha-tocopherol, alpha-tocopherylquinone, alpha-tocopherylquinone, and ubiquinone-10, and inhibition was noncompetitive. Differential inhibition of neutral sphingomyelinase by antioxidants did not correlate with different levels of protection against lipid peroxidation. The purified sphingomyelinase was not inhibited significantly by ubiquinone-10 and ubiquinol- 10, but ubiquinol-0 and ubiquinone-0 inhibited by 30 and 60% respectively. Our results demonstrate a direct inhibitory effect of ubiquinol on the plasma membrane n-SMase and support the participation of this molecule in the regulation of ceramide-mediated signaling. Topics: Animals; Antioxidants; Cell Membrane; Enzyme Inhibitors; In Vitro Techniques; Kinetics; Liver; Magnesium; Signal Transduction; Solubility; Sphingomyelin Phosphodiesterase; Swine; Ubiquinone | 2001 |
Reactivity of ubiquinones and ubiquinols with free radicals.
The reactivity of quinones 1-4 and of the corresponding quinols 5-8 towards carbon- and oxygen-centred radicals were studied. All quinones bearing at least one nuclear position free, readily react with alkyl and phenyl radicals to afford the alkylated quinones 12-24; however, quinones 1 and 3 reacted with 2-cyano-2-propyl radical to yield products (the mono- and di-ethers 9-11) derived from the attack on the carbonylic oxygen. The reactions carried out on quinones with the benzoyloxy radical led to no reaction products and in the case of Q10, the isoprenic chain also remained unchanged. Quinols 5-8 reacted only with oxygen-centred radicals (benzoyloxy and 2-cyano-2-propyl-peroxy radicals) to give the corresponding quinones. The isoprenic chain of Q10 did not undergo attack even with peroxy radicals. Carbon-centred radicals resulted unable to abstract hydrogen from the studied quinols. Topics: Free Radicals; Ubiquinone | 2001 |
Role of protonatable groups of bovine heart bc(1) complex in ubiquinol binding and oxidation.
The pH dependence of the initial reaction rate catalyzed by the isolated bovine heart ubiquinol-cytochrome c reductase (bc1 complex) varying decylbenzoquinol (DBH) and decylbenzoquinone (DB) concentrations was determined. The affinity for DBH was increased threefold by the protonation of a group with pKa = 5.7 +/- 0.2, while the inhibition constant (Ki) for DB decreased 22 and 2.8 times when groups with pKa = 5.2 +/- 0.6 and 7.7 +/- 0.2, respectively, were protonated. This suggests stabilization of the protonated form of the acidic group by DBH binding. Initial rates were best fitted to a kinetic model involving three protonatable groups. The protonation of the pKa approximately 5.7 group blocked catalysis, indicating its role in proton transfer. The kinetic model assumed that the deprotonation of two groups (pKa values of 7.5 +/- 0.03 and approximately 9.2) decreases the catalytic rate by diminishing the redox potential of the iron-sulfur (Fe-S) cluster. The protonation of the pKa approximately 7.5 group also decreased the reaction rate by 80-86%, suggesting its role as acceptor of a proton from ubiquinol. The lack of effect on the Km for DBH when the pKa 7.5-7.7 group is deprotonated suggests that hydrogen bonding to this residue is not the main factor that determines substrate binding to the Qo site. The possible relationship of the pKa 5.2-5.7 and pKa 7.5-7.7 groups with Glu272 of cytochrome b and His161 of the Fe-S protein is discussed. Topics: Animals; Catalysis; Cattle; Electron Transport Complex III; Horses; Hydrogen-Ion Concentration; Kinetics; Oxidation-Reduction; Protein Binding; Protons; Ubiquinone | 2001 |
Reaction of Escherichia coli cytochrome bo(3) and mitochondrial cytochrome bc(1) with a photoreleasable decylubiquinol.
In order to probe the reaction chemistry of respiratory quinol-oxidizing enzymes on a rapid time scale, a photoreleasable quinol substrate was synthesized by coupling decylubiquinol with the water-soluble protecting group 3',5'-bis(carboxymethoxy)benzoin (BCMB) through a carbonate linkage. The resulting compound, DQ-BCMB, was highly soluble in aqueous detergent solution, and showed no reactivity with quinol-oxidizing enzymes prior to photolysis. Upon photolysis in acetonitrile, 5, 7-bis(carboxymethoxy)-2-phenylbenzofuran, carbon dioxide, and decylubiquinol were formed. In aqueous media, free 3', 5'-bis(carboxymethoxy)benzoin was also produced. Photolysis of DQ-BCMB with a 308 nm excimer laser led to the release of the BCMB group in less than 10(-6) s. Decylubiquinol was released in the form of a carbonate monoester, which decarboxylated with an observed first-order rate constant of 195-990 s(-1), depending on the reaction medium. Yields of decylubiquinol as high as 35 microM per laser pulse were attained readily. In the presence of Escherichia coli cytochrome bo(3), photolysis of DQ-BCMB led to the oxidation of quinol by the enzyme with a rate that was limited by the rate of the decylubiquinol release. Mitochondrial cytochrome bc(1) reacted with photoreleased decylubiquinol with distinct kinetic phases corresponding to rapid b heme reduction and somewhat slower c heme reduction. Oxidation of photoreleased ubiquinol by this enzyme showed saturation kinetics with a K(m) of 3.6 microM and a k(cat) of 210 s(-1). The saturation behavior was a result of decylubiquinol being released as a carbonate monoester during the photolysis of DQ-BCMB and interacting with cytochrome bc(1) before decarboxylation of this intermediate yielded free decylubiquinol. The reaction of cytochrome bc(1) and photoreleased decylubiquinol in the presence of antimycin A led to monophasic b heme reduction, but also yielded slower quinol oxidation kinetics. The discrimination of kinetic phases in the reaction of cytochrome bc(1) with ubiquinol substrates has provided a means of exploring the bifurcation of electron transfer that is central to the operation of the Q-cycle in this enzyme. Topics: Cytochrome b Group; Cytochromes; Electron Transport; Electron Transport Complex III; Escherichia coli; Escherichia coli Proteins; Hydrogen-Ion Concentration; Mitochondria; Nuclear Magnetic Resonance, Biomolecular; Photochemistry; Ubiquinone | 2000 |
The existence of a lysosomal redox chain and the role of ubiquinone.
Several studies concerning the distribution of ubiquinone (UQ) in the cell report a preferential accumulation of this biogenic quinone in mitochondria, plasma membranes, Golgi vesicles, and lysosomes. Except for mitochondria, no recent comprehensive experimental evidence exists on the particular function of UQ in these subcellular organelles. The aim of a recent study was to elucidate whether UQ is an active part of an electron-transfer system in lysosomes. In the present work, a lysosomal fraction was prepared from a light mitochondrial fraction of rat liver by isopycnic centrifugation. The purity of our preparation was verified by estimation of the respective marker enzymes. Analysis of lysosomes for putative redox carriers and redox processes in lysosomes was carried out by optical spectroscopy, HPLC, oxymetry, and ESR techniques. UQ was detected in an amount of 2.2 nmol/mg of protein in lysosomes. Furthermore, a b-type cytochrome and a flavin-adenine dinucleotide (FAD) were identified as other potential electron carriers. Since NADH was reported to serve as a substrate of UQ redox chains in plasma membranes, we also tested this reductant in lysosomes. Our experiments demonstrate a NADH-dependent reduction of UQ by two subsequent one-electron-transfer steps giving rise to the presence of ubisemiquinone and an increase of the ubiquinol pool in lysosomes. Lysosomal NADH oxidation was accompanied by an approximately equimolar oxygen consumption, suggesting that O(2) acts as a terminal acceptor of this redox chain. DMPO/(*)OH spin adducts were detected by ESR in NADH-supplemented lysosomes, suggesting a univalent reduction of oxygen. The kinetic analysis of redox changes in lysosomes revealed that electron carriers operate in the sequence NADH > FAD > cytochrome b > ubiquinone > oxygen. By using the basic spin label TEMPAMINE, we showed that the NADH-related redox chain in lysosomes supports proton accumulation in lysosomes. In contrast to the hypothesis that UQ in lysosomes is simply a waste product of autophagy in the cell, we demonstrated that this lipophilic electron carrier is a native constituent of a lysosomal electron transport chain, which promotes proton translocation across the lysosomal membrane. Topics: Animals; Coenzymes; Cyclic N-Oxides; Cytochrome b Group; Electron Spin Resonance Spectroscopy; Electron Transport; Flavin-Adenine Dinucleotide; Intracellular Membranes; Kinetics; Lysosomes; Male; Mitochondria, Liver; Models, Biological; NAD; Oxidation-Reduction; Oxygen; Protons; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reducing Agents; Ubiquinone | 2000 |
Evidence for a concerted mechanism of ubiquinol oxidation by the cytochrome bc1 complex.
To better understand the mechanism of divergent electron transfer from ubiquinol to the iron-sulfur protein and cytochrome b(L) within the cytochrome bc(1) complex, we have examined the effects of antimycin on the presteady state reduction kinetics of the bc(1) complex in the presence or absence of endogenous ubiquinone. When ubiquinone is present, antimycin slows the rate of cytochrome c(1) reduction by approximately 10-fold but had no effect upon the rate of cytochrome c(1) reduction in bc(1) complex lacking endogenous ubiquinone. In the absence of endogenous ubiquinone cytochrome c(1), reduction was slower than when ubiquinone was present and was similar to that in the presence of ubiquinone plus antimycin. These results indicate that the low potential redox components, cytochrome b(H) and b(L), exert negative control on the rate of reduction of cytochrome c(1) and the Rieske iron-sulfur protein at center P. If electrons cannot equilibrate from cytochrome b(H) and b(L) to ubiquinone, partial reduction of the low potential components slows reduction of the high potential components. We also examined the effects of decreasing the midpoint potential of the iron-sulfur protein on the rates of cytochrome b reduction. As the midpoint potential decreased, there was a parallel decrease in the rate of b reduction, demonstrating that the rate of b reduction is dependent upon the rate of ubiquinol oxidation by the iron-sulfur protein. Together these results indicate that ubiquinol oxidation is a concerted reaction in which both the low potential and high potential redox components control ubiquinol oxidation at center P, consistent with the protonmotive Q cycle mechanism. Topics: Electron Transport Complex III; Kinetics; Oxidation-Reduction; Saccharomyces cerevisiae; Substrate Specificity; Ubiquinone | 2000 |
Characterization of cytochrome b from Toxoplasma gondii and Q(o) domain mutations as a mechanism of atovaquone-resistance.
Atovaquone is active in vitro against the tachyzoites of Toxoplasma gondii at nanomolar concentrations and is used clinically to treat acute cases of human toxoplasmosis. In pursuit of the mechanism of action of atovaquone against T. gondii and to understand how resistance might arise, drug-resistant mutants were generated and examined. The previously uncloned cytochrome b gene of T. gondii was cloned and sequenced from wild type and resistant strains as this was a likely candidate for the target of the drug and thus a source of resistance. Mutations are present within the cytochrome b gene of atovaquone-resistant parasites (M129L and I254L) and represent alterations in two different regions of the ubiquinol-binding pocket (Q(o) domain) of cytochrome b, suggesting that atovaquone interferes with electron transport at the cytochrome bc(1) complex in T. gondii. A structural model for how this hydroxynaphthoquinone is binding within the Q(o) domain is presented. Further analysis of the cytochrome b gene suggested that the protein may differ from other homologues by terminating within the mitochondrial membrane. Cytochrome b becomes the first complete mitochondrial gene and cognate protein to be described for T. gondii. Topics: Amino Acid Sequence; Animals; Antiprotozoal Agents; Atovaquone; Binding Sites; Blotting, Northern; Cytochrome b Group; Drug Resistance; Drug Resistance, Multiple; Humans; Models, Molecular; Molecular Sequence Data; Mutation; Naphthoquinones; Protein Conformation; Protozoan Proteins; Reverse Transcriptase Polymerase Chain Reaction; Toxoplasma; Ubiquinone | 2000 |
Rapid photochemical generation of ubiquinol through a radical pathway: an avenue for probing submillisecond enzyme kinetics.
Topics: Chromatography, High Pressure Liquid; Cytochrome b Group; Cytochromes; Enzymes; Escherichia coli; Escherichia coli Proteins; Kinetics; Photolysis; Spectrophotometry, Ultraviolet; Ubiquinone | 2000 |
Oxidation of ubiquinol by peroxynitrite: implications for protection of mitochondria against nitrosative damage.
A major pathway of nitric oxide utilization in mitochondria is its conversion to peroxynitrite, a species involved in biomolecule damage via oxidation, hydroxylation and nitration reactions. In the present study the potential role of mitochondrial ubiquinol in protecting against peroxynitrite-mediated damage is examined and the requirements of the mitochondrial redox status that support this function of ubiquinol are established. (1) Absorption and EPR spectroscopy studies revealed that the reactions involved in the ubiquinol/peroxynitrite interaction were first-order in peroxynitrite and zero-order in ubiquinol, in agreement with the rate-limiting formation of a reactive intermediate formed during the isomerization of peroxynitrite to nitrate. Ubiquinol oxidation occurred in one-electron transfer steps as indicated by the formation of ubisemiquinone. (2) Peroxynitrite promoted, in a concentration-dependent manner, the formation of superoxide anion by mitochondrial membranes. (3) Ubiquinol protected against peroxynitrite-mediated nitration of tyrosine residues in albumin and mitochondrial membranes, as suggested by experimental models, entailing either addition of ubiquinol or expansion of the mitochondrial ubiquinol pool caused by selective inhibitors of complexes III and IV. (4) Increase in membrane-bound ubiquinol partially prevented the loss of mitochondrial respiratory function induced by peroxynitrite. These findings are analysed in terms of the redox transitions of ubiquinone linked to both nitrogen-centred radical scavenging and oxygen-centred radical production. It may be concluded that the reaction of mitochondrial ubiquinol with peroxynitrite is part of a complex regulatory mechanism with implications for mitochondrial function and integrity. Topics: Albumins; Animals; Coenzymes; Dose-Response Relationship, Drug; Electron Spin Resonance Spectroscopy; Immunoblotting; Kinetics; Mitochondria; Mitochondria, Liver; Models, Chemical; Nitrates; Oxidation-Reduction; Oxidative Stress; Oxygen; Oxygen Consumption; Protein Binding; Rats; Spectrophotometry; Time Factors; Tyrosine; Ubiquinone | 2000 |
Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants.
The responses to oxidative stress induced by chronic exercise (8-wk treadmill running) or acute exercise (treadmill running to exhaustion) were investigated in the brain, liver, heart, kidney, and muscles of rats. Various biomarkers of oxidative stress were measured, namely, lipid peroxidation [malondialdehyde (MDA)], protein oxidation (protein carbonyl levels and glutamine synthetase activity), oxidative DNA damage (8-hydroxy-2'-deoxyguanosine), and endogenous antioxidants (ascorbic acid, alpha-tocopherol, glutathione, ubiquinone, ubiquinol, and cysteine). The predominant changes are in MDA, ascorbic acid, glutathione, cysteine, and cystine. The mitochondrial fraction of brain and liver showed oxidative changes as assayed by MDA similar to those of the tissue homogenate. Our results show that the responses of the brain to oxidative stress by acute or chronic exercise are quite different from those in the liver, heart, fast muscle, and slow muscle; oxidative stress by acute or chronic exercise elicits different responses depending on the organ tissue type and its endogenous antioxidant levels. Topics: Animals; Ascorbic Acid; Biomarkers; Brain; Brain Chemistry; Cysteine; Cystine; Female; Glutathione; Glutathione Disulfide; Kidney; Lipid Peroxidation; Liver; Mitochondria; Muscle, Skeletal; Myocardium; Oxidation-Reduction; Oxidative Stress; Physical Conditioning, Animal; Physical Exertion; Rats; Rats, Sprague-Dawley; Time Factors; Ubiquinone; Vitamin E | 2000 |
Antioxidative capacity in patients with common variable immunodeficiency.
Highly reactive oxygen species (ROS) are involved in T-cell activation and in the defense against environmental pathogens. An imbalance of ROS generation, detoxifying scavenger enzymes, and molecules with antioxidant capacity could contribute to the increased susceptibility to cancer and infections in severe humoral immunodeficiency. We studied antioxidant status, i.e., plasma antioxidant capacity (TEAC), retinol, alpha-to-copherol, ubiquinol, and the number of activated T cells in 16 patients with common variable immunodeficiency (CVID) compared to age-matched healthy controls. As expected, patients showed significantly increased levels of activated HLA-DR and CD45RO-expressing T cells. Plasma levels of the endogenous ROS scavenger ubiquinol (Q 10) were significantly lower in patients as compared to controls. However, patients showed only slightly reduced levels of TEAC as well as the exogenous antioxidants retinol and alpha-tocopherol. Although no correlation of the number of activated T cells and antioxidant capacity could be demonstrated, an increase in ROS and a diminished reactive oxygen scavenger capacity may be involved in the disease process in patients with common variable immunodeficiency. Topics: Adolescent; Adult; Antioxidants; Case-Control Studies; Child; Common Variable Immunodeficiency; Female; Free Radical Scavengers; HLA-DR Antigens; Humans; Leukocyte Common Antigens; Lymphocyte Activation; Male; T-Lymphocytes; Ubiquinone; Vitamin A; Vitamin E | 2000 |
Changes to the length of the flexible linker region of the Rieske protein impair the interaction of ubiquinol with the cytochrome bc1 complex.
Crystal structures of the cytochrome bc1 complex indicate that the catalytic domain of the Rieske iron-sulfur protein, which carries the [2Fe-2S] cluster, is connected to a transmembrane anchor by a flexible linker region. This flexible linker allows the catalytic domain to move between two positions, proximal to cytochrome b and cytochrome c1. Addition of an alanine residue to the flexible linker region of the Rieske protein lowers the ubiquinol-cytochrome c reductase activity of the mitochondrial membranes by one half and causes the apparent Km for ubiquinol to decrease from 9.3 to 2.6 microM. Addition of two alanine residues lowers the activity by 90% and the apparent Km decreases to 1.9 microM. Deletion of an alanine residue lowers the activity by approximately 40% and the apparent Km decreases to 5.0 microM. Addition or deletion of an alanine residue also causes a pronounced decrease in efficacy of inhibition of ubiquinol-cytochrome c reductase activity by stigmatellin, which binds analogous to reaction intermediates of ubiquinol oxidation. These results indicate that the length of the flexible linker region is critical for interaction of ubiquinol with the bc1 complex, consistent with electron transfer mechanisms in which ubiquinol must simultaneously interact with the iron-sulfur protein and cytochrome b. Topics: Alanine; Amino Acid Sequence; Antimycin A; Aspartic Acid; Blotting, Western; Catalysis; Crystallography, X-Ray; Electron Transport Complex III; Electrons; Intracellular Membranes; Iron-Sulfur Proteins; Kinetics; Mitochondria; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; NADH Dehydrogenase; Polyenes; Protein Structure, Tertiary; Saccharomyces cerevisiae; Sequence Homology, Amino Acid; Ubiquinone | 2000 |
Content of liver and brain ubiquinol-9 and ubiquinol-10 after chronic ethanol intake in rats subjected to two levels of dietary alpha-tocopherol.
To assess the effect of chronic ethanol ingestion in the content of the reduced forms of coenzymes Q9 (ubiquinol-9) and Q10 (ubiquinol-10) as a factor contributing to oxidative stress in liver and brain, male Wistar rats were fed ad libitum a basal diet containing either 10 or 2.5 mg alpha-tocopherol/100 g diet (controls), or the same basal diet plus a 32% ethanol-25% sucrose solution. After three months treatment, ethanol chronically-treated rats showed identical growth rates to the isocalorically pair-fed controls, irrespectively of alpha-tocopherol dietary level. Lowering dietary alpha-tocopherol led to a decreased content of this vitamin in the liver and brain of control rats, without changes in that of ubiquinol-9, and increased levels of hepatic ubiquinol-10 and total glutathione (tGSH), accompanied by a decrease in brain tGSH. At the two levels of dietary alpha-tocopherol, ethanol treatment significantly decreased the content of hepatic alpha-tocopherol and ubiquinols 9 and 10. This effect was significantly greater at 10 mg alpha-tocopherol/100 g diet than at 2.5, whereas those of tGSH were significantly elevated by 43% and 9%, respectively. Chronic ethanol intake did not alter the content of brain alpha-tocopherol and tGSH, whereas those of ubiquinol-9 were significantly lowered by 20% and 14% in rats subjected to 10 and 2.5 mg alpha-tocopherol/100 g diet, respectively. It is concluded that chronic ethanol intake at two levels of dietary alpha-tocopherol induces a depletion of hepatic alpha-tocopherol and ubiquinols 9 and 10, thus contributing to ethanol-induced oxidative stress in the liver tissue. This effect of ethanol is dependent upon the dietary level of alpha-tocopherol, involves a compensatory enhancement in hepatic tGSH availability, and is not observed in the brain tissue, probably due to its limited capacity for ethanol biotransformation and glutathione synthesis. Topics: Animals; Brain; Diet; Ethanol; Glutathione; Liver; Male; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Wistar; Ubiquinone; Vitamin E | 2000 |
New sequence data enable modelling of the fungal alternative oxidase and explain an absence of regulation by pyruvate.
Respiratory rates involving the alternative oxidase (AO) were studied in mitochondria from Tapesia acuformis. There was no evidence for regulation by pyruvate, in contrast with plant AO. The site of interaction of pyruvate with the plant AO is a conserved cysteine. The primary sequence was obtained for AO from Magnaporthe grisea and compared with four published sequences for fungal AO. In all cases this cysteine was absent. Sequence data were obtained for the C-terminal domain of a further five fungal AOs. In this region the fungal sequences were all consistent with a four-helix, di-iron binding structure as in the ferritin-fold family. A molecular model of this domain was deduced from the structure of Delta-9 desaturase. This is in general agreement with that developed for plant AOs, despite very low sequence identity between the two kingdoms. Further modelling indicated an appropriate active site for binding of ubiquinol, required in the AO redox reaction. Topics: Amino Acid Sequence; Binding Sites; Cloning, Molecular; Conserved Sequence; Cysteine; Dimerization; Fungi; Holoenzymes; Mitochondria; Mitochondrial Proteins; Models, Molecular; Molecular Sequence Data; NAD; Oxidation-Reduction; Oxidoreductases; Oxygen; Plant Proteins; Protein Structure, Secondary; Protein Structure, Tertiary; Pyruvic Acid; Sequence Alignment; Ubiquinone | 2000 |
Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues.
Ubiquinone 0 and decylubiquinone have been reported to inhibit the mitochondrial permeability transition pore (PTP) [Fontaine, E., Ichas, F. and Bernardi, P. (1998) J. Biol. Chem. 273, 25734-257401, offering a new clue to its molecular composition. In patch-clamp experiments on rat liver mitochondria we have observed that these compounds also inhibit the previously described mitochondrial megachannel (MMC), confirming its identification as the PTP. Inhibition can be reversed by increasing [Ca2+], in analogy to the behavior observed with several other disparate PTP/MMC inhibitors. To rationalize the ability of Ca2+ to overcome inhibition by various quite different compounds we propose that it acts via the phospholipid bilayer. Topics: Animals; Benzoquinones; Calcium; Cations, Divalent; Ion Channels; Membrane Proteins; Mitochondria, Liver; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Rats; Ubiquinone | 2000 |
Reactions of peroxynitrite in the mitochondrial matrix.
Superoxide radical (O2-) and nitric oxide (NO) produced at the mitochondrial inner membrane react to form peroxynitrite (ONOO-) in the mitochondrial matrix. Intramitochondrial ONOO- effectively reacts with a few biomolecules according to reaction constants and intramitochondrial concentrations. The second-order reaction constants (in M(-1) s(-1)) of ONOO- with NADH (233 +/- 27), ubiquinol-0 (485 +/- 54) and GSH (183 +/- 12) were determined fluorometrically by a simple competition assay of product formation. The oxidation of the components of the mitochondrial matrix by ONOO- was also followed in the presence of CO2, to assess the reactivity of the nitrosoperoxocarboxylate adduct (ONOOCO2-) towards the same reductants. The ratio of product formation was about similar both in the presence of 2.5 mM CO2 and in air-equilibrated conditions. Liver submitochondrial particles supplemented with 0.25-2 microM ONOO- showed a O2- production that indicated ubisemiquinone formation and autooxidation. The nitration of mitochondrial proteins produced after addition of 200 microM ONOO- was observed by Western blot analysis. Protein nitration was prevented by the addition of 50-200 microM ubiquinol-0 or GSH. An intramitochondrial steady state concentration of about 2 nM ONOO- was calculated, taking into account the rate constants and concentrations of ONOO- coreactants. Topics: Animals; Ascorbic Acid; Blotting, Western; Carbon Dioxide; Glutathione; Inhibitory Concentration 50; Kinetics; Mice; Mitochondria, Liver; NAD; Nitrates; Oxidation-Reduction; Spectrometry, Fluorescence; Superoxides; Tyrosine; Ubiquinone | 2000 |
Aspartate-187 of cytochrome b is not needed for DCCD inhibition of ubiquinol: cytochrome c oxidoreductase in Rhodobacter sphaeroides chromatophores.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD. Topics: Aerobiosis; Asparagine; Aspartic Acid; Chromatophores; Cytochrome b Group; Dicyclohexylcarbodiimide; Electrochemistry; Electron Transport; Electron Transport Complex IV; Kinetics; Oxidation-Reduction; Photolysis; Photosynthesis; Rhodobacter sphaeroides; Spectrophotometry; Ubiquinone | 2000 |
The quinohemoprotein alcohol dehydrogenase of Gluconobacter suboxydans has ubiquinol oxidation activity at a site different from the ubiquinone reduction site.
Alcohol dehydrogenase (ADH) of acetic acid bacteria functions as the primary dehydrogenase of the ethanol oxidase respiratory chain, where it donates electrons to ubiquinone. In addition to the reduction of ubiquinone, ADHs of Gluconobacter suboxydans and Acetobacter aceti were shown to have a novel function in the oxidation of ubiquinol. The oxidation activity of ubiquinol was detected as an ubiquinol:ferricyanide oxidoreductase activity, which can be monitored by selected wavelength pairs at 273 and 298 nm with a dual-wavelength spectrophotometer. The ubiquinol oxidation activity of G. suboxydans ADH was shown to be two times higher in 'inactive ADH', whose ubiquinone reductase activity is 10 times lower, than with normal 'active' ADH. No activity could be detected in the isolated subunit II or subunit I/III complex, but activity was detectable in the reconstituted ADH complex. Inactive and active ADHs exhibited a 2-3-fold difference in their affinity to ubiquinol despite having the same affinity to ubiquinone. Furthermore, the ubiquinol oxidation site in ADH could be distinguished from the ubiquinone reduction site by differences in their sensitivity to ubiquinone-related inhibitors and by their substrate specificity with several ubiquinone analogues. Thus, the results strongly suggest that the reactions occur at different sites. Furthermore, in situ reconstitution experiments showed that ADH is able to accept electrons from ubiquinol present in Escherichia coli membranes, suggesting the ubiquinol oxidation activity of ADH has a physiological function. Thus, ADH of acetic acid bacteria, which has ubiquinone reduction activity, was shown to have a novel ubiquinol oxidation activity, of which the physiological function in the respiratory chain of the organism is also discussed. Topics: Acetobacter; Alcohol Dehydrogenase; Binding Sites; Electron Transport; Enzyme Activation; Escherichia coli; Hydrogen-Ion Concentration; Kinetics; Substrate Specificity; Ubiquinone | 1999 |
Characterization of the ubiquinol oxidation sites in cytochromes bo and bd from Escherichia coli using aurachin C analogues.
Natural aurachin C is the most potent inhibitor of oxidation of ubiquinols by cytochromes bo and bd from Escherichia coli. To probe the structural properties of the substrate oxidation site in the ubiquinol oxidases, we synthesized a systematic set of aurachin C analogues (N-hydroxy-4-quinolone derivatives) and examined how their structure affects their activity towards cytochromes bo and bd, which are structurally unrelated. We found that the presence of the 3-methyl group of the 2-n-decyl and 2-n-undecyl derivatives increased the inhibitory potency towards both enzymes, probably due to a local steric congestion that allows favorable interaction of the alkyl tail with the enzyme. Increase in the chain length of the 3-alkyl tail of the 2-n-undecyl derivatives decreased the inhibitory potency only in cytochrome bo, indicating that the binding site for the alkyl tails of cytochrome bo is smaller than that of cytochrome bd. Based on these findings, we discuss the differences in the molecular mechanism of substrate oxidation by these two terminal ubiquinol oxidases. Topics: Binding Sites; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Enzyme Inhibitors; Escherichia coli; Escherichia coli Proteins; Mutation; Oxidation-Reduction; Oxidoreductases; Quinolones; Structure-Activity Relationship; Ubiquinone | 1999 |
Sensitive high-performance liquid chromatography techniques for simultaneous determination of tocopherols, tocotrienols, ubiquinols, and ubiquinones in biological samples.
Topics: Animals; Antioxidants; Chromatography, High Pressure Liquid; Female; Mice; Mice, Hairless; Reference Standards; Reproducibility of Results; Tissue Distribution; Ubiquinone; Vitamin E | 1999 |
Impact of either elevated or decreased levels of cytochrome bd expression on Shigella flexneri virulence.
Shigella spp. are the major cause of bacillary dysentery worldwide. The pathogenic process involves bacterial invasion and lysis of the phagocytic vacuole, followed by replication and movement within the cell cytoplasm and, ultimately, spread directly into adjacent cells. This study demonstrates that S. flexneri cytochrome bd expression is necessary for normal intracellular survival and virulence. Cytochrome bd is one of two terminal oxidases in the bacterial respiratory chain that reduce molecular oxygen to water, utilizing intermediates shuttled through the electron transport chain. S. flexneri mutants that contain a disruption in the cydC locus, which leads to defective cytochrome bd expression, or in the riboflavin (ribE) or ubiquinol-8 (ubiH) biosynthetic pathway, which leads to elevated cytochrome bd expression, were evaluated in intracellular survival and virulence assays. The cydC mutant formed significantly smaller plaques, had significantly decreased intracellular survival, and had a 100-fold increase in lethal dose for mice compared with the wild type. The ribE and ubiH mutants each formed significantly larger plaques and had a 10-fold decrease in lethal dose for mice compared with the wild type. The data indicate that expression of cytochrome bd is required for S. flexneri intracellular survival and virulence. Topics: Actins; Animals; ATP-Binding Cassette Transporters; Bacterial Proteins; Cytochrome b Group; Cytochromes; Dysentery, Bacillary; Electron Transport Chain Complex Proteins; Escherichia coli Proteins; Fibroblasts; Lung; Mice; Mice, Inbred C57BL; Oxidoreductases; Phenotype; Rats; Riboflavin; Serine Endopeptidases; Shigella flexneri; Ubiquinone | 1999 |
A revised model of the active site of alternative oxidase.
The plant mitochondrial protein alternative oxidase catalyses dioxygen dependent ubiquinol oxidation to yield ubiquinone and water. A structure of this protein has previously been proposed based on an assumed structural homology to the di-iron carboxylate family of proteins. However, these authors suggested the protein has a very different topology than the known structures of di-iron carboxylate proteins. We have re-examined this model and based on comparison of recent sequences and structural data on di-iron carboxylate proteins we present a new model of the alternative oxidase which allows prediction of active site residues and a possible membrane binding motif. Topics: Amino Acid Sequence; Animals; Binding Sites; Cell Membrane; Mice; Mitochondrial Proteins; Models, Molecular; Molecular Sequence Data; Oxidoreductases; Plant Proteins; Protein Conformation; Ubiquinone | 1999 |
The reaction of nitric oxide with ubiquinol: kinetic properties and biological significance.
The reaction of nitric oxide (*NO) with ubiquinol-0 and ubiquinol-2, short-chain analogs of coenzyme Q, was examined in anaerobic and aerobic conditions in terms of formation of intermediates and stable molecular products. The chemical reactivity of ubiquinol-0 and ubiquinol-2 towards *NO differed only quantitatively, the reactions of ubiquinol-2 being slightly faster than those of ubiquinol-0. The ubiquinol/*NO reaction entailed oxidation of ubiquinol to ubiquinone and reduction of *NO to NO-, the latter identified by its reaction with metmyoglobin to form nitroxylmyoglobin and indirectly by measurement of nitrous oxide (N2O) by gas chromatography. Both the rate of ubiquinone accumulation and *NO consumption were linearly dependent on ubiquinol and *NO concentrations. The stoichiometry of *NO consumed per either ubiquinone formed or ubiquinol oxidized was 1.86 A 0.34. The reaction of *NO with ubiquinols proceeded with intermediate formation of ubisemiquinones that were detected by direct EPR. The second order rate constants of the reactions of ubiquinol-0 and ubiquinol-2 with *NO were 0.49 and 1.6 x 10(4) M(-1)s(-1), respectively. Studies in aerobic conditions revealed that the reaction of *NO with ubiquinols was associated with O2 consumption. The formation of oxyradicals - identified by spin trapping EPR- during ubiquinol autoxidation was inhibited by *NO, thus indicating that the O2 consumption triggered by *NO could not be directly accounted for in terms of oxyradical formation or H2O2 accumulation. It is suggested that oxyradical formation is inhibited by the rapid removal of superoxide anion by *NO to yield peroxynitrite, which subsequently may be involved in the propagation of ubiquinol oxidation. The biological significance of the reaction of ubiquinols with *NO is discussed in terms of the cellular O2 gradients, the steady-state levels of ubiquinols and *NO, and the distribution of ubiquinone (largely in its reduced form) in biological membranes with emphasis on the inner mitochondrial membrane. Topics: Aerobiosis; Anaerobiosis; Animals; Benzoquinones; Electron Spin Resonance Spectroscopy; Free Radicals; Horses; Kinetics; Metmyoglobin; Models, Chemical; Myoglobin; Nitric Oxide; Spectrophotometry, Ultraviolet; Ubiquinone | 1999 |
Automated high-performance liquid chromatographic method with precolumn reduction for the determination of ubiquinol and ubiquinone in human plasma.
We developed a gradient HPLC method with automated precolumn reduction for direct electrochemical detection of ubiquinol-10 (CoQ10H2) and total coenzyme Q10 (TQ10) in human plasma. The concentration of ubiquinone-10 (CoQ10) was calculated by subtraction of CoQ10H2 from TQ10. Preparation of reducing agent and precolumn reduction was performed by a programmable auto-injector. The two mobile phases used were: A, 100% of methanol containing 50 mM sodium perchlorate and 10 mM perchloric acid; and B, a mixture of ethanol and tert.-butanol (80:20, v/v). Sample preparation was simply a deproteinisation process with 10-fold ethanol. A good linear relationship was obtained for CoQ10H2 concentration from 0.1 to 3 micromol/l. The detection limit was 2.5 nmol/l with an injection volume of 20 microl. The analytical recovery and reproduciblity were generally >90%. To validate the method, 18 freshly collected plasma samples of normal healthy subjects were analysed. The mean ratio of CoQ10H2/CoQ10 was 93:7. The proposed method is sensitive, reliable and can be used for clinical investigation. Topics: Automation; Calibration; Chromatography, High Pressure Liquid; Coenzymes; Humans; Reference Values; Reproducibility of Results; Ubiquinone | 1999 |
Dynamics of antioxidant action of ubiquinol: a reappraisal.
The dynamics of action of ubiquinol as an antioxidant against lipid peroxidation was reinvestigated and compared with that of alpha-tocopherol. It was found that ubiquinol was 2.5 and 1.9 times more reactive than alpha-tocopherol toward phenoxyl and peroxyl radicals, respectively, at 25 degrees C in ethanol and that it was capable of donating two hydrogen atoms toward oxygen radicals but that the apparent stoichiometric number decreased in the inhibition of lipid peroxidation, to even smaller than 1, due to its autoxidation. The autoxidation of ubiquinol proceeded even in the micelles and liposomal membranes in aqueous dispersions as well as in organic homogeneous solution. The apparent antioxidant activity of ubiquinol was smaller than that of alpha-tocopherol against lipid peroxidation in organic solution as judged from either rate of oxidation or duration of inhibition period. They exerted similar antioxidant potency against lipid peroxidation in the membranes and micelles in aqueous dispersions. The combination of ubiquinol and alpha-tocopherol was suggested to be effective. Topics: Antioxidants; Free Radicals; Kinetics; Linoleic Acids; Lipid Peroxidation; Models, Chemical; Ubiquinone; Vitamin E | 1999 |
Critical aspects of the antioxidant function of coenzyme Q in biomembranes.
Coenzyme Q (ubiquinone, UQ) is increasingly considered as a significant natural antioxidant, which protects biomembranes in concert with alpha-tocopherol. In vitro experiments demonstrated that reduced UQ (ubiquinol) can improve the chain-breaking activities of alpha-tocopherol by recycling the antioxidant-derived reaction product, the chromanoxyl radical, to the native antioxidant. Less attention, however, was devoted to the antioxidant-derived reaction products of reduced UQ. Although both alpha-tocopherol and ubiquinol were found to be equally effective in scavenging chain-propagating lipid radicals. alpha-tocopherol protected lipid membranes from lipid peroxidation more efficiently than ubiquinol. The present study not only provides data which document this discrepancy but also contributes experimental data on the existence of ubiquinol derived pro-oxidants, which give an explanation of this phenomenon. Topics: Antioxidants; Coenzymes; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Free Radicals; Liposomes; Models, Chemical; Oxidation-Reduction; Reactive Oxygen Species; Ubiquinone; Vitamin E | 1999 |
Plasma ubiquinone to ubiquinol ratio in patients with hepatitis, cirrhosis, and hepatoma, and in patients treated with percutaneous transluminal coronary reperfusion.
To assess the degree of oxidative stress, we measured plasma ubiquinone-10 percentage (%CoQ-10) in total amounts of ubiquinone-10 in patients with chronic active hepatitis, liver cirrhosis, and hepatocellular carcinoma, and in age-matched control subjects, %CoQ-10 values were 12.9 +/- 10.3 (n = 28), 10.6 +/- 6.8 (n = 28), 18.9 +/- 11.1 (n = 20), and 6.4 +/- 3.3 (n = 16), respectively, showing a significant increase in oxidative stress in patient groups as compared to control subjects. There were no differences in total amounts of ubiquinone-10 and ubiquinol-10 among the four groups. We next measured %CoQ-10 in plasmas obtained from nine patients treated with percutaneous transluminal coronary angioplasty (PTCA). Plasmas were collected when hospitalized, and at the time (0, 4, 8, 12, 16, and 20 hr, and 1, 2, 3, 4, and 7 days) after the PTCA. %CoQ-10 values before and right after PTCA were 9.9 +/- 2.8 and 11.4 +/- 2.0, respectively, reached a maximum (20-45) at 1 or 2 days later, and decreased to 7.9 +/- 2.7 at 7 days after PTCA, indicating an increase in oxidative stress in patients during coronary reperfusion. Topics: Adult; Aged; Aged, 80 and over; Angioplasty, Balloon, Coronary; Ascorbic Acid; beta Carotene; Bilirubin; Biomarkers; Carcinoma, Hepatocellular; Carotenoids; Female; Hepatitis; Humans; Liver Cirrhosis; Liver Neoplasms; Lycopene; Male; Middle Aged; Oxidative Stress; Reference Values; Ubiquinone; Uric Acid; Vitamin E | 1999 |
Lead intoxication: antioxidant defenses and oxidative damage in rat brain.
Oxidative damage associated with the presence of lead (Pb) in the brain has been proposed as one possible mechanism involved in Pb toxicity. To investigate this hypothesis, we examined the long-term effects of Pb2+ on parameters of oxidative stress in the brain from rats chronically exposed to the metal (1 g Pb acetate/1 drinking water). After 8 weeks of treatment, Pb2(+)-intoxicated rats (blood Pb concentration > 100 microg/dl) showed lower body weight, and lower hematocrit and 5-aminolevulinic acid dehydratase activity as compared to controls. The content of brain 2-thiobarbituric acid-reactive substances (TBARS), an indicator of lipid oxidation, was significantly (P < 0.05) higher in the Pb2(+)-intoxicated animals than in controls. Higher activities of the antioxidant enzymes glutathione reductase and glutathione peroxidase, and a lower (44%) level of ubiquinol 10 were found in the brain of the Pb2(+)-treated rats, compared to controls. A negative correlation between brain ubiquinol 9 (r2 = 0.79), 10 (r2 = 0.84) and blood Pb concentration was observed. Brain alpha-tocopherol levels, superoxide dismutase activity and parameters of oxidative damage to proteins were similar between control and Pb2(+)-treated rats. The present results indicate that chronic Pb2+ intoxication induces an oxidative stress situation in rat brain. Topics: Animals; Antioxidants; Body Weight; Brain; Glutathione Peroxidase; Glutathione Reductase; Hematocrit; Lead; Lead Poisoning; Lipid Peroxidation; Male; Porphobilinogen Synthase; Proteins; Rats; Rats, Wistar; Superoxide Dismutase; Thiobarbituric Acid Reactive Substances; Ubiquinone; Vitamin E | 1999 |
Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation.
Alpha-tocopheryl quinone is a metabolite of alpha-tocopherol (TOH) in vivo. The antioxidant action of its reduced form, alpha-tocopheryl hydroquinone (TQH2), has received much attention recently. In the present study, the antioxidative activity of TQH2 was studied in various systems in vitro and compared with that of ubiquinol-10 (UQH2) or TOH to obtain the basic information on the dynamics of the antioxidant action of TQH2. First, their hydrogen-donating abilities were investigated in the reaction with galvinoxyl, a stable phenoxyl radical, and TQH2 was found to possess greater second-order rate constant (1.0 x 10(4) M(-1) s(-1)) than UQH2 (6.0 x 10(3) M(-1) s(-1)) and TOH (2.4 x 10(3) M(-1) s(-1)) at 25 degrees C in ethanol. The stoichiometric numbers were obtained as 1.9, 2.0, and 1.0 for TQH2, UQH2, and TOH, respectively, in reducing galvinoxyl. Second, their relative reactivities toward peroxyl radicals were assessed in competition with N,N'-diphenyl-p-phenylenediamine (DPPD) and found to be 6.0 (TQH2), 1.9 (UQH2), and 1.0 (TOH). Third, their antioxidant efficacies were evaluated in the oxidation of methyl linoleate in organic solvents and in aqueous dispersions. The antioxidant potency decreased in the order TOH > UQH2 > TQH2, as assessed by either the extent of the reduction in the rate of oxidation or the duration of inhibition period. The reverse order of their reactivities toward radicals and their antioxidant efficacies was interpreted by the rapid autoxidation of TQH2 and UQH2, carried out by hydroperoxyl radicals. Although neither TQH2 nor UQH2 acted as a potent antioxidant by itself, they acted as potent antioxidants in combination with TOH. TQH2 and UQH2 reduced alpha-tocopheroxyl radical to spare TOH, whereas TOH suppressed the autoxidation of TQH2 and UQH2. In the micelle oxidation, the antioxidant activities of TQH2, UQH2, and TOH were similar, whereas 2,2,5,7,8-pentamethyl-6-chromanol exerted much more potent efficacy than TQH2, UQH2, or TOH. These results clearly show that the antioxidant potencies against lipid peroxidation are determined not only by their chemical reactivities toward radicals, but also by the fate of an antioxidant-derived radical and the mobility of the antioxidant at the microenvironment. Topics: alpha-Tocopherol; Antioxidants; Benzhydryl Compounds; Free Radical Scavengers; Free Radicals; Kinetics; Linoleic Acids; Lipid Peroxidation; Luminescent Measurements; Micelles; Oxidation-Reduction; Ubiquinone; Vitamin E | 1999 |
Anti-oxidative capacity in patients with ataxia telangiectasia.
Highly reactive oxygen species (ROS) are involved in T-cell activation and in the defense against environmental pathogens. An imbalance of ROS generation and detoxifying scavenger enzymes could contribute to the increased susceptibility to cancer and infections in ataxia telangiectasia. We studied oxidative status, i.e. plasma total antioxidant capacity (TEAC), retinol, alpha-tocopherol, ubiquinol, and the number of activated T cells in 10 patients with ataxia telangiectasia (AT) compared to age-matched healthy controls. As expected, patients showed significantly increased levels of activated human leukocyte antigen-DR and CD45RO expressing T cells. TEAC levels as well as the exogenous antioxidants retinol and alpha-tocopherol were significantly reduced in patients. In addition, patients showed slightly reduced plasma levels of the endogenous ROS scavenger enzyme ubiquinol (Q10). Although no correlation between number of activated T-cells and antioxidant capacity could be demonstrated, an increase in ROS and a diminished reactive oxygen scavenger capacity may be involved in the disease process of patients with AT. Topics: Adolescent; Adult; Antioxidants; Ataxia Telangiectasia; Child; Child, Preschool; Coenzymes; Female; HLA-DR Antigens; Humans; Leukocyte Common Antigens; Male; Ubiquinone; Vitamin A; Vitamin E | 1999 |
Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
To probe the functional role of a bound ubiquinone-8 in cytochrome bo-type ubiquinol oxidase from Escherichia coli, we examined reactions with ubiquinol-1 and dioxygen. Stopped-flow studies showed that anaerobic reduction of the wild-type and the bound ubiquinone-free (DeltaUbiA) enzymes with ubiquinol-1 immediately takes place with four kinetic phases. Replacement of the bound ubiquinone with 2,6-dibromo-4-cyanophenol (PC32) suppressed the anaerobic reduction of the hemes with ubiquinol-1 by eliminating the fast phase. Flow-flash studies in the reaction of the fully reduced enzyme with dioxygen showed that the heme b-to-heme o electron transfer occurs with a rate constant of approximately 1x10(4) s(-1) in all three preparations. These results support our previous proposal that the bound ubiquinone is involved in facile oxidation of substrates in subunit II and subsequent intramolecular electron transfer to low-spin heme b in subunit I. Topics: Cytochrome b Group; Cytochromes; Electron Transport; Escherichia coli; Escherichia coli Proteins; Oxidation-Reduction; Oxygen; Ubiquinone | 1999 |
Role of a bound ubiquinone on reactions of the Escherichia coli cytochrome bo with ubiquinol and dioxygen.
To probe the functional role of a bound ubiquinone-8 in cytochrome bo-type ubiquinol oxidase from Escherichia coli, we examined reactions with ubiquinol-1 and dioxygen. Stopped-flow studies showed that anaerobic reduction of the wild-type and the bound ubiquinone-free (delta UbiA) enzymes with ubiquinol-1 immediately takes place with four kinetic phases. Replacement of the bound ubiquinone with 2,6-dibromo-4-cyanophenol (PC32) suppressed the anaerobic reduction of the hemes with ubiquinol-1 by eliminating the fast phase. Flow-flash studies in the reaction of the fully reduced enzyme with dioxygen showed that the heme b to heme o electron transfer occurs with a rate constant of approximately 10(4) s-1 in all three preparations. These results support our previous proposal that the bound ubiquinone is involved in facile oxidation of substrates in subunit II and subsequent intramolecular electron transfer to low-spin heme b in subunit I. Topics: Catalysis; Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Heme; Oxidation-Reduction; Oxidoreductases; Oxygen; Spectrum Analysis, Raman; Time Factors; Ubiquinone | 1999 |
Dose-dependent increase of oxidative damage in the testes of rats subjected to acute iron overload.
This study describes the in vivo response of rat testes to acute iron overload. Male Wistar rats (250-300 g) were injected ip with iron dextran at doses of 250 (Fe250), 500 (Fe500), or 1000 mg/kg body wt (Fe1000) or with saline (C). Parameters of oxidative stress and iron toxicity were measured 20 h after injection. Total iron content was 3.5-, 5.3-, and 10.4-fold higher in the Fe250, Fe500, and Fe1000 groups, respectively, compared to controls (320 +/- 22 nmol/g tissue). Histological studies showed that: (a) iron accumulated in the sperm and other testes cells, and (b) spermatogenesis was markedly lower in the Fe1000 group. The concentration of alpha-tocopherol, ubiquinol-9, and ubiquinol-10 in the testes was inversely correlated with the extent of oxidation. Testes chemiluminescence was 45% higher in the Fe1000 group compared to controls (41 cps/cm(2)). Endogenous levels of lipid oxidation, evaluated as 2-thiobarbituric acid-reactive substances, were 46, 73, and 82% higher in the groups Fe250, Fe500, and Fe1000, respectively, than in controls (33.6 +/- 1.4 nmol/g tissue). Oxidative damage to DNA evaluated by the presence of 8-oxo-2'-deoxyguanosine (oxo(8)dG), was 26, 39, and 74% higher in the Fe250, Fe500, and Fe1000 groups, respectively, than in the C group (2.3 +/- 0.1 oxo(8)dG/10(5)dG). Protein oxidation was measured as protein thiols and carbonyl content in proteins and glutamine synthase activity. Protein thiols content and glutamine synthase activity were similar in all the groups, while the protein-associated carbonyls content was 96% higher in the Fe1000 group than in the C group (2.1 +/- 0.4 nmol/mg protein). No changes in the activities of superoxide dismutase, catalase, and glutathione peroxidase were observed. The results showed that in vivo iron overload induced oxidative stress and the impairment of spermatogenesis in rat testes that were dependent on the amount of iron supplemented and its accumulation in the tissue. Topics: 8-Hydroxy-2'-Deoxyguanosine; Animals; Antioxidants; Deoxyguanosine; DNA; Iron; Iron Overload; Lipid Peroxidation; Luminescent Measurements; Male; Oxidative Stress; Proteins; Rats; Rats, Wistar; Testis; Thiobarbituric Acid Reactive Substances; Ubiquinone; Vitamin E | 1999 |
1-Methyl-4-phenyl-2,3-dihydropyridinium is transformed by ubiquinone to the selective nigrostriatal toxin 1-methyl-4-phenylpyridinium.
We have studied the interaction of coenzyme Q with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP(+)) and 1-methyl-4-phenylpyridinium (MPP(+)), the real neurotoxin to cause Parkinson's disease. Incubation of MPTP or MPDP(+) with rat brain synaptosomes induced complete reduction of endogenous ubiquinone-9 and ubiquinone-10 to corresponding ubiquinols. The reduction occurred in a time- and MPTP/MPDP(+) concentration-dependent manner. The reduction of ubiquinone induced by MPDP(+) went much faster than that by MPTP. MPTP did not reduce liposome-trapped ubiquinone-10, but MPDP(+) did. The real toxin MPP(+) did not reduce ubiquinone in either of the systems. The reduction by MPTP but not MPDP(+) was completely prevented by pargyline, a type B monoamine oxidase (MAO-B) inhibitor, in the synaptosomes. The results indicate that involvement of MAO-B is critical for the reduction of ubiquinone by MPTP but that MPDP(+) is a reductant of ubiquinone per se. It is suggested that ubiquinone could be an electron acceptor from MPDP(+) and promote the conversion from MPDP(+) to MPP(+) in vivo, thus accelerating the neurotoxicity of MPTP. Topics: 1-Methyl-4-phenylpyridinium; Animals; Biotransformation; Liposomes; Male; Monoamine Oxidase; Neurotoxins; Oxidation-Reduction; Pyridinium Compounds; Rats; Rats, Wistar; Synaptosomes; Ubiquinone | 1999 |
Control of ubiquinol oxidation at center P (Qo) of the cytochrome bc1 complex.
The unique bifurcated oxidation of ubiquinol at center P (Qo) of the cytochrome bc1 complex is the reaction within the Q-cycle reaction scheme that is most critical for the link between electron transfer and vectorial proton translocation. While there is a general consensus about the overall reaction at center P, the nature of the intermediates and the way the reaction is controlled to ensure obligatory bifurcation is still controversial. By reducing the reaction to its essential steps, a kinetic net rate model is developed in which the activation barrier is associated with the deprotonation of ubiquinol, but the steady state rate is kinetically controlled by the occupancy of the ubiquinol anion and the semiquinone state. This concept is used to interpret experimental data and is discussed in terms of various mechanistic models that are under discussion. It is outlined how other aspects of the center P mechanism like the proposed "prosthetic" ubiquinone and the moving domain of the "Rieske" protein could be incorporated in the kinetic framework. Topics: Animals; Electron Transport; Electron Transport Complex III; Enzyme Inhibitors; Heme; Iron-Sulfur Proteins; Mitochondria; Models, Chemical; Models, Molecular; Motion; Protein Conformation; Protein Structure, Tertiary; Protons; Stilbenes; Structure-Activity Relationship; Thermodynamics; Ubiquinone | 1999 |
The regulation of mitochondrial oxygen uptake by redox reactions involving nitric oxide and ubiquinol.
The reversible inhibitory effects of nitric oxide (.NO) on mitochondrial cytochrome oxidase and O(2) uptake are dependent on intramitochondrial.NO utilization. This study was aimed at establishing the mitochondrial pathways for.NO utilization that regulate O-(2) generation via reductive and oxidative reactions involving ubiquinol oxidation and peroxynitrite (ONOO(-)) formation. For this purpose, experimental models consisting of intact mitochondria, ubiquinone-depleted/reconstituted submitochondrial particles, and ONOO(-)-supplemented mitochondrial membranes were used. The results obtained from these experimental approaches strongly suggest the occurrence of independent pathways for.NO utilization in mitochondria, which effectively compete with the binding of.NO to cytochrome oxidase, thereby releasing this inhibition and restoring O(2) uptake. The pathways for.NO utilization are discussed in terms of the steady-state levels of.NO and O-(2) and estimated as a function of O(2) tension. These calculations indicate that mitochondrial.NO decays primarily by pathways involving ONOO(-) formation and ubiquinol oxidation and, secondarily, by reversible binding to cytochrome oxidase. Topics: Animals; Electron Spin Resonance Spectroscopy; Female; Mitochondria, Liver; Nitric Oxide; Oxidation-Reduction; Oxygen; Rats; Rats, Sprague-Dawley; Ubiquinone | 1999 |
Mechanism of ubiquinol oxidation by the bc(1) complex: role of the iron sulfur protein and its mobility.
Native structures of ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from different sources, and structures with inhibitors in place, show a 16-22 A displacement of the [2Fe-2S] cluster and the position of the C-terminal extrinsic domain of the iron sulfur protein. None of the structures shows a static configuration that would allow catalysis of all partial reactions of quinol oxidation. We have suggested that the different conformations reflect a movement of the subunit necessary for catalysis. The displacement from an interface with cytochrome c(1) in native crystals to an interface with cytochrome b is induced by stigmatellin or 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and involves ligand formation between His-161 of the [2Fe-2S] binding cluster and the inhibitor. The movement is a rotational displacement, so that the same conserved docking surface on the iron sulfur protein interacts with cytochrome c(1) and with cytochrome b. The mobile extrinsic domain retains essentially the same tertiary structure, and the anchoring N-terminal tail remains in the same position. The movement occurs through an extension of a helical segment in the short linking span. We report details of the protein structure for the two main configurations in the chicken heart mitochondrial complex and discuss insights into mechanism provided by the structures and by mutant strains in which the docking at the cytochrome b interface is impaired. The movement of the iron sulfur protein represents a novel mechanism of electron transfer, in which a tethered mobile head allows electron transfer through a distance without the entropic loss from free diffusion. Topics: Amino Acid Sequence; Animals; Anti-Bacterial Agents; Binding Sites; Chickens; Computer Simulation; Crystallography; Cytochrome b Group; Electron Transport Complex III; Enzyme Inhibitors; Iron-Sulfur Proteins; Ligands; Mitochondria, Heart; Molecular Sequence Data; Mutation; Oxidation-Reduction; Polyenes; Protein Engineering; Protein Structure, Secondary; Sequence Alignment; Stilbenes; Thiazoles; Ubiquinone | 1999 |
Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors.
Structures of mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from several animal sources have provided a basis for understanding the functional mechanism at the molecular level. Using structures of the chicken complex with and without inhibitors, we analyze the effects of mutation on quinol oxidation at the Q(o) site of the complex. We suggest a mechanism for the reaction that incorporates two features revealed by the structures, a movement of the iron sulfur protein between two separate reaction domains on cytochrome c(1) and cytochrome b and a bifurcated volume for the Q(o) site. The volume identified by inhibitor binding as the Q(o) site has two domains in which inhibitors of different classes bind differentially; a domain proximal to heme b(L), where myxothiazole and beta-methoxyacrylate- (MOA-) type inhibitors bind (class II), and a distal domain close to the iron sulfur protein docking interface, where stigmatellin and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiaole (UHDBT) bind (class I). Displacement of one class of inhibitor by another is accounted for by the overlap of their volumes, since the exit tunnel to the lipid phase forces the hydrophobic "tails" to occupy common space. We conclude that the site can contain only one "tailed" occupant, either an inhibitor or a quinol or one of their reaction products. The differential sensitivity of strains with mutations in the different domains is explained by the proximity of the affected residues to the binding domains of the inhibitors. New insights into mechanism are provided by analysis of mutations that affect changes in the electron paramagnetic resonance (EPR) spectrum of the iron sulfur protein, associated with its interactions with the Q(o)-site occupant. The structures show that all interactions with the iron sulfur protein must occur at the distal position. These include interactions between quinone, or class I inhibitors, and the reduced iron sulfur protein and formation of a reaction complex between quinol and oxidized iron sulfur protein. The step with high activation energy is after formation of the reaction complex, likely in formation of the semiquinone and subsequent dissociation of the complex into products. We suggest that further progress of the reaction requires a movement of semiquinone to the proximal position, thus mapping the bifurcated reaction to the bifurcated volume. We suggest that such a movement, together with a change in conformation of the site, Topics: Animals; Binding Sites; Chickens; Electron Transport Complex III; Mitochondria, Heart; Oxidation-Reduction; Polyenes; Thiazoles; Ubiquinone | 1999 |
Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria.
Crystallographic structures for the mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from different sources, and with different inhibitors in cocrystals, have revealed that the extrinsic domain of the iron sulfur subunit is not fixed [Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y.-I., Kim, K. K., Hung, L.-W., Crofts, A. R., Berry, E. A., and Kim, S.-H. (1998) Nature (London), 392, 677-684], but moves between reaction domains on cytochrome c(1) and cytochrome b subunits. We have suggested that the movement is necessary for quinol oxidation at the Q(o) site of the complex. In this paper, we show that the electron-transfer reactions of the high-potential chain of the complex, including oxidation of the iron sulfur protein by cytochrome c(1) and the reactions by which oxidizing equivalents become available at the Q(o) site, are rapid compared to the rate-determining step. Activation energies of partial reactions that contribute to movement of the iron sulfur protein have been measured and shown to be lower than the high activation barrier associated with quinol oxidation. We conclude that the movement is not the source of the activation barrier. We estimate the occupancies of different positions for the iron sulfur protein from the crystallographic electron densities and discuss the parameters determining the binding of the iron sulfur protein in different configurations. The low activation barrier is consistent with a movement between these locations through a constrained diffusion. Apart from ligation in enzyme-substrate or inhibitor complexes, the binding forces in the native structure are likely to be < = RT, suggesting that the mobile head can explore the reaction interfaces through stochastic processes within the time scale indicated by kinetic measurements. Topics: Animals; Binding Sites; Crystallography; Cytochrome b Group; Cytochromes c1; Electron Transport Complex III; Iron-Sulfur Proteins; Kinetics; Oxidation-Reduction; Protein Conformation; Temperature; Thermodynamics; Thiazoles; Ubiquinone | 1999 |
Reaction of Escherichia coli cytochrome bo3 with substoichiometric ubiquinol-2: a freeze-quench electron paramagnetic resonance investigation.
The reaction of the quinol oxidase cytochrome bo3 from Escherichia coli with ubiquinol-2 (UQ2H2) was carried out using substoichiometric (0.5 equiv) amounts of substrate. Reactions were monitored through the use of freeze-quench EPR spectroscopy. Under 1 atm of argon, semiquinone was formed at the QB site of the enzyme with a formation rate constant of 140 s-1; the QB semiquinone EPR signal decayed with a rate constant of about 5 s-1. Heme b and CuB were reduced within the 10-ms dead time of the freeze-quench experiment and remained at a constant level of reduction over the 1-s time course of the experiment. Quantitation of the reduction levels of QB and heme b during this reaction yielded a reduction potential of 30-60 mV for heme b. Under a dioxygen atmosphere, the rates of semiquinone formation and its subsequent decay were not altered significantly. However, accurate quantitation of the EPR signals for heme b and heme o3 could not be made, due to interference from dioxygen. In the reaction between the QB-depleted enzyme and UQ2H2 under substoichiometric conditions, there was no observable change in the EPR spectra of the enzyme over the time course of the reaction, suggesting an electron transfer from heme b to the binuclear site in the absence of QB which occurs within the dead time of the freeze-quench apparatus. Analysis of the thermodynamics and kinetics of electron transfers in this enzyme suggests that a Q-cycle mechanism for proton translocation is more likely than a cytochrome c oxidase-type ion-pump mechanism. Topics: Cytochrome b Group; Cytochromes; Electron Spin Resonance Spectroscopy; Escherichia coli; Escherichia coli Proteins; Ion Pumps; Kinetics; Models, Chemical; Oxidation-Reduction; Substrate Specificity; Thermodynamics; Ubiquinone | 1998 |
Using matrix-assisted laser desorption ionization mass spectrometry to map the quinol binding site of cytochrome bo3 from Escherichia coli.
The cytochrome bo3 ubiquinol oxidase contains at least one and possibly two binding sites for ubiquinol/ubiquinone. Previous studies used the photoreactive affinity label 3-[3H]azido-2-methyl-5-methoxy-6-geranyl-1,4-benzoquinone (azido-Q), a substrate analogue, to demonstrate that subunit II contributes to at least one of the quinol binding sites. In the current work, mass spectroscopy is used to identify a peptide within subunit II that is photolabeled by the azido-Q. Purified cytochrome bo3 was photolabeled as previously described using azido-Q that was not tritiated (i.e., not radiolabeled). Subunit II was then isolated from an SDS-PAGE gel and proteolyzed in situ with trypsin. The resulting peptides were eluted from the gel and then identified using matrix-assisted laser desorption ionization mass spectrometry. The resulting mass spectrum was compared to that obtained by analysis of subunit II that had not been exposed to the photolabel. Using the amino acid sequence, each peak in the mass spectrum of the unlabeled subunit II could be assigned to an expected trypsin fragment. Two additional peaks were observed in the mass spectrum of the photolabeled subunit with m/z 1931.9 and 2287.7. Subtraction of the mass of azido-Q from the peak at m/z 1931.9 results in a mass equivalent to that of a peptide consisting of amino acids 165-178. The assignment of the peak at m/z 2287.7 cannot be made unequivocally and may correspond either to the covalent attachment of azido-Q to peptide 254-270 or to a peptide resulting from incomplete proteolysis. The labeled peptide, 165-178, is within the water-soluble domain of subunit II, whose X-ray structure is known. This peptide is located near the site where CuA is located in the homologous cytochrome c oxidases and can be placed near the interface between subunits I and II. Topics: Binding Sites; Cytochrome b Group; Cytochromes; Electron Transport Complex IV; Escherichia coli; Escherichia coli Proteins; Hydrolysis; Models, Molecular; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Stereoisomerism; Trypsin; Ubiquinone | 1998 |
Secret life of cytochrome bc1.
Topics: Animals; Binding Sites; Cattle; Crystallization; Crystallography, X-Ray; Cytochromes c1; Diffusion; Dimerization; Electron Transport; Electron Transport Complex III; Hydrogen Bonding; Iron-Sulfur Proteins; Mitochondria, Heart; Oxidation-Reduction; Protein Conformation; Protein Structure, Secondary; Protons; Ubiquinone | 1998 |
Networking antioxidants in the isolated rat heart are selectively depleted by ischemia-reperfusion.
Although cardiac endogenous antioxidants have been reported to be oxidized and decreased by ischemia-reperfusion, little is known whether the changes in these antioxidants are correlated with each other in a systematic relationship. In this study, isolated rat hearts were subjected to various periods of ischemia-reperfusion using the Langendorff method, and the content and/or redox status of tissue antioxidants were analyzed. Significant losses in the tissue hydrophilic antioxidants, ascorbate, and glutathione were observed. These losses were dependent on the duration of the reperfusion period (between 0-40 min) but not of ischemia (20-60 min). Marked increases of dehydroascorbate and glutathione disulfide, the oxidized forms of ascorbate and glutathione, respectively, were found during reperfusion, but these changes were not observed during ischemia. These findings indicate that the tissue hydrophilic antioxidants are easily oxidized and may be the first line of antioxidant defenses during reperfusion. Lipophilic antioxidants, like ubiquinol 9 and vitamin E, were not decreased during ischemia-reperfusion using regular buffer; however, if oxidative stress was induced by addition of H2O2 to the buffer solution during reperfusion after 20 min of ischemia, decreases in both the hydrophilic and hydrophobic antioxidants were noticeable. With 100 microM H2O2, the tissue antioxidant decreases were ubiquinol 9 (39%), vitamin E (3%), glutathione (44%) and ascorbate (58%). Only with 500 microM H2O2 treatment were marked decreases in tissue vitamin E (65%) observed; this was associated with almost complete depletion of tissue ubiquinol 9 (95%). These results suggest that prior to the consumption of vitamin E, other antioxidants are depleted and that vitamin E may serve as the ultimate antioxidant, protecting the integrity of cellular membranes. Thus, in this work, cardiac antioxidants were demonstrated to change in a systematically organized relationship under ischemia-reperfusion. This graded utilization of antioxidants supports the redox based antioxidant network concept, found to be present in other biological systems. Topics: Animals; Antioxidants; Ascorbic Acid; Dehydroascorbic Acid; Glutathione; Glutathione Disulfide; Hydrogen Peroxide; In Vitro Techniques; Male; Myocardial Ischemia; Myocardial Reperfusion; Rats; Rats, Sprague-Dawley; Ubiquinone; Vitamin E | 1998 |
Mechanism of ubiquinol oxidation by the cytochrome bc1 complex: pre-steady-state kinetics of cytochrome bc1 complexes containing site-directed mutants of the Rieske iron-sulfur protein.
To facilitate characterization of mutated cytochrome bc1 complexes in S. cerevisiae we have developed a new approach using a rapid scanning monochromator to examine pre-steady-state reduction of the enzyme with menaquinol. The RSM records optical spectra of cytochromes b and c1 at 1-ms intervals after a dead time of 2 ms, and menaquinol fully reduces both cytochromes bH and c1 and a portion of cytochrome bL. The rapid-mixing, rapid-scanning monochromator methodology obviates limitations inherent in previous rapid kinetics methods and permits measurements of rates exceeding 200 s-1. To document the validity of this methodology we have examined the reduction kinetics of the cytochrome bc1 complexes from wild-type yeast and yeast that lack ubiquinone. The results establish that menaquinol reacts via the Q cycle pathway both in the presence and absence of ubiquinone. From analyzing bc1 complexes containing Rieske proteins in which the midpoint potential of the iron-sulfur cluster has been altered from +280 to +105 mV, we propose a mechanism in which the protonated quinol displaces a proton from the imidazole nitrogen of one of the histidines that is a ligand to the iron-sulfur cluster and forms a quinol-imidazolate complex that is the electron donor to the redox active iron. Topics: Animals; Cattle; Electron Transport Complex III; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Mutagenesis, Site-Directed; Naphthols; Oxidation-Reduction; Saccharomyces cerevisiae; Terpenes; Ubiquinone | 1998 |
The cytochrome bc1 complex of Rhodobacter capsulatus: ubiquinol oxidation in a dimeric Q-cycle?
We studied the cytochrome bc1 complex (hereafter bc) by flash excitation of Rhodobacter capsulatis chromatophores. The reduction of the high-potential heme b(h), of cytochrome b (at 561 nm) and of cytochromes c (at 552 nm) and the electrochromic absorption transients (at 524 nm) were monitored after the first and second flashes of light, respectively. We kept the ubiquinone pool oxidized in the dark and concerned for the ubiquinol formation in the photosynthetic reaction center only after the second flash. Surprisingly, the first flash caused the oxidation of about one ubiquinol per bc dimer. Based on these and other data we propose a dimeric Q-cycle where the energetically unfavorable oxidation of the first ubiquinol molecule by one of the bc monomers is driven by the energetically favorable oxidation of the second ubiquinol by the other bc monomer resulting in a pairwise oxidation of ubiquinol molecules by the dimeric bc in the dark. The residual unpaired ubiquinol supposedly remains on the enzyme and is then oxidized after the first flash. Topics: Electron Transport; Electron Transport Complex III; Oxidation-Reduction; Rhodobacter capsulatus; Ubiquinone | 1998 |
Tryptophan-136 in subunit II of cytochrome bo3 from Escherichia coli may participate in the binding of ubiquinol.
In the cytochrome c oxidases, the role of subunit II is to provide the electron entry site into the enzyme. This subunit contains both the binding site for the substrate, cytochrome c, and the CuA redox center, which is initially reduced by cytochrome c. Cytochrome bo3 and other quinol oxidases that are members of the heme-copper oxidase superfamily have a homologous subunit II, but the CuA site is absent, as is the docking site for cytochrome c. Speculation that subunit II in the quinol oxidases may also be important as an electron entry site is supported by the demonstration several years ago that a photoreactive substrate analogue, azido-Q, covalently labeled subunit II in cytochrome bo3. In the current work, a sequence alignment of subunit II of heme-copper quinol oxidases is used as a guide to select conserved residues that might be important for the binding of ubiquinol to cytochrome bo3. Results are presented for point mutants in 24 different residue positions in subunit II. The membrane-bound enzymes were examined by optical spectroscopy and by determining the activity of ubiquinol-1 oxidase. In each case, the Km for ubiquinol-1 was determined as a measure of possible perturbation to a quinol binding site. The only mutant that had a noticeably altered Km for ubiquinol-1 was W136A, in which the Km was about sixfold increased. Thus, W136 may be at or close to a substrate (ubiquinol)-binding site in cytochrome bo3. In the cytochrome c oxidases, the equivalent tryptophan (W121 in Paracoccus denitrificans) has been identified as the "electron entry site". Topics: Amino Acid Sequence; Azides; Binding Sites; Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Oxidoreductases; Photoaffinity Labels; Proton Pumps; Tryptophan; Ubiquinone | 1998 |
Simultaneous determination of homologues of vitamin E and coenzyme Q and products of alpha-tocopherol oxidation.
A sensitive procedure is described for the simultaneous determination of vitamin E and coenzyme Q homologues and alpha-tocopherol oxidation products using two-isocratic step high pressure liquid chromatography (HPLC) and electrochemical detection in the oxidative mode. Zinc-catalyzed reduction in a post-column reactor allows the detection of alpha-tocopherolquinone, epoxy-tocopherolquinone, and ubiquinones. This technique was used to quantify lipophilic antioxidants in the liver tissue of rats treated or not with alpha-tocopherolquinone and in a plant oil. Alpha-tocopherolquinone and its epoxide derivatives, formed from alpha-tocopherol during iron-catalyzed phospholipid peroxidation, were also determined in a liposome suspension. The high selectivity and sensitivity of the coulometric detection system enabled use of low oxidation potentials giving little baseline noise, while a fast isolation procedure and quantitative recoveries of all oxidized and reduced forms made it possible to measure a high ubiquinol/ubiquinone ratio in liver tissue. Administration of alpha-tocopherolquinone to rats did not alter the antioxidant status of the liver, despite strong accumulation of both this quinone and its reduced form, alpha-tocopherolhydroquinone. These results indicate the presence of an efficient reductase and suggest that it could contribute to the protection of cellular membranes from oxidative stress. Topics: Animals; Antioxidants; Chromatography, High Pressure Liquid; Drug Stability; Iron; Lipid Peroxidation; Liposomes; Liver; Male; Plant Oils; Rats; Rats, Wistar; Reproducibility of Results; Ubiquinone; Vitamin E; Zinc | 1998 |
Antioxidant-derived prooxidant formation from ubiquinol.
Ubiquinol (QH2) is increasingly used as antioxidant for the treatment of a variety of diseases and the modulation of biological aging; however, the biological significance of secondary reaction products has been disregarded so far. Our studies on the antioxidant activity of ubiquinol in peroxidizing lipid membranes demonstrate the existence of ubisemiquinone (SQ*) as the first reaction product of ubiquinol. A fraction of SQ* derived from the antioxidative activity of QH2 was detected in the outer section of the membrane bordering the aqueous phase. This localization allows an access of protons and water from the aqueous phase to SQ* a prerequisite earlier found to trigger autoxidation. Superoxide radicals emerging from this fraction of autoxidizing SQ* form H2O2 by spontaneous dismutation. SQ* not involved in autoxidation may react with H2O2. Transfer of the odd electron to H2O2 resulted in HO* and HO- formation by homolytic cleavage. An analogous reaction was also possible with lipid hydroperoxides which accumulate in biological membranes during lipid peroxidation. The reaction products emerging from this reaction were alkoxyl radicals. Both HO* and alkoxyl radicals are strong initiators and promoters of lipid peroxidation. Indirect evidence of the existence and prooxidative activities of these secondary reaction products came from comparative studies with vitamin E. While in the absence of other reactants, QH2 and vitamin E were equally effective in scavenging lipid radicals; the radical protecting activity of QH2 was found to be significantly lower as compared to vitamin E when these antioxidants operate in peroxidizing lipid membranes. This discrepancy reveals that the antioxidative activity of coenzyme Q is compulsorily linked to the formation of split products counteracting the membrane protective effect of this natural antioxidant. Topics: Antioxidants; Benzoquinones; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Free Radicals; Gadolinium; Hydrogen Peroxide; Hydroxyl Radical; Lipid Peroxidation; Liposomes; Oxidants; Peroxides; Spin Labels; Superoxides; Ubiquinone; Ultraviolet Rays; Vitamin E | 1998 |
Exogenous ubiquinol analogues affect the fluorescence of NCD-4 bound to aspartate-160 of yeast cytochrome b.
Previously, we reported that the carboxyl-reacting reagent DCCD, and its fluorescent derivative NCD-4 binds covalently to aspartate-160 localized in amphipathic helix cd of the CD loop connecting membrane-spanning helices C and D of cytochrome b (Wang et al., 1995). We have investigated the fluorescent properties of NCD-4 to probe possible changes in the cd helix resulting from the binding of exogenous ubiquinol analogues to the bc1 complex. Preincubation of the bc1 complex with the reduced substrate analogues, DQH2, DBH2, and Q6H2 resulted in 20-40% increase in the fluorescence emission intensity of NCD-4 and a 10-20% increase in the binding of [14C]DCCD to the bc1 complex. By contrast, preincubation with the oxidized analogues DQ. DB, and Q6 resulted in a 20-40% decrease in the fluorescence emission intensity of NCD-4 and a 20-40% decrease in the binding of [14C]DCCD to the bc1 complex. Moreover, addition of the reduced ubiquinols to the bc1 complex preincubated with NCD-4 resulted in a blue shift in the fluorescence emission spectrum. In addition, incubation of the cytochrome bc1 complex reconstituted into proteoliposomes with both reduced and oxidized ubiquinol analogues resulted in changes in the quenching of NCD-4 fluorescence by CAT-16, the spin-label probe that intercalates at the membrane surface. These results indicate that the addition of exogenous ubiquinol to the bc1 complex may result in changes in the cd helix leading to a more hydrophobic environment surrounding the NCD-4 binding site. By contrast, preincubation with the inhibitors of electron transfer through the bc1 complex had no effect on the binding of NCD-4 to the bc1 complex or on the fluorescent emission spectra, which suggests that the binding of the inhibitors does not result in changes in the environment of the NCD-4 binding site. Topics: Amino Acid Sequence; Aspartic Acid; Bacterial Proteins; Carbodiimides; Cytochrome b Group; Dicyclohexylcarbodiimide; Electron Transport; Electron Transport Complex III; Ferritins; Fluorescent Dyes; Molecular Sequence Data; Protein Structure, Secondary; Spectrometry, Fluorescence; Structure-Activity Relationship; Ubiquinone; Yeasts | 1998 |
Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles.
The relationship between, lipid peroxidation induced by ascorbate and adenosine ADP/Fe3+, and its effect on the respiratory chain activities of beef heart submitochondrial particles has been investigated. Lipid peroxidation, measured as thiobarbituric acid reactive substance formation, resulted in an inhibition of the NADH and succinate oxidase activities. Examination of several partial reactions of the respiratory chain revealed inactivation primarily of those involving endogenous ubiquinone, i.e., NADH- and succinate-ubiquinone1 and cytochrome c reductases. Ubiquinol-cytochrome c reductase, measured with reduced ubiquinone2 as electron donor, was unaffected. The amount of NADH- or succinate-reducible cytochrome b in the presence of cyanide was strongly decreased, but could be recovered by the addition of antimycin. There occurred a substantial decrease of the ubiquinone content in the course of lipid peroxidation, with a linear relationship between this decrease and the NADH and succinate oxidase activities. The results are consistent with the conclusion that the ubiquinone pool undergoes an oxidative modification during lipid peroxidation, to a form that can no longer function as a component of the respiratory chain. Lipid peroxidation also led to a partial inhibition of the succinate dehydrogenase and cytochrome c oxidase activities and a minor decrease of the cytochrome c and cytochrome a contents. Reduction of endogenous ubiquinone prevented lipid peroxidation as well as the concomitant modification of ubiquinone and inactivation of the respiratory chain. These observations suggest that the destruction of ubiquinone through lipid peroxidation is the primary cause of inactivation of the respiratory chain, and emphasize the antioxidant role of ubiquinol in preventing these effects. The possible implications of these findings for regulation of the cellular turnover of ubiquinone by the prevailing oxidative stress are discussed. Topics: Adenosine Diphosphate; Animals; Ascorbic Acid; Cattle; Cytochromes; Electron Transport; Ferric Compounds; Kinetics; Lipid Peroxidation; Mitochondria, Heart; NAD; Submitochondrial Particles; Succinates; Succinic Acid; Thiobarbituric Acid Reactive Substances; Ubiquinone | 1997 |
Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton trans
The cytochrome bo3 ubiquinol oxidase complex from Escherichia coli contains two binding sites for ubiquinone(ol) (UQ(H2)). One of these binding sites, the ubiquinol oxidation site, is clearly in dynamic equilibrium with the UQ(H2) pool in the membrane. The second site has a high affinity for ubiquinone (UQ), stabilizes a semiquinone species, and is located physically close to the low-spin heme b component of the enzyme. The UQ molecule in this site has been proposed to remain strongly bound to the enzyme during enzyme turnover and to act as a cofactor facilitating the transfer of electrons from the substrate ubiquinol to heme b [Sato-Watanabe et al. (1994) J. Biol. Chem. 269, 28908-28912]. In this paper, the steady-state turnover of the enzyme is examined in the presence and absence of inhibitors (UHDBT and NQNO) that appear to be recognized as ubisemiquinone analogs. It is found that the kinetics are accounted for best by a noncompetitive inhibitor binding model. Furthermore, at high concentrations, the substrates ubiquinol-1 and ubiquinol-2 inhibit turnover in an uncompetitive fashion. Together, these observations strongly suggest that there must be at least two UQ(H2) binding sites that are in rapid equilibrium with the UQ(H2) pool under turnover conditions. Although these data do not rule out the possibility that a strongly bound UQ molecule functions to facilitate electron transfer to heme b, they are more consistent with the behavior expected if the two UQ(H2) binding sites were to function in a Q(H2)-loop mechanism (similar to that of the cytochrome bc1 complex) as originally proposed by Musser and co-workers [(1993) FEBS Lett. 327, 131-136]. In this model, ubiquinol is oxidized at one site and ubiquinone is reduced at the second site. While the structural similarities of the heme-copper ubiquinol and cytochrome c oxidase complexes suggest the possibility that these two families of enzymes translocate protons by similar mechanisms, the current observations indicate that the Q(H2)-loop proton translocation mechanism for the heme-copper ubiquinol oxidase complexes should be further investigated and experimentally tested. Topics: Binding Sites; Binding, Competitive; Cytochrome b Group; Cytochromes; Electron Transport; Energy Metabolism; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Models, Chemical; Molecular Structure; Protons; Thiazoles; Ubiquinone | 1997 |
Ubiquinol/ubiquinone ratio as marker of oxidative stress in coronary artery disease.
The purpose of the study was to investigate changes in serum ubiquinol/ubiquinone ratio with copper ion induced oxidative stress, and to assess the ubiquinol/ubiquinone ratio as marker of in vivo oxidative stress in patients with coronary artery disease (CAD). Plasma ubiquinol, ubiquinone, vitamin E (alpha-tocopherol) and total cholesterol (TC) concentrations were measured in 40 patients with angiographically confirmed coronary artery disease and 100 apparently healthy controls. The mean (SD) ubiquinol/ubiquinone ratio of 26.5 (7.5) of the CAD patients was significantly lower than the mean ratio of 30.2 (8.8) of the controls (p = 0.02). Our results indicate that the ubiquinol/ubiquinone ratio is a sensitive marker of oxidative stress and that an altered ubiquinol/ubiquinone ratio is the first sign of lipoprotein exposure to oxidative stress. The altered ratio in CAD patients cannot be explained by differences in plasma vitamin E levels. The vitamin E concentrations were in fact significantly higher in CAD patients, and did not appear to protect the ubiquinol from increased oxidation due to free radical reactions. These results may indicate that circulating lipoproteins of CAD patients are more exposed to, or are more susceptible to, free radical reactions compared with apparently healthy controls. Topics: Adult; Aged; Biomarkers; Copper; Coronary Disease; Enzyme Inhibitors; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lipoproteins; Male; Middle Aged; Oxidation-Reduction; Oxidative Stress; Ubiquinone; Vitamin E | 1997 |
Oxidation of ubiquinol by cytochrome bo3 from Escherichia coli: kinetics of electron and proton transfer.
In this study we have used the so-called flow-flash technique to investigate electron and proton transfer during the reaction between cytochrome bo3 with bound ubiquinol (QH2) and dioxygen. The results are compared to those from the well-characterized mitochondrial cytochrome alpha alpha3. Qualitatively, the same type of absorbance changes associated with electron transfer were observed in both enzymes whereas the protonation reactions were markedly different. In the bacterial QH2-bound enzyme, three kinetic phases with time constants of approximately 45 micros, approximately 700 micros, and approximately 4 ms associated with electron-transfer reactions were observed. The first phase is attributed to oxidation of hemes b and o3 and formation of the "peroxy" intermediate. The second and third phases were not observed after addition of the herbicide HQNO, which displaces QH2 from its binding site. They are attributed to electron transfer from QH2 to heme b and from heme b to the binuclear center, respectively. In both enzymes, the initial electron transfer was followed by a slower uptake of 0.9 +/- 0.3 proton per enzyme molecule (tau approximately 90 micros), previously attributed to protonation of a group near the binuclear center. Only in the bacterial enzyme, the second electron-transfer reaction was accompanied by a net release of 1.1 +/- 0.3 H+, which is attributed to proton release during oxidation of QH2. It was followed by a slower uptake of 1.2 +/- 0.4 H+ during transfer of the fourth electron to the binuclear center. The two slowest protonation reactions were not observed in the presence of HQNO. Topics: Bacterial Proteins; Cytochrome b Group; Cytochromes; Electron Spin Resonance Spectroscopy; Electron Transport; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Oxidation-Reduction; Oxygen; Protons; Ubiquinone | 1997 |
The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
The nuclear ABC1 gene was isolated as a multicopy suppressor of a cytochrome b mRNA translation defect. Its inactivation leads to a respiratory deficiency suggesting a block in the bc1 segment of the respiratory chain [Bousquet, I., Dujardin, G. & Slonimski, P. P. (1991) EMBO J. 10, 2023-2031]. In the present study, we established that deleting the ABC1 chromosomal gene from Saccharomyces cerevisiae does not prevent the assembly of the bc1 complex (complex III) but markedly impairs the kinetics of its high-potential electron transfer pathway occurring on the positive, outer, side of the membrane, which results in reduced activity of the bc1 complex. In addition, the activity of complex II and its cytochrome b560 decrease drastically and complex IV activity is halved. It is also observed that the binding of the quinol to the bc1 complex ubiquinol oxidation site is affected and that adding exogenous quinones partially compensates for the respiratory deficiency in vitro, although the quinone content of mutant and wild-type mitochondria are similar. Lastly, complexes II, III and IV are found to be thermosensitive and the bc1 complex exhibits greater sensitivity than the wild-type strain to center N and P inhibitors, suggesting that the three multisubunit complexes have undergone structural modifications. The data suggest that the ABC1 gene product acts as a chaperone-like protein essential for the proper conformation and efficient functioning of the bc1 complex and the effects of the Abc1 protein on the complexes II and IV might result from interactions with the modified bc1 complex. Topics: Cytochrome b Group; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex III; Electron Transport Complex IV; Enzyme Inhibitors; Enzyme Stability; Escherichia coli Proteins; Fungal Proteins; Genes, Fungal; Genes, Suppressor; Kinetics; Mitochondria; Molecular Chaperones; Multienzyme Complexes; Mutation; NADH Dehydrogenase; NADH, NADPH Oxidoreductases; Oxidoreductases; Protein Conformation; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sequence Deletion; Succinate Cytochrome c Oxidoreductase; Succinate Dehydrogenase; Temperature; Ubiquinone | 1997 |
Cytosolic NADPH-UQ reductase-linked recycling of cellular ubiquinol: its protective effect against carbon tetrachloride hepatotoxicity in rat.
To confirm whether or not cytosolic NADPH-UQ reductase is involved in the recycling of cellular ubiquinol (UQH2) consumed during lipid peroxidation, the effect of a UQ-10 supplement on the NADPH-UQ reductase and cellular defense against oxidative damage in rat livers was investigated. Supplements of UQ-10 for 14 days enhanced the levels of UQH2-10 and NADPH-UQ reductase in rat livers without any appreciable changes in other antioxidant contents and related enzyme activities. However, the injection of carbon tetrachloride (CCl4) into the rats induced lipid peroxidation and decreased the cellular UQH2-10 contents (and increased equivalent amounts of UQ-10), as well as decreasing the ascorbic acid, reduced glutathione (GSH) and alpha-tocopherol contents of the rat livers. Administration of the UQ-10 supplement prior to the CCl4 treatment spared alpha-tocopherol (but not GSH or ascorbic acid), inhibited lipid peroxidation, and thus improved CCl4-induced hepatitis. These findings support the notion that NADPH-UQ reductase in cytosol is the enzyme responsible for the regeneration of UQH2 from UQ formed by lipid peroxidation in cells. Topics: Animals; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Cytosol; Liver; Male; Microsomes, Liver; Mitochondria, Liver; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Rats; Rats, Wistar; Specific Pathogen-Free Organisms; Ubiquinone | 1997 |
Gene linkage and steady state RNAs suggest trans-splicing may be associated with a polycistronic transcript in Schistosoma mansoni.
Spliced leader (SL) trans-splicing generates the 5' end of mature mRNAs through the addition of a small exon to pre-mRNAs in some flagellates (kinetoplastida and euglenoids) and metazoans (nematodes and flatworms). Although SL addition in the kinetoplastida and a subset of nematode genes serves to resolve multicistronic mRNAs into monocistronic, capped mRNAs, information regarding the functional significance of trans-splicing in flatworms is limited. We describe here the identification and characterization of a closely linked gene upstream from the trans-spliced enolase gene in the flatworm Schistosoma mansoni. This gene produces a non-trans-spliced mRNA encoding a ubiquinol binding protein, UbCRBP, that is a component of the ubiquinol-cytochrome C reductase complex. The distance between the UbCRBP polyadenylation site and the enolase trans-splice acceptor site is exceptionally short, only 54 nucleotides. Primer extension (5' RACE), RT-PCR, and RNase mapping have identified steady state, cis-spliced RNAs which significantly overlap both the UbCRBP and enolase genes. These transcripts contain the 5' ends of mature UbCRBP mRNAs; extend through UbCRBP, across the intergenic region, and a significant distance 3' into the enolase gene. Interestingly, the close linkage between the UbCRBP and enolase genes is conserved in a second flatworm, Fasciola hepatica, which also trans-splices the downstream enolase gene. Taken together, the role of SL addition in resolving multicistronic transcripts in both C. elegans and the kinetoplastida, the conservation of UbCRBP/enolase gene linkage in two divergent trematodes, and the multicistronic organization of schistosome UbCRBP/enolase RNAs are consistent with the suggestion that these two genes are likely to be cotranscribed and that trans-splicing in flatworms may be associated with polycistronic transcripts. Topics: Amino Acid Sequence; Animals; Base Sequence; Carrier Proteins; Electron Transport Complex III; Fasciola hepatica; Gene Amplification; Genes, Helminth; Genetic Linkage; Molecular Sequence Data; Phosphopyruvate Hydratase; Ribonucleases; RNA Splicing; RNA, Messenger; Schistosoma mansoni; Transcription, Genetic; Ubiquinone | 1997 |
The amino-terminal portion of the Rieske iron-sulfur protein contributes to the ubihydroquinone oxidation site catalysis of the Rhodobacter capsulatus bc1 complex.
The Rieske iron-sulfur (Fe-S) protein subunit of bc1 complexes contains in its carboxyl-terminal part two highly conserved hexapeptide motifs (box I and box II) that include the four amino acid ligands of its [2Fe-2S] cluster. In the preceding paper [Liebl, U., Sled, V., Brasseur, G., Ohnishi, T., & Daldal, F. (1997) Biochemistry 36, 11675-11684], the effects of mutations at two of the nonliganding residues [threonine (T) 134 and leucine (L) 136 in the Rhodobactercapsulatus Rieske Fe-S protein] of box I have been described. In this work, interactions between the occupants of the Qo site of the bc1 complex (UQ/UQH2 and the inhibitors stigmatellin and myxothiazol) and the [2Fe-2S] cluster of the Rieske Fe-S protein were probed by isolating photosynthesis-proficient (Ps+) revertants of the Ps- mutants L136R, -H, -D and -G. These revertants contained either a single substitution at the original position 136 or an additional mutation located in the amino-terminal part of the Fe-S protein at either position 44 or 46. The same-site revertants L136A and -Y grew well under photosynthetic conditions and contained highly active bc1 complexes but exhibited modified EPR spectra both in the presence and in the absence of stigmatellin. Unexpectedly, they were highly resistant to stigmatellin (StiR) and hypersensitive to myxothiazol (MyxHS) in vivo, demonstrating for the first time that mutations located in the Fe-S subunit confer resistance to stigmatellin. The [2Fe-2S] cluster of the same-site revertants responded weakly to the Qpool redox state and had redox midpoint potential (Em7) values (around 265 mV) lower than those of their wild type counterpart (about 310 mV). On the other hand, the second-site revertants L136H/V44L, L136G/V44F, and L136G/A46T, -V, or -P supported photosynthetic growth poorly, were StiR and MyxHS, and contained barely active bc1 complexes. Like the same-site revertants, they exhibited modified EPR spectra both in the presence and in the absence of stigmatellin and had perturbed Qo site occupancy. In addition, they contained substoichiometric amounts of the Fe-S protein with respect to the other subunits of the bc1 complex. The Em7 values of the [2Fe-2S] cluster of these double mutants were lower (around 245 mV) than that of the wild type strain but appreciably higher than those of their Ps- parents (about 200 mV for L136G). In order to define the molecular nature of the suppression mediated by the second-site mutations, the single mutants V44L Topics: Binding Sites; Catalysis; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Escherichia coli; Iron-Sulfur Proteins; Models, Molecular; Mutagenesis, Site-Directed; Oxidation-Reduction; Phenotype; Rhodobacter capsulatus; Ubiquinone | 1997 |
Dietary alpha-tocopherol supplementation on antioxidant defenses after in vivo iron overload in rats.
The effect of dietary alpha-tocopherol (alpha-T) supplementation on iron overload-dependent oxidative damage was studied. Male Wistar rats were fed diets supplemented with 2.5% carbonyl iron and/or 200 mg/kg of alpha-tocopheryl acetate for 6 weeks. Oxidation of lipids and proteins were increased by iron overload in rat liver, and alpha-T dietary supplementation effectively prevented these effects. Iron overload decreased both, catalase and Mn-superoxide dismutase activities by 49 and 54%, respectively, with no effect on glutathione peroxidase activity. Alpha-T supplementation did not prevent the inhibition measured in catalase and Mn-superoxide dismutase activities. Iron dietary excess had no effect on liver alpha-T and ubiquinol 9 (UQ9) content. Ubiquinol 10 (UQ10) content after iron overload was decreased by 58 and 54% in whole liver and liver mitochondria, respectively. Alpha-T supplementation led to significant increases in alpha-T, UQ9 and UQ10 content in liver, as compared to control values, and partially prevented the decrease in UQ10 content due to iron excess. The results presented here indicate that initial stages of iron overload led to oxidative damage in liver (evaluated in terms of lipid and protein oxidation) with a decline in antioxidant defenses. alpha-T supplementation affected the liver content of lipid soluble antioxidants, suggesting a concerted antioxidant response at the cellular level to modulate the effect of excess iron availability. Topics: Animals; Antioxidants; Catalase; Iron Overload; Lipid Peroxidation; Male; Rats; Rats, Wistar; Superoxide Dismutase; Ubiquinone; Vitamin E | 1997 |
The molecular basis for the natural resistance of the cytochrome bc1 complex from strobilurin-producing basidiomycetes to center Qp inhibitors.
Mitochondria from the strobilurin A producing basidiomycetes Strobilurus tenacellus and Mycena galopoda exhibit natural resistance to (E)-beta-methoxyacrylate inhibitors of the ubiquinol oxidation center(center Qp) of the cytochrome bc1 complex. Isolated cytochrome bc1 complex from S. tenacellus was found to be highly similar to that of Saccharomyces cerevisiae with respect to subunit composition, as well as spectral characteristics and midpoint potentials of the heme centers. To understand the molecular basis of natural resistance, we determined the exon/intron organization and deduced the sequences of cytochromes b from S. tenacellus, M. galopoda and a third basidiomycete, Mycena viridimarginata, which produces no strobilurin A. Comparative sequence analysis of two regions of cytochrome b known to contribute to the formation of center Qp suggested that the generally lower sensitivity of all three basidiomycetes was due to the replacement of a small amino acid residue in position 127 by isoleucine. For M. galopoda replacement of Gly143 by alanine and Gly153 by serine, for S. tenacellus replacement of a small residue in position 254 by glutamine and Asn261 by aspartate was found to be the likely causes for resistance to (E)-beta-methoxyacrylates. The latter exchange is also found in Schizosaccharomyces pombe, which we found also to be naturally resistant to (E)-beta-methoxyacrylates. Topics: Amino Acid Sequence; Antifungal Agents; Basidiomycota; Carrier Proteins; Cloning, Molecular; Consensus Sequence; Cytochrome b Group; DNA, Fungal; DNA, Mitochondrial; Electron Transport Complex III; Fatty Acids, Unsaturated; Genes, Fungal; Methacrylates; Mitochondria; Models, Molecular; Molecular Sequence Data; Oxidation-Reduction; Oxygen Consumption; Protein Folding; Restriction Mapping; Sequence Homology, Amino Acid; Strobilurins; Ubiquinone | 1996 |
Autoxidation of ubiquinol-6 is independent of superoxide dismutase.
Ubiquinone (Q) is an essential, lipid soluble, redox component of the mitochondrial respiratory chain. Much evidence suggests that ubiquinol (QH2) functions as an effective antioxidant in a number of membrane and biological systems by preventing peroxidative damage to lipids. It has been proposed that superoxide dismutase (SOD) may protect QH2 form autoxidation by acting either directly as a superoxide-semiquinone oxidoreductase or indirectly by scavenging superoxide. In this study, such an interaction between QH2 and SOD was tested by monitoring the fluorescence of cis-parinaric acid (cPN) incorporated phosphatidylcholine (PC) liposomes. Q6H2 was found to prevent both fluorescence decay and generation of lipid peroxides (LOOH) when peroxidation was initiated by the lipid-soluble azo initiator DAMP, dimethyl 2,2'-azobis (2-methylpropionate), while Q6 or SOD alone had no inhibitory effect. Addition of either SOD or catalase to Q6H2-containing liposomes had little effect on the rate of peroxidation even when incubated in 100% O2. Hence, the autoxidation of QH2 is a competing reaction that reduces the effectiveness of QH2 as an antioxidant and was not slowed by either SOD or catalase. The in vivo interaction of SOD and QH2 was also tested by employing yeast mutant strains harboring deletions in either CuZnSOD and/or MnSOD. The sod mutant yeast strains contained the same percent Q6H2 per cell as wild-type cells. These results indicate that the autoxidation of QH2 is independent of SOD. Topics: Animals; Catalase; Catalysis; Cattle; Copper; Copper Sulfate; Escherichia coli; Genotype; Kinetics; Liposomes; Liver; Oxidation-Reduction; Saccharomyces cerevisiae; Spectrometry, Fluorescence; Superoxide Dismutase; Ubiquinone | 1996 |
Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones.
A tissue-specific distribution of the various vitamin E forms, tocotrienols and tocopherols, has been found, suggesting that these forms have unique roles in cellular functions. A sensitive procedure is described for the simultaneous determination of individual tocopherols, tocotrienols, ubiquinols, and ubiquinones using gradient high pressure liquid chromatography (HPLC) and electrochemical detection for vitamin E homologues and ubiquinols, and in-line UV detection for ubiquinones. Using this method, the lipophilic antioxidant complement of a variety of hairless mouse tissues was analyzed. Of the vitamin E forms, brain contained virtually only alpha-tocopherol (5.4 +/- 0.1 nmol/g; 99.8%) and no detectable tocotrienols were found. By contrast, skin contained nearly 15% tocotrienols and 1% gamma-tocopherol. In other tissues, the alpha-tocopherol content was higher (20 nmol/g), while each of the other forms represented about 1% of the total (gamma-tocopherol 0.2 to 0.4 nmol/g, alpha-tocotrienol 0.1, gamma-tocotrienol 0.2). Ubiquinol-9 concentrations were highest in kidney (81 nmol/g) and in liver (42 nmol/g), while the highest ubiquinone-9 concentrations were found in kidney (301 +/- 123 nmol/g) and heart (244 +/- 22 nmol/g). Liver contained nearly identical concentrations of each of the redox couple (ubiquinol-9 (41 +/- 16 nmol/g) and ubiquinone-9 (46 +/- 18 nmol/g). The unique distribution of these various antioxidants in the tissues measured suggests their distribution may be dependent upon selective mechanisms for maintaining antioxidant defenses in each tissue. Topics: Animals; Chromatography, High Pressure Liquid; Female; Mice; Mice, Hairless; Molecular Structure; Reference Standards; Tissue Distribution; Ubiquinone; Vitamin E | 1996 |
Na(+)-translocating cytochrome bo terminal oxidase from Vitreoscilla: some parameters of its Na+ pumping and orientation in synthetic vesicles.
Vitreoscilla cytochrome bo ubiquinol oxidase is similar in some properties to the Escherichia coli enzyme, but unlike the latter, the Vitreoscilla oxidase functions as a primary Na+ pump. When purified Vitreoscilla cytochrome bo is incorporated into liposomes made from Vitreoscilla phospholipids and energized with a quinol substrate, it translocates Na+, not H+, across the vesicle membrane. Since protonophores CCCP (carbonyl cyanide m-chlorophenylhydrazone) and DTHB (3,5-di-tert-butyl-4-hydroxybenzaldehyde) stimulated the Na+ pumping, it is unlikely that it is a secondary effect due to the presence of Na+/H+ antiporter activity in the preparations. The efficiency of the Na+ pumping was 3.93 Na+ pumped per O2 consumed when ascorbate/TMPD was used as the substrate. The cytochrome has a K(m) and Kcat for Na+ of 2.9 mM and 277 s-1, respectively. When ferricytochrome c was entrapped within liposomes prepared from Vitreoscilla phospholipids, it was reduced by Q1H2 (ubiquinol-1) but not by ascorbate/TMPD (N,N,N',N'-tetramethyl-1,4-phenylenediamine). Although Q1H2 was oxidized by cytochrome bo in solution at a rate approximately 14 times that of the latter substrate, the rate of accumulation of Na+ within cytochrome bo vesicles driven by the membrane impermeable ascorbate/TMPD was 1.23 times that of the membrane permeable ubiquinol. These data allowed a calculation that in these synthetic proteoliposomes the cytochrome bo molecules are only 51% directed inward; a value of 61% inward-directed was estimated by measuring the ascorbate/TMPD oxidase activity of the proteoliposomes before and after disrupting them with Triton X-100. A random orientation of the E. coli cytochrome bo oxidase in proteoliposomes has also been reported. Topics: Ascorbic Acid; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cytochrome b Group; Cytochromes; Electron Transport Complex IV; Escherichia coli Proteins; Gram-Negative Bacteria; Ionophores; Kinetics; Liposomes; Oxygen; Parabens; Permeability; Phenylenediamines; Phospholipids; Sodium; Sodium-Potassium-Exchanging ATPase; Substrate Specificity; Ubiquinone | 1996 |
The effect of ascorbate and ubiquinone supplementation on plasma and CSF total antioxidant capacity.
Free radicals are thought to be involved in the onset of neuronal disturbances such as Alzheimer's disease, Parkinson's disease, and neuronal ceroid lipofuscinosis. It is also assumed that they play a role in cerebral injury caused by ischemia or trauma. Plasma and cerebrospinal fluid (CSF), Total (peroxyl) Radical-trapping Antioxidant Parameter (TRAP), and the known antioxidant components of TRAP, for instance, ascorbic acid, uric acid, protein sulfhydryl groups, tocopherol, and ubiquinol were analyzed and the remaining unidentified fragment was calculated in five healthy volunteers before and after 4 weeks of ascorbate and ubiquinone (Q-10) supplementation. In CSF, TRAP was significantly lower than in plasma. The major contributor to plasma's antioxidant capacity was uric acid (UA), whereas in CSF it was ascorbic acid (AA). In CSF, AA concentrations were four times higher than in plasma. Oral supplementation of AA (500 mg/d first 2 weeks, 1,000 mg/d following 2 weeks) and Q-10 (100 mg/d first 2 weeks, 300 mg/d following 2 weeks) induced a significant increase in plasma AA and Q-10. Surprisingly, in spite of the high lipophilicity of Q-10, its concentration did not change in CSF. The supplementation of AA increased its concentration in CSF by 28% (p < .05). However, the increase in AA did not result in an increase in CSF TRAP. This indicates that AA had lost one-third of its radical trapping capacity as compared to that in plasma. The facts that AA is the highest contributor to CSF TRAP and its effect on TRAP is concentration dependent could indicate that the peroxyl radical-trapping capacity of CSF is buffered by AA. Topics: Adult; Antioxidants; Ascorbic Acid; Free Radicals; Humans; Male; Sulfhydryl Compounds; Ubiquinone; Uric Acid; Vitamin E | 1996 |
Oxidant defense systems in testes from zinc-deficient rats.
Previous studies have demonstrated that zinc deficiency can be associated with high rates of oxidative damage to testes lipids, proteins, and DNA in male rats. In the present work, different aspects of the oxidant defense system (enzymes and lipid-soluble antioxidant substances) were characterized in the testes of control and zinc-deficient rats. Seventeen-day-old males were given free access to either a control (25 microg Zn/g) or a zinc-deficient (0.5 microg Zn/g) diet, or the 25 microg Zn/g diet at a level of food intake similar to that of zinc-deficient rats. Animals were sacrificed 14 days after the initiation of the diet. The activities of copper-zinc superoxide dismutase (CuZn SOD) and glutathione reductase (GRed) were significantly higher (34% and 23%, respectively) in testes from the zinc-deficient animals than in those of the ad libitum controls. In testes, the activities of manganese superoxide dismutase (Mn SOD) and glutathione peroxidase (GPx), and the concentration of alpha-tocopherol and ubiquinol-9 and -10 were similar among the groups. However, the ratio of reduced/total concentration of both ubiquinols was higher in the zinc-deficient and restrict-fed animals than in the ad libitum controls. Testes homogenates from the zinc-deficient rats showed a low susceptibility to Fe(II)-induced oxidation, which could be explained in part by a lower peroxidation index, mainly due to the decreased testicular content of the fatty acid 20:4 observed in these animals. In summary, both undernutrition and zinc-deficiency can cause an oxidative stress situation in testes, for which cells tend to compensate by increasing select components of the oxidant defense system. Topics: Animals; Body Weight; Copper; Glutathione Peroxidase; Glutathione Reductase; Male; Organ Size; Oxidative Stress; Oxidoreductases; Phospholipids; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Superoxide Dismutase; Testis; Thiobarbituric Acid Reactive Substances; Ubiquinone; Vitamin E; Zinc | 1996 |
Inhibition of oxidation of low density lipoprotein by vitamin E and related compounds.
The oxidation of low density lipoprotein (LDL) was carried out aiming specifically at elucidating the anti-oxidant action of alpha-tocopherol. Lipophilic and hydrophilic azo compounds and copper induced the oxidation of LDL similarly to give cholesterol ester and phosphatidylcholine hydroperoxides as major products. The antioxidant potency of alpha-tocopherol in LDL was much poorer than in homogeneous solution. Doxyl stearic acids were used as spin probe and incorporated in LDL. The rate of reduction of doxyl nitroxide in LDL by ascorbate decreased with increasing distance from the LDL surface. From the competition between the spin probe and alpha-tocopherol in scavenging radical, it was found that the efficacy of radical scavenging by alpha-tocopherol became smaller as the radical went deeper into the interior of LDL. On the other hand, 2,2,5,7,8-pentamethyl-6-chromal spared the spin label regardless of the position of nitroxide. The antioxidant activity of chromanols against LDL oxidation increased with decreasing length of isoprenoid side chain at the 2-position. All these results were interpreted by location and low mobility of alpha-tocopherol in LDL. The tocopherol mediated propagation was observed notably at low rate of radical flux, but this was suppressed by reductant such as ascorbic acid and ubiquinol. Topics: Amidines; Antioxidants; Ascorbic Acid; Azo Compounds; Copper; Electron Spin Resonance Spectroscopy; Free Radical Scavengers; Humans; Lipoproteins, LDL; Nitriles; Oxidation-Reduction; Solutions; Stearic Acids; Ubiquinone; Vitamin E | 1996 |
Cellular antioxidant defense by a ubiquinol-regenerating system coupled with cytosolic NADPH-dependent ubiquinone reductase: protective effect against carbon tetrachloride-induced hepatotoxicity in the rat.
We found that NADPH-dependent ubiquinone reductase (NADPH-UQ reductase) in rat liver cytosol reduces ubiquinone (UQ) to ubiquinol (UQH2) in lipid membranes and consequently inhibits lipid peroxidation [Takahashi T., et al., Biochem. J., 309, 883-890 (1995)]. Here we examined whether or not this UQH2-regenerating system functions as a cellular antioxidant defense in animals. Rats were given UQ-10 for 2 weeks, and were then exposed to carbon tetrachloride (CCl4). The UQ-10 supplement increased only in the NADPH-UQ reductase and the UQH2-10 pool of rat liver without any appreciable change in the levels of other antioxidant factors. On the other hand, CCl4 markedly increased plasma aspartate aminotransferase and alanine aminotransferase, liver weight and thiobarbituric acid reacting substances formation, which are indicators of CCl4-hepatitis, and it decreased the liver levels of L-ascorbic acid, reduced form of glutathione (GSH), alpha-tocopherol, NADPH-UQ reductase and glutathione S-transferase. However, all the above indicators of CCl4-induced hepatitis were significantly improved in rats given UQ-10. Furthermore, alpha-tocopherol, but neither L-ascorbic acid nor GSH, was significantly saved. UQ-10 supplement also was recovered glutathione S-transferase and NADPH-UQ reductase activities slightly. These results indicated that UQ-10 given to rats increased the cellular UQH2-10 pool and cytosolic NADPH-UQ reductase activity in their livers, resulting in the inhibition of lipid peroxidation in the biomembranes, and consequently protected the rats from the CCl4-hepatotoxicity. Topics: Animals; Antioxidants; Carbon Tetrachloride; Glutathione; Liver; Male; NAD(P)H Dehydrogenase (Quinone); Rats; Rats, Wistar; Ubiquinone | 1996 |
Does the cytochrome bd terminal oxidase complex have a "pulsed" form?
Topics: Azotobacter vinelandii; Catalysis; Cytochrome b Group; Cytochromes; Electron Transport; Electron Transport Chain Complex Proteins; Escherichia coli Proteins; Kinetics; Models, Chemical; Oxidoreductases; Substrate Specificity; Ubiquinone | 1996 |
Plasma ubiquinol/cholesterol ratios in patients with hyperlipidaemia, those with diabetes mellitus and in patients requiring dialysis.
Plasma ubiquinol was measured in diabetics, patients on haemodialysis (HD) therapy, patients maintained by continuous ambulatory peritoneal dialysis (CAPD), hyperlipidaemic patients and control subjects. Ubiquinol values were standardized using total cholesterol (mumol/mmol). Diabetics, HD and CAPD patients were found to have plasma ubiquinol levels which were lower than the control subjects. There was no difference in values between the control subjects and hyperlipidaemic patients. Values for diabetics with poor metabolic control were similar to those with good control, and patients with diabetic complications had values which were not significantly different from those for patients with no complications. IDDM patients were found to have values which were lower than the control group, whereas values for the NIDDM patients were not significantly different. These results suggest that increased oxidative stress in certain patient groups may be the result of, and/or the cause of, decreased plasma ubiquinol. This could be due to increased demand or to decreased ability to regenerate the effective form of antioxidant. Topics: Adolescent; Adult; Aged; Cholesterol; Diabetes Mellitus, Type 1; Diabetes Mellitus, Type 2; Female; Humans; Hyperlipidemias; Male; Middle Aged; Oxidative Stress; Peritoneal Dialysis, Continuous Ambulatory; Renal Dialysis; Triglycerides; Ubiquinone | 1996 |
Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo3 with oxygen.
Site-directed mutagenesis was used to investigate the mechanism of electron and proton transfer in the ubiquinol oxidase, cytochrome bo3, from Escherichia coli. The reaction between the fully reduced form of the enzyme and dioxygen was studied using the flow--flash method. After rapid mixing of CO-bound enzyme with an O2-containing solution, CO was photodissociated, and the subsequent electron- and proton-transfer reactions were measured spectrophotometrically, the latter using a pH-indicator dye. In the wild-type, pure bo3 enzyme, without bound quinones, we observed a single kinetic phase with a rate constant of about 2.4 x 10(4) s-1, associated with formation of the ferry1 oxygen intermediate, followed by proton uptake from solution with a rate constant of about 1.2 x 10(4) s-1. Enzyme in which heme o instead of heme b was incorporated into the low-spin site displayed a slower ferry1 formation with a rate constant of about 3.6 x 10(3) s-1. Upon replacement of the acidic residue glutamate 286 in helix VI of subunit I with a nonprotonatable residue, electron transfer was slightly accelerated, and proton uptake was impaired. Mutations of other residues in the vicinity of E286 also resulted in a dramatic decrease of proton uptake, suggesting that the environment of this residue is important for efficient proton transfer. In the closely related cytochrome aa3 from P. denitrificans, the corresponding residue (E278) has been suggested to be part of a proton-transfer pathway [Iwata, S., Ostermeier, C., Ludwig, B., & Michel, H. (1995) Nature 376, 660-669]. The results are discussed in terms of a model for electron-proton coupling during dioxygen reduction. Topics: Carbon Monoxide; Cloning, Molecular; Cytochrome b Group; Cytochromes; Electron Transport; Escherichia coli; Escherichia coli Proteins; Hydrogen-Ion Concentration; Kinetics; Mutagenesis, Site-Directed; Mutation; Oxidation-Reduction; Oxygen; Photolysis; Protons; Recombinant Proteins; Spectrophotometry; Ubiquinone | 1996 |
Probing substrate binding site of the Escherichia coli quinol oxidases using synthetic ubiquinol analogues.
Substrate binding sites of the Escherichia coli bo- and bd-type quinol oxidases were probed with systematically synthesized ubiquinol analogues. The apparent Km values of ubiquinol-2 derivatives to the bo-type enzyme were much lower than that of the corresponding 6-n-decyl derivatives. The isoprenoid structure is less hydrophobic than the saturated n-alkyl group with the same carbon number; therefore, the native isoprenoid side chain appears to play a specific role in quinol binding besides simply increasing hydrophobicity of the molecule. The Vmax values of 2-methoxy-3-ethoxy analogues were greater than that of 2-ethoxy-3-methoxy analogues irrespective of the side chain structure. This result indicates not only that a methoxy group in the 2-position is recognized more strictly than the 3-position by the binding site but also that the side chain structure does not affect binding of the quinol ring moiety. Systematic analysis of the electron-donating activities of the analogues with different substituents in the 5-position revealed that the 5-methyl group is important for the activity. In the parallel studies with the bd-type enzyme, we obtained similar observations except that almost all quinol analogues, but not ubiquinol-1, elicited a remarkable substrate inhibition at higher concentrations. These results indicate that the two structurally unrelated terminal oxidases share common structural properties for the quinol-oxidation site. Topics: Electrons; Escherichia coli; Kinetics; Magnetic Resonance Spectroscopy; Oxidoreductases; Substrate Specificity; Ubiquinone | 1996 |
Oxidative modification of nicotinamide nucleotide transhydrogenase in submitochondrial particles: effect of endogenous ubiquinol.
The present paper describes the sensitivity of the mitochondrial nicotinamide nucleotide transhydrogenase (EC 1.6.1.1) to oxidative modification, and the effects of endogenous ubiquinol on this modification. A comparison is made between the effects of treatment with ADP-Fe3+ and ascorbate and with peroxynitrite, using kinetic, electrophoretic, and immunological analyses, together with lipid peroxidation measurements. The transhydrogenase was inactivated by both types of oxidative modification, but apparently through different mechanisms. Ubiquinol protected the enzyme against inactivation only when the modification was caused by ADP-Fe3+ and ascorbate treatment. Kinetic measurements revealed a threefold increase of the Km value of the enzyme for NADPH after exposure to ADP-Fe3+ and ascorbate, and a twofold increase of the Km values for both NADH and NADPH after exposure to peroxynitrite. NAD(H) exerted a protection against trans-hydrogenase inactivation when added to the preincubation in the case of peroxynitrite, but neither NAD(H) or NADP(H) protected in the case of ADP-Fe3+ and ascorbate. Using immunoblotting it was shown that the enzyme became both aggregated and fragmented, although to different extents, depending on the oxidative system used. Again, ubiquinol prevented these effects only in the case of ADP-Fe3+ and ascorbate treatment. Furthermore, there occurred a striking decrease in the 66-kDa trypsin fragment after exposure of the enzyme to ADP-Fe3+ and ascorbate, and of the 48-kDa trypsin fragment after exposure to peroxynitrite. It is concluded that the mitochondrial nicotinamide nucleotide transhydrogenase is sensitive to oxidative stress and that the mechanism underlying this can vary according to the challenge to which the enzyme is exposed. Endogenous ubiquinol may play a role in protecting the enzyme against agents perturbing the lipid phase of the membrane. Topics: Adenosine Diphosphate; Animals; Ascorbic Acid; Blotting, Western; Cattle; Ferric Compounds; Kinetics; Lipid Peroxides; NAD; NADP; NADP Transhydrogenases; Nitrates; Oxidation-Reduction; Peptide Mapping; Stress, Physiological; Submitochondrial Particles; Tyrosine; Ubiquinone | 1996 |
Inhibition of succinate:ubiquinone reductase and decrease of ubiquinol in nephrotoxic cysteine S-conjugate-induced oxidative cell injury.
The role of complex II in the cellular protection against oxidative stress was investigated in freshly isolated rat renal proximal tubular cells (PTC) with the use of the nephrotoxin S-(1,2-dichlorovinyl)-L-cysteine (DCVC). DCVC caused oxidative stress in PTC as determined by flow cytometry with dihydrorhodamine-123; this fluorescent probe is readily oxidized by primary hydroperoxides such as those formed during lipid peroxidation. The oxidative stress could be prevented by inhibition of the beta-lyase-mediated formation and covalent binding to cellular macromolecules of reactive DCVC metabolites, with amino oxyacetic acid (AOA), or by the antioxidant N,N'-diphenyl-p-phenylenediamine. Both AOA and DPPD also prevented cell death. The DCVC-induced oxidative stress was associated with a decrease in the succinate:ubiquinone reductase (SQR) activity of complex II, whereas NADH:ubiquinone reductase activity of complex I remained unaffected. AOA prevented the effect on SQR activity, whereas N,N'-diphenyl-p-phenylenediamine did not. Inhibition of SQR activity with thenoyl trifluoracetone (TTFA) potentiated the DCVC-induced oxidative cell injury, suggesting the involvement of SQR activity in an antioxidant pathway. To investigate this in greater detail, PTC were treated with an inhibitor of cytochrome-c-oxidase, KCN, in a buffer containing glycine, which prevents cell death by KCN. Glycine did not affect cell death by DCVC. KCN prevented the DCVC-induced oxidative stress and cell death. KCN cytoprotection could be prevented by inhibition of SQR activity with oxaloacetate or TTFA, whereas inhibition of either complex I or III with rotenone and antimycin, respectively, did not prevent it. The effect of DCVC on complex II was associated with a decrease in the cellular amount of reduced ubiquinone (QH2); the KCN-mediated cytoprotection was related to a 60% increase of cellular QH2. Rotenone almost completely inhibited ubiquinone reduction even in the presence of KCN, whereas oxaloacetate in combination with KCN resulted in QH2 levels comparable to control. This suggests that the SQR activity by complex II rather than the cellular content of reduced ubiquinone (QH2) is important as a part of the cellular antioxidant machinery in the cyto-protection against oxidative stress. Topics: Animals; Cell Death; Cysteine; Electron Transport Complex I; Electron Transport Complex II; Electron Transport Complex IV; Hydrogen Peroxide; Kidney; Male; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidative Stress; Oxidoreductases; Potassium Cyanide; Rats; Rats, Wistar; Succinate Dehydrogenase; Ubiquinone | 1995 |
A suggested mechanism for the catalytic cycle of cytochrome bd terminal oxidase based on kinetic analysis.
The apparent oxygen affinity of cytochrome bd from Escherichia coli and Azotobacter vinelandii has been measured using oxymyoglobin as a sensitive monitor of oxygen concentration. In membrane preparations, the Km(O2) and respiratory rate varied with the nature of the primary substrate used (malate, lactate, reduced nicotinamide adenine dinucleotide (NADH), or ubiquinol-1). At maximum respiratory rates, the Km(O2) for cytochrome bd from A. vinelandii was 4.1 microM, approximately 2 times higher than the corresponding value for the E. coli enzyme. There were no significant differences between the Km(O2) values for membrane-bound and purified cytochrome bd from A. vinelandii when ubiquinol-1 was used as primary substrate. The kinetic parameters Km(O2) and Vmax provide a value of 2.8 x 10(8) M-1 s-1 for the bimolecular rate constant for oxygen reaction with the enzyme, suggesting that this reaction is diffusion-controlled. Kinetic analysis indicates a mechanism involving a ternary complex. A scheme for the reaction mechanism of cytochrome bd is proposed. Topics: Azotobacter vinelandii; Cell Membrane; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Lactates; Lactic Acid; Myoglobin; NAD; Oxidoreductases; Oxygen Consumption; Ubiquinone | 1995 |
Role of the PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for efficient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex.
The PufX membrane protein is essential for photosynthetic growth of Rhodobacter sphaeroides because it is required for multiple-turnover electron transfer under anaerobic conditions [see accompanying article; Barz, W. P., Francia, F., Venturoli, G., Melandri, B. A., Verméglio, A., & Oesterhelt, D. (1995) Biochemistry 34, 15235-15247]. In order to understand the molecular role of PufX, light-induced absorption spectroscopy was performed using a pufX- mutant, a pufX+ strain, and two suppressor mutants. We show that the reaction center (RC) requires PufX for its functionality under different redox conditions than the cytochrome bc1 complex: When the kinetics of flash-induced reduction of cytochrome b561 were monitored in chromatophores, we observed a requirement of PufX for turnover of the cytochrome bc1 complex only at high redox potential (Eh > 140 mV), suggesting a function of PufX in lateral ubiquinol transfer from the RC. In contrast, PufX is required for multiple turnover of the RC only under reducing conditions: When the Q pool was partially oxidized in vivo using oxygen or electron acceptors like dimethyl sulfoxide or trimethylamine N-oxide, the deletion of PufX had no effect on light-driven electron flow through the RC. Flash train experiments under anaerobic in vivo conditions revealed that RC photochemistry does not depend on PufX for the first two flash excitations. Following the third and subsequent flashes, however, efficient charge separation requires PufX, indicating an important role of PufX for fast Q/QH2 exchange at the QB site of the RC. We show that the Q/QH2 exchange rate is reduced approximately 500-fold by the deletion of PufX when the Q pool is nearly completely reduced, demonstrating an essential role of PufX for the access of ubiquinone to the QB site. The fast ubiquinone/ubiquinol exchange is partially restored by suppressor mutations altering the macromolecular antenna structure. These results suggest an indirect role of PufX in structurally organizing a functional photosynthetic apparatus. Topics: Bacterial Proteins; Cytochrome b Group; Electron Transport; Electron Transport Complex III; Gene Deletion; Kinetics; Light; Light-Harvesting Protein Complexes; Oxidation-Reduction; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Rhodobacter sphaeroides; Spectrophotometry; Ubiquinone | 1995 |
Role of the evolutionarily conserved cytochrome b tryptophan 142 in the ubiquinol oxidation catalyzed by the bc1 complex in the yeast Saccharomyces cerevisiae.
Trp-142 is a highly conserved residue of the cytochrome b subunit in the bc1 complexes. To study the importance of this residue in the quinol oxidation catalyzed by the bc1 complex, we characterized four yeast mutants with arginine, lysine, threonine, and serine at position 142. The mutant W142R was isolated previously as a respiration-deficient mutant unable to grow on non-fermentable carbon sources (Lemesle-Meunier, D., Brivet-Chevillotte, P., di Rago, J.-P, Slonimski, P.P., Bruel, C., Tron, T., and Forget, N. (1993) J. Biol. Chem. 268, 15626-15632). The mutants W142K, W142T, and W142S were obtained here as respiration-sufficient revertants from mutant W142R. Mutant W142R exhibited a decreased complex II turnover both in the presence and absence of antimycin A; this suggests that the structural effect of W142R in the bc1 complex probably interferes with the correct assembly of the succinate-ubiquinone reductase complex. The mutations resulted in a parallel decrease in turnover number and apparent Km, with the result that there was no significant change in the second-order rate constant for ubiquinol oxidation. Mutants W142K and W142T exhibited some resistance toward myxothiazol, whereas mutant W142R showed increased sensitivity. The cytochrome cc1 reduction kinetics were found to be severely affected in mutants W142R, W142K, and W142T. The respiratory activities and the amounts of reduced cytochrome b measured during steady state suggest that the W142S mutation also modified the quinol-cytochrome c1 electron transfer pathway. The cytochrome b reduction kinetics through center P were affected when Trp-142 was replaced with arginine or lysine, but not when it was replaced with threonine or serine. Of the four amino acids tested at position 142, only arginine resulted in a decrease in cytochrome b reduction through center N. These findings are discussed in terms of the structure and function of the quinol oxidation site and seem to indicate that Trp-142 is not critical to the kinetic interaction of ubiquinol with the reductase, but plays an important role in the electron transfer reactions that intervene between ubiquinol oxidation and cytochrome c1 reduction. Topics: Amino Acid Sequence; Binding Sites; Biological Evolution; Electron Transport; Electron Transport Complex III; Mitochondria; Molecular Sequence Data; Point Mutation; Protein Structure, Secondary; Saccharomyces cerevisiae; Spectrum Analysis; Structure-Activity Relationship; Tryptophan; Ubiquinone | 1995 |
Ethane exhalation and vitamin E/ubiquinol status as markers of lipid peroxidation in ferrocene iron-loaded rats.
Organ damage caused by iron overload has been mostly attributed to iron-induced peroxidation of membrane lipids. Using the ferrocene iron-loaded rat model, we studied ethane exhalation as a direct marker of in vivo lipid peroxidation, as well as concentrations of alpha-tocopherol and ubiquinol 9/10 in liver and plasma as indirect markers of this process. The feeding of a diet enriched with 0.5% TMH-ferrocene up to 31 weeks resulted in a large increase in liver iron concentration to about 25 mg/g wet weight (w wt). At lower, predominantly hepatocellular liver siderosis, the breath ethane exhalation was dependent on dietary vitamin E (VitE) supplements (onset of ethane exhalation at liver-Fe > 2 mg/g w wt on vitE-restricted diet; > 5 mg Fe per gram on VitE-replete diet). At severe liver siderosis, breath ethane exhalation reached a maximum of approximately 8 nmol/kg/hr independent of VitE supplementation. Plasma as well as hepatic alpha-tocopherol decreased with progressive iron loading. In addition, a significant depletion in hepatic ubiquinol 9 and 10 was noted. Topics: Animals; Ethane; Female; Ferrous Compounds; Iron; Lipid Peroxidation; Liver; Metallocenes; Organometallic Compounds; Rats; Rats, Wistar; Ubiquinone; Vitamin E | 1995 |
Interconversion of fast and slow forms of cytochrome bo from Escherichia coli.
The fully oxidized fast form of cytochrome bo from Escherichia coli is shown to convert spontaneously to a slow form when stored at -20 degrees C in 50 mM potassium borate, pH 8.5, containing 0.5 mM potassium EDTA. Evidence for the conversion, and that the form produced is analogous to the slow form of bovine heart cytochrome c oxidase, comes from (a) decreases in the extents of fast (k = 1-2 x 10(3) M-1 s-1) H2O2 binding and fast (k = 20-30 M-1 s-1) cyanide binding; (b) changes in the optical spectrum that are like those induced by formate, i.e., a blue shift in the Soret absorption band, loss of absorbance in the alpha and beta bands, and a red shift in the "630 nm" charge-transfer band; (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 8.6 and g = 3.71, and appearance of signals at g approximately 13, g = 3.14, and g = 2.58; and (d) appearance of a slow phase of reduction of heme o by dithionite. The mutant enzyme E286Q also converts to a slow form under the same conditions, as shown by (a) a decrease in the extent of fast H2O2 binding; (b) changes in the optical spectrum like those seen with wild-type enzyme; and (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 7.3 and g = 3.6 and appearance of signals at g approximately 13, g = 3.18, and g = 2.59.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Borates; Cytochrome b Group; Cytochromes; Dithionite; Electron Spin Resonance Spectroscopy; Escherichia coli; Escherichia coli Proteins; Hydrogen Peroxide; Hydrogen-Ion Concentration; Kinetics; Mutation; Oxidation-Reduction; Spectrophotometry; Structure-Activity Relationship; Ubiquinone | 1995 |
Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles.
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe3+ and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered. Topics: Animals; Antimycin A; Antioxidants; Ascorbic Acid; Cattle; Edetic Acid; Electrophoresis, Polyacrylamide Gel; Kinetics; Lipid Peroxidation; Mitochondria, Heart; Proteins; Submitochondrial Particles; Succinates; Succinic Acid; Thiobarbituric Acid Reactive Substances; Ubiquinone | 1995 |
Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae.
The presence of yeast cells in the incubation medium prevents the oxidation of ascrobate catalyzed by copper ions. Ethanol increases ascorbate retention. Pyrazole, an alcohol dehydrogenase inhibitor, prevents ascorbate stabilization by cells. Chelation of copper ions does not account for stabilization, since oxidation rates with broken or boiled cells or conditioned media are similar to control rates in the absence of cells. Protoplast integrity is needed to reach optimal values of stabilization. Chloroquine, a known inhibitor of plasma membrane redox systems, inhibits the ascorbate stabilization, the inhibition being partially reversed by coenzyme Q6. Chloroquine does not inhibit ferricyanide reduction. Growth of yeast in iron-deficient media to increase ferric ion reductase activity also increases the stabilization. In conclusion, extracellular ascorbate stabilization by yeast cells can reflect a coenzyme Q dependent transplasmalemma electron transfer which uses NADH as electron donor. Iron deficiency increases the ascorbate stabilization but the transmembrane ferricyanide reduction system can act independently of ascorbate stabilization. Topics: Ascorbic Acid; Cell Membrane; Chloroquine; Electron Transport; Enzyme Inhibitors; Ethanol; Ferricyanides; Kinetics; NAD; NADH, NADPH Oxidoreductases; Oxidation-Reduction; Pyrazoles; Saccharomyces cerevisiae; Sulfhydryl Reagents; Ubiquinone | 1995 |
High dose selegiline augments striatal ubiquinol in mouse: an indication of decreased oxidative stress or of interference with mitochondrial respiration? A pilot study.
The effects of unspecific doses of the irreversible monoamine oxidase inhibitor selegiline on alpha-tocopherol, alpha-tocopherolquinone, ubiquinol and ubiquinone were studied in frontal cortex, hippocampus and striatum of male C57BL/6 mice 4 h and 96 h after a single or six injections of selegiline (100 mg/kg body weight, i.p.), respectively. Inhibition of monoamine oxidase was confirmed by activity measurements of its isoforms A and B in brain stem nuclei and striatum as well as by determination of striatal levels of dopamine and its major metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid. In general, levels of alpha-tocopherol were not altered and levels of alpha-tocopherolquinone were below the detection limit. However, 96 h following selegiline, levels of ubiquinols 9 and 10 were significantly increased, whereas levels of ubiquinones 9 and 10 concomitantly decreased in the striatum. Concentrations of ubiquinols and ubiquinones in frontal cortex and hippocampus were unchanged 96 h following selegiline. These data suggest that selegiline affects the striatal redox ratio of ubiquinol to ubiquinone which is important for cellular antioxidant defense and mitochondrial electron transfer. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Corpus Striatum; Dose-Response Relationship, Drug; Homovanillic Acid; Male; Mice; Mice, Inbred C57BL; Mitochondria; Monoamine Oxidase Inhibitors; Oxidative Stress; Oxygen Consumption; Pilot Projects; Selegiline; Ubiquinone | 1995 |
Involvement of cytochrome c oxidase subunit III in energy coupling.
The role of the conserved acidic residues of subunit III of cytochrome c oxidase (COIII) in energy transduction was investigated. Using a COIII deletion mutant of Paracoccus denitrificans, complemented with a plasmid expressing either the wild type (wt) COIII gene or site-directed mutants of the COIII gene, we measured cytochrome c oxidase-dependent ATP synthesis, respiration, and membrane potential. Cytochrome c oxidase-dependent ATP synthesis was attenuated in nonacidic mutants of either Glu98 (E98A and E98Q), or Asp259 (D259A) but not in the acidic mutant E98D. The rates of respiration in the energy conversion-defective mutants were as high as or higher than that in the wt. The cytochrome c oxidase-induced increment of membrane potential in the nonacidic mutants was similar to or higher than that in the wt. In contrast, when succinate-driven ATP synthesis was mediated solely by ubiquinol oxidase (e.g., in the presence of myxothiazol), the rates of ATP synthesis in the nonacidic mutants were higher than that in the wt. Moreover, myxothiazol, which inhibited succinate respiration as well as ATP synthesis in wt and E98D, stimulated ATP synthesis, while inhibiting succinate respiration, in the nonacidic mutants. These results indicate that the attenuation of energy conversion in these mutants is limited to cytochrome c oxidase and thus suggest that subunit III plays a role in energy conversion by cytochrome c oxidase. Topics: Adenosine Triphosphate; Ascorbic Acid; Electron Transport Complex IV; Membrane Potentials; Methacrylates; Mutation; Oxidative Phosphorylation; Oxygen Consumption; Paracoccus; Succinates; Succinic Acid; Tetramethylphenylenediamine; Thiazoles; Ubiquinone | 1995 |
Free radical production by activated haem proteins: protective effect of coenzyme Q.
The interaction of hydrogen peroxide with haem proteins leads readily to the formation of myoglobin and/or haemoglobin higher oxidation states (MbIV and/or HbIV), which are capable of promoting the oxidation of cellular costituents and are probably to blame for myocardic tissue damage in ischaemia/reperfusion. This study supports the evidence that the reduced form of Coenzyme Q, like other reducing agents, has an antioxidant activity exerted through the progressive reduction of ferryl forms (MbIV and/or HbIV) back to met and oxy forms (Mb and/or HbIIO2). Furthermore, the strong inactivation afforded by ferryl states of myoglobin on several enzymes, especially creatine kinase (CK), can be prevented by the addition of ubiquinol which protects the enzyme from the oxidative modifications. The ability of ubiquinol to recycle ferryl states of haem proteins provides a novel antioxidant mechanism for Coenzyme Q, besides its direct or indirect antiperoxidative activity, and may represent an important defense mechanism against oxidative tissue injury. Topics: Animals; Antioxidants; Apoproteins; Cattle; Creatine Kinase; Free Radicals; Hemoglobins; Horses; Humans; Metmyoglobin; Myoglobin; Oxidation-Reduction; Ubiquinone | 1994 |
Effect of dietary coenzyme Q10 as an antioxidant in human plasma.
A human study including 22 volunteers was conducted to investigate the antioxidative effect in blood of dietary coenzyme Q10 supplementation. The levels of alpha-tocopherol, ascorbic acid, lipid peroxidation (measured as TBARS) and the redox status of CoQ10 (reduced CoQ10/total CoQ10) were measured in plasma as markers for the antioxidative status once a week during the study period. To introduce an increased oxidative stress, a fish oil supplementation was given. The levels of alpha-tocopherol and ascorbic acid and the redox status did not change upon CoQ10 supplementation, while the level of TBARS decreased. The decrease in TBARS might be ascribed to an antioxidative effect of the supplied CoQ10. The constant redox level of CoQ10 during the CoQ10 supplementation shows that the exogenous CoQ10 is reduced during absorption and subsequent incorporation into lipoproteins, which is a prerequisite for its antioxidative function. The fish oil supplementation resulted in a higher TBARS level and a lower alpha-tocopherol level, but the redox level of CoQ10 was unchanged. In conclusion, the CoQ10 supplementation resulted in a higher plasma level of reduced CoQ10 and a lower TBARS level, but sparing of other plasma antioxidants (i.e. ascorbic acid and alpha-tocopherol) was not observed. Topics: Administration, Oral; Adult; Antioxidants; Ascorbic Acid; Coenzymes; Diet; Female; Fish Oils; Humans; Lipid Peroxidation; Male; Oxidation-Reduction; Oxidative Stress; Thiobarbituric Acid Reactive Substances; Ubiquinone; Vitamin E | 1994 |
Measurement of antioxidants in human blood plasma.
The concentration of antioxidants in human blood plasma is important in investigating and understanding the relationship between diet, oxidant stress, and human disease. The HPLC-EC technique combines selectivity with high sensitivity for measuring both water- and lipid-soluble antioxidants. The excellent sensitivity of the methods described here allows one to measure a panel of antioxidants in a small volume of plasma. Topics: Antioxidants; Ascorbic Acid; beta Carotene; Bilirubin; Blood Chemical Analysis; Blood Proteins; Carotenoids; Chromatography, High Pressure Liquid; Diet; Disease; Electrochemistry; Humans; Indicators and Reagents; Lycopene; Sulfhydryl Compounds; Ubiquinone; Uric Acid; Vitamin E | 1994 |
Assay of ubiquinones and ubiquinols as antioxidants.
Topics: Animals; Antioxidants; Ascorbic Acid; Fatty Acids, Unsaturated; Free Radical Scavengers; Free Radicals; Iron; Kinetics; Lipid Peroxidation; Microsomes, Liver; Oxidation-Reduction; Peroxides; Rats; Ubiquinone; Vitamin E | 1994 |
Antioxidant activity of alpha-tocopherol, beta-carotene, and ubiquinol in membranes: cis-parinaric acid-incorporated liposomes.
Topics: Antioxidants; Azo Compounds; beta Carotene; Carotenoids; Chromatography, High Pressure Liquid; Fatty Acids, Unsaturated; Fluorescent Dyes; Indicators and Reagents; Kinetics; Liposomes; Luminescent Measurements; Oxygen Consumption; Phosphatidylcholines; Spectrometry, Fluorescence; Ubiquinone; Vitamin E | 1994 |
Recovery of antioxidants and reduction in lipid hydroperoxides in murine epidermis and dermis after acute ultraviolet radiation exposure.
In previous studies we have found that a single acute dose of ultraviolet radiation to murine skin causes a large degree of destruction of enzymic and non-enzymic antioxidants immediately after irradiation. In the present study, we wished to elucidate the recovery of antioxidants after a single dose of ultraviolet (UV) radiation. We measured antioxidants and lipid hydroperoxides (as a marker of membrane damage) in murine epidermis and the dermis at 0, 3, 12, 24, 72 and 120 h after exposure to UV radiation (25 J/cm2, UVA+UVB). Lipid hydroperoxides showed the highest values immediately after UV exposure and returned to control values within 24 h in both epidermis and dermis. The activities of catalase, glutathione peroxidase and glutathione reductase showed the lowest activities immediately after UV exposure; superoxide dismutase activities reached a minimum at 3 h postexposure. The pattern of recovery was different for each enzyme and for epidermis and dermis. The activities of superoxide dismutase and catalase decreased remarkably and recovered slowly. Superoxide dismutase in the dermis recovered full activity by 120 h and in the epidermis by 12 h. Catalase activity in both epidermis and dermis had returned to only 50% of control activity at 120 h, although the epidermis showed a temporary increase (to 93%) at 24 h. Glutathione peroxidase and glutathione reductase were slightly decreased immediately after irradiation, recovered to 100% at 3 h and then increased to 200-250% in both the epidermis and the dermis at various times; values had returned to 100% in epidermis by 120 h but remained elevated in dermis.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Antioxidants; Ascorbic Acid; Catalase; Dehydroascorbic Acid; Epidermis; Female; Glutathione; Glutathione Disulfide; Glutathione Peroxidase; Glutathione Reductase; Lipid Peroxides; Mice; Mice, Hairless; Radiation Dosage; Skin; Superoxide Dismutase; Time Factors; Ubiquinone; Ultraviolet Rays; Vitamin E | 1994 |
Identification of the ubiquinol-binding site in the cytochrome bo3-ubiquinol oxidase of Escherichia coli.
The cytochrome bo3-ubiquinol oxidase, one of two ubiquinol oxidases in Escherichia coli, is a member of the heme-copper oxidase superfamily. The enzyme contains four protein subunits (I-IV) with apparent molecular masses of 58, 33, 22, and 17 kDa, respectively. Cytochrome bo3 catalyzes the 2-electron oxidation of ubiquinol and the reduction of molecular oxygen to water. Although the primary structures of all four subunits have been determined, the ubiquinol-binding site has not been investigated. The photoreactive radiolabeled azidoubiquinone derivative 3-[3H]azido-2-methyl-5-methoxy-6-geranyl-1,4-benzoquinone (azido-Q), which has been widely used in locating the ubiquinone-binding sites of other enzymes, was used to identify the subunit(s) involved in the binding of quinol to cytochrome bo3. When reduced by dithioerythritol, the azido-Q derivative functioned as a substrate with partial effectiveness, suggesting that azido-Q interacts with a legitimate quinol-binding site. When cytochrome bo3 was incubated with an 8-fold molar excess of azido-Q, illumination by UV light for 10 min resulted in a 50% loss of activity. The uptake of radiolabeled azido-Q by the oxidase complex upon illumination correlated with the photoinactivation. In the presence of the competitive inhibitor 2-heptyl-4-hydroxyquinoline or ubiquinol, the rate of azido-Q uptake and the loss of enzyme activity upon illumination decreased. Analysis of the distribution of radioactivity among the subunits after separation by SDS-polyacrylamide gel electrophoresis showed that subunit II was heavily labeled by azido-Q, but that the other subunits were not. This suggests that the ubiquinol-binding site of the cytochrome bo3 complex is located at least partially on subunit II. Topics: Affinity Labels; Azides; Binding Sites; Cytochrome b Group; Cytochromes; Electron Transport Complex IV; Escherichia coli; Escherichia coli Proteins; Quinones; Radioisotopes; Substrate Specificity; Ubiquinone | 1994 |
Structure-function studies on the ubiquinol oxidation site of the cytochrome bo complex from Escherichia coli using p-benzoquinones and substituted phenols.
To characterize the structural features of the quinol oxidation site (the QL site) of the cytochrome bo complex, a heme-copper respiratory oxidase in Escherichia coli, we carried out structure-inhibitory potency analyses using 7 p-benzoquinones and 33 substituted phenols. Their effects on its ubiquinol-1 oxidase activity were compared with those on the cytochrome bd complex in E. coli and on cytochromes o and alpha 1 in Acetobacter aceti. They showed similar structural properties of the QL site, although cytochrome o was more sensitive to 4-cyanophenols, suggesting a specific interaction of the hydrogen bond-accepting cyano group with the binding pocket. Replacing one of the methyl groups of 2,6-dimethyl-p-benzoquinone, which is the most potent competitive inhibitor, with an ethyl group markedly decreased the inhibitory activity, indicating that the QL site specifically recognizes one C = O group with two methyl groups as the ortho-substituents. In substituted phenols, ortho-chlorine substituents were the most effective in recognition, and the electron-withdrawing ability of the para-substituent determined an inhibitory potency, probably by stabilizing an anionic form. Based on these observations, we postulate that the QL site of the cytochrome bo complex asymmetrically recognizes exogenous ligands and that this property accounts for the sequential electron transfer from ubiquinols to the low-spin heme. Topics: Benzoquinones; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Hydroquinones; Indicators and Reagents; Oxidation-Reduction; Oxidoreductases; Phenols; Structure-Activity Relationship; Ubiquinone | 1994 |
Purification and characterization of the cytochrome bd complex from Azotobacter vinelandii: comparison to the complex from Escherichia coli.
Partial purification of a cytochrome bd complex from Azotobacter vinelandii grown under high aeration was achieved by isolating respiratory particles enriched in this hemoprotein via differential centrifugation and detergent extraction. The cytochrome bd complex was subsequently solubilized from the inner membrane with dodecyl maltoside and purified to near homogeneity via DEAE-Sepharose chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the complex consisted of two subunits, with sizes in good agreement with those predicted from the cloned cyd locus (59.7 and 42 kDa). Spectral analysis of the purified complex indicated that the heme components present were cytochromes b560, b595, and d; CO difference spectral studies identified cytochrome d as a CO-reactive component. The complex had a Km for ubiquinol-1 approximately seven times larger than that for the analogous bd complex from Escherichia coli, and O2 consumption curves revealed a Km value for O2 three times greater than that which we determined for the E. coli bd complex. Topics: Aerobiosis; Azotobacter vinelandii; Cytochrome b Group; Cytochromes; Electron Transport; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Oxidoreductases; Oxygen Consumption; Spectrophotometry; Ubiquinone | 1994 |
Lipid peroxidation of microsomal and mitochondrial membranes extracted with n-pentane and reconstituted with ubiquinol, dolichol and cholesterol.
Microsomes and mitochondria prepared from rat liver were extracted with n-pentane, a procedure which does not denature enzyme proteins. Protein and phospholipid were not extracted, but 75-80% of the total dolichol, 80-100% of the ubiquinone and 85-95% of the cholesterol were removed from both organelles by this procedure. Enzymatic and non-enzymatic lipid peroxidation in microsomes and non-enzymatic peroxidation in mitochondria were strongly inhibited when ubiquinol was reinserted into n-pentane-extracted membranes. When reconstitution with dolichol was performed, lipid peroxidation was increased or unchanged, while cholesterol decreased this activity in a concentration-dependent manner. In reconstitution experiments ubiquinol and dolichol together were less inhibitory than ubiquinol alone, whereas cholesterol accentuated the inhibitory effect of ubiquinol. Reconstitution with dolichols of different lengths, dolichyl esters or with alpha-unsaturated polyprenols further demonstrated that dolichol is not an antioxidant. It appears that mevalonate pathway lipids influence lipid peroxidation in membranes by modifying the properties of the bilayer. Topics: Animals; Cholesterol; Dolichols; Enzyme Activation; In Vitro Techniques; Intracellular Membranes; Lipid Peroxidation; Male; Microsomes, Liver; Mitochondria, Liver; Pentanes; Rats; Rats, Sprague-Dawley; Ubiquinone | 1994 |
Effect of age on antioxidants and molecular markers of oxidative damage in murine epidermis and dermis.
This is the first study of antioxidants and oxidative-damage-related parameters in epidermis and dermis of the skin as a function of age. The four major antioxidant enzymes (catalase, superoxide dismutase, glutathione reductase, and glutathione peroxidase), hydrophilic and lipophilic antioxidants, and lipid hydroperoxides were assayed in both epidermis and dermis of young and old hairless mice. Catalase, superoxide dismutase, and glutathione reductase had similar activity levels in young and old animals. Only glutathione peroxidase from epidermis showed an activity decrease due to age. This decrease became apparent when enzyme activity was expressed per mg of total cellular protein. Hydrophilic and lipophilic antioxidants did not change as a function of age, nor did lipid hydroperoxide levels. Both the absolute level of oxidized glutathione and the ratio of oxidized to reduced glutathione were higher in dermis from old mice. These results suggest that skin aging is not accelerated in old age due to a general decrease in the antioxidant capacity of the tissue. The data are compatible, however, with the idea that continuous damage to skin tissue by free radicals occurs throughout an organism's lifetime because scavenging cannot be 100% efficient. Topics: Aging; Animals; Antioxidants; Ascorbic Acid; Catalase; Female; Glutathione; Glutathione Peroxidase; Glutathione Reductase; Lipid Peroxides; Mice; Mice, Hairless; Oxidation-Reduction; Skin; Superoxide Dismutase; Ubiquinone; Vitamin E | 1994 |
Autoxidation and antioxidant activity of ubiquinol homologues in large unilamellar vesicles.
The antioxidant activity of ubiquinol homologues with different side-chain length such as ubiquinol-3 and ubiquinol-7 was compared with that of alpha-tocopherol when peroxidation was induced by the water-soluble initiator 2,2'-azobis-(2-amidinopropane hydrochloride). In large unilamellar vesicles containing equal amounts of alpha-tocopherol, ubiquinol-3 and ubiquinol-7 the rates of inhibition were very similar but the stoichiometric factor of quinols was approximately 1. To explain this low value, which is one-half of that found when the autoxidation was performed in apolar solvents (Chem. Phys. Lipids (1992) 61, 121-130), the oxidation of alpha-tocopherol and ubiquinol-3 initiated by the azocompound was studied both in methanol and in dimiristoyl-lecithin vesicles. The results obtained show that the ubiquinol homologues undergo a radical chain reaction taking place at the polar interface and suggest that the average preferred location of both quinol headgroups is near to the outer surface of the bilayer. Topics: Antioxidants; Chemical Phenomena; Chemistry, Physical; In Vitro Techniques; Kinetics; Lipid Bilayers; Oxidation-Reduction; Phosphatidylcholines; Ubiquinone; Vitamin E | 1994 |
Antimycin inhibition of the cytochrome bd complex from Azotobacter vinelandii indicates the presence of a branched electron transfer pathway for the oxidation of ubiquinol.
Antimycin A and UHBDT inhibit the activity of the purified cytochrome bd complex from Azotobacter vinelandii. Inhibition of activity is non-competitive and antimycin A binding induces a shift to the red in the spectrum of a b-type haem. No inhibitory effects were seen with myxothiazol. Steady-state experiments indicate that the site of inhibition for antimycin A lies on the low-potential side of haem b558. In the presence of antimycin A at concentrations sufficient to inhibit respiration, some direct electron transfer from ubiquinol-1 to haem b595 and haem d still occurs. The results are consistent with a branched electron transfer pathway from ubiquinol to the oxygen reduction site. Topics: Antimycin A; Azotobacter vinelandii; Cytochrome b Group; Cytochromes; Dithiothreitol; Electron Transport; Electron Transport Chain Complex Proteins; Escherichia coli Proteins; Kinetics; Methacrylates; Oxidation-Reduction; Oxidoreductases; Thiazoles; Ubiquinone | 1994 |
Investigation of the structural interactions between the myxothiazol binding and the ubiquinol oxidation sites in the bc1 complex of S. cerevisiae.
Topics: Antifungal Agents; Binding Sites; Electron Transport Complex III; Kinetics; Methacrylates; Mutagenesis, Site-Directed; Oxidation-Reduction; Point Mutation; Recombinant Proteins; Saccharomyces cerevisiae; Thiazoles; Ubiquinone | 1994 |
Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin.
We measured enzymic and non-enzymic antioxidants in human epidermis and dermis from six healthy volunteers undergoing surgical procedures. Epidermis was separated from dermis by curettage and antioxidants were measured by high-performance liquid chromatography (HPLC) or standard spectrophotometric methods. The concentration of every antioxidant (referenced to skin wet weight) was higher in the epidermis than in the dermis. Among the enzymic antioxidants, the activities of superoxide dismutase, glutathione peroxidase, and glutathione reductase were higher in the epidermis compared to the dermis by 126, 61 and 215%, respectively. Catalase activity in particular was much higher (720%) in the epidermis. Glucose-6-phosphate dehydrogenase and isocitrate dehydrogenase, which provide reduced nicotinamide adenine dinucleotide phosphate (NADPH), also showed higher activity in the epidermis than the dermis by 111% and 313%, respectively. Among the lipophilic antioxidants, the concentration of alpha-tocopherol was higher in the epidermis than the dermis by 90%. The concentration of ubiquinol 10 was especially higher in the epidermis, by 900%. Among the hydrophilic antioxidants, concentrations of ascorbic acid and uric acid were also higher in the epidermis than in the dermis by 425 and 488%, respectively. Reduced glutathione and total glutathione were higher in the epidermis than in the dermis by 513 and 471%. Thus the antioxidant capacity of the human epidermis is far greater than that of dermis. As the epidermis composes the outermost 10% of the skin and acts as the initial barrier to oxidant assault, it is perhaps not surprising that it has higher levels of antioxidants. Topics: Aged; Antioxidants; Chromatography, High Pressure Liquid; Epidermal Cells; Epidermis; Female; Glucosephosphate Dehydrogenase; Glutathione Peroxidase; Glutathione Reductase; Humans; Isocitrate Dehydrogenase; Male; Middle Aged; NADP; Reference Standards; Skin; Spectrophotometry; Superoxide Dismutase; Ubiquinone | 1994 |
Distribution of ubiquinone and ubiquinol homologues in rat tissues and subcellular fractions.
The oxidized (UQox) and reduced (UQred) forms of ubiquinone (UQ) homologues in rat tissues and subcellular fractions were analyzed to elucidate their distribution and physiological role. UQ-9 and UQ-10 were detected in all tissues studied, and UQ-9 was the predominant homologue. The total amount of UQox-10 and UQred-10 was 20-50% that of UQox-9 and UQred-9. The levels of these homologues were highest in heart with lesser amounts occurring in kidney, liver and other organs. In liver and blood plasma, the UQred homologue amounted to 70-80% of the total UQ (UQox + UQred = t-UQ). UQred was less than 30% of t-UQ in other tissues and blood cells. t-UQ was much higher in leukocytes and platelets in blood than in erythrocytes. In erythrocytes, t-UQ was exclusively located in the cell membranes. UQox and UQred were also found in all subcellular fractions isolated from liver and kidney in about the same ratio as UQred/t-UQ was present in the whole organ. The levels of UQox and UQred per mg protein in subcellular fractions from liver were highest in mitochondria, with lesser amounts present in plasma membranes, lysosomes, Golgi complex, nuclei, microsomes and cytosol. In the mitochondria, the outer membranes were richer in t-UQ than the inner membranes. In the Golgi complex, the light and intermediate fractions were rich in t-UQ when compared to the heavy fraction. The possible physiological role of UQox and UQred in tissues and subcellular fractions is discussed. Topics: Animals; Biomarkers; Chromatography, High Pressure Liquid; Kidney; Liver; Male; Rats; Rats, Wistar; Subcellular Fractions; Tissue Distribution; Ubiquinone | 1993 |
Antioxidant effect of coenzyme Q on hydrogen peroxide-activated myoglobin.
In recent years increased attention has been focused on the reduced forms of coenzyme Q as antioxidant compounds inhibiting lipid peroxidation in model systems and in biological membranes, but in spite of extensive experimental evidences the molecular mechanisms responsible for the antioxidant activity of ubiquinones are still debated. Ferrylmyoglobin and/or its free radical form are regarded as powerful oxidizing agents capable of promoting oxidation of essential cellular constituents, particularly cell membranes. Therefore, we investigated the effects of ubiquinol on the formation and survival of ferryl species of myoglobin and on metmyoglobin itself. The addition of a threefold molar excess of hydrogen peroxide to a solution of metmyoglobin induces the rapid formation of a compound with the spectral characteristics of ferrylmyoglobin. The reaction is complete within 4 min, producing up to 76% of ferrylmyoglobin, which remains stable for at least 30 min. The addition of ubiquinol-1 to the same solution provokes a rapid and progressive reduction of ferrylmyoglobin to metmyoglobin and oxymyoglobin. Ubiquinol-1, furthermore, is also capable of protecting metmyoglobin against oxidation when added in the solution before hydrogen peroxide. Ubiquinol-1, indeed, is effective at both limiting the maximal ferrylmyoglobin level attained (59% inhibition) and accomplishing complete removal of the ferryl form (in about 15 min). The results demonstrate that ubiquinol is capable of reducing both ferrylmyoglobin and metmyoglobin to oxymyoglobin, providing a novel antioxidant mechanism for coenzyme Q. Topics: Antioxidants; Hydrogen Peroxide; Metmyoglobin; Myoglobin; Oxidation-Reduction; Ubiquinone | 1993 |
Fluorescence properties of plastoquinol, ubiquinol and alpha-tocopherol quinol in solution and liposome membranes.
It was found that plastoquinol-9, ubiquinol-10 and alpha-tocopherol quinol show intrinsic fluorescence in organic solvents and in liposomes. Their fluorescence spectra in solution showed the presence of one emission band with maximum intensity in the range 319.0-327.0 nm for plastoquinol and 321.5-326.5 nm for alpha-tocopherol quinol, which is the longest wavelength shifted in polar solvents. The emission band at about 371 nm for ubiquinol was not sensitive to solvent polarity. For all three prenylquinones the fluorescence quantum efficiency changed significantly in solvents of different polarities, being the highest in ethanol and the lowest in hexane in the case of plastoquinol and alpha-tocopherol quinol, whereas ubiquinol fluorescence showed the opposite effect. These spectral parameters were applied to determination of prenylquinol localization in liposome membranes. Topics: alpha-Tocopherol; Liposomes; Plastoquinone; Solutions; Spectrometry, Fluorescence; Ubiquinone; Vitamin E | 1993 |
Ubiquinol-3 and ubiquinol-7 exhibit similar antioxidant activity in model membranes.
This study was undertaken to compare, on a kinetic basis, the antioxidant efficiency of an ubiquinol homologue having a short isoprenoid side-chain length, such as ubiquinol-3, with that of the long chain ubiquinol-7, by determining their rate constants of inhibition with respect to alpha-tocopherol. To this purpose we incorporated ubiquinol-3, or ubiquinol-7, or alpha-tocopherol into liposomes of egg yolk lecithin, and triggered lipid peroxidation with the thermal decomposition of a lipophilic azocompound. The results show that: i) the rate constants of inhibition for the two quinols are similar and slightly lower than that of alpha-tocopherol; ii) the length of the radical chain obtained in the presence of the two quinols is almost the same. From these data we concluded that the two homologues tested behave as chain-breaking antioxidants with quite similar effectiveness. Topics: Antioxidants; Azo Compounds; Free Radicals; Hot Temperature; Kinetics; Lipid Peroxidation; Liposomes; Nitriles; Phosphatidylcholines; Ubiquinone; Vitamin E | 1993 |
Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects.
In an attempt to establish the relative importance of diffusional and chemical control in the reactivity of the two of the two substrates, ubiquinol and cytochrome c, we have undertaken as extensive characterization of the steady-state kinetics of ubiquinol-cytochrome c reductase (EC 1.10.2.2) when present in open submitochondrial particles from bovine heart. The kinetic pattern follows a Ping Pong mechanism; contrary to the situation found with the isolated enzyme [Speck and Margoliash (1984) J. Biol. Chem. 259, 1064-1072, and confirmed in our laboratory], no substrate inhibition by oxidized cytochrome c was observed with the membrane-bound enzyme. Endogenous oxidized ubiquinone-10 is unable to exert product inhibition under the conditions employed. In the Ping Pong mechanism for this enzyme, the reaction scheme can be clearly divided into two parts, and the Kmin. (kcat./km) value for one substrate is independent of the rate constant for the second substrate. Both ubiquinol-1 and ubiquinol-2 can be used as electron donors reacting with the enzyme from within the lipid bilayer [Fato, Castelluccio, Palmer and Lenaz (1988) Biochim. Biophys. Acta 932, 216-222]; the kmin. values for ubiquinols, when calculated on the basis of their membranous concentrations, are significantly lower than the kmin. for cytochrome c. The temperature-dependence of the kinetic parameters was investigated by titrating each of the substrates under quasi-saturating concentrations of the second substrate. Arrhenius plots of Vmax. extrapolated from both cytochrome c and ubiquinol titrations were linear, when care was taken to verify the quasi-saturating concentrations of the fixed co-substrate. The Arrhenius plots for the kmin. values for both ubiquinol and cytochrome c were linear, but the activation energy was much higher for the former, particularly when calculated for ubiquinol dissolved in the lipid phase; the very low value of activation energy of the kmin. for cytochrome c is strong support for diffusion control being present in the reaction of cytochrome c with the membranous enzyme. In contrast to the soluble enzyme, ubiquinone titrations of submitochondrial particles at low cytochrome c concentrations deviated from hyperbolic behaviour. Changing the medium viscosity with either poly(ethylene glycol) or sucrose had a strong effect on the cytochrome c kmin., whereas the change in the ubiquinol kmin. was much smaller. From the viscosity studies the extent of diffusional control Topics: Animals; Cattle; Cholesterol; Cytochrome c Group; Diffusion; Electron Transport Complex III; Kinetics; Lipid Bilayers; Mitochondria; Submitochondrial Particles; Temperature; Thermodynamics; Ubiquinone; Viscosity | 1993 |
Comparison between the properties of 3-nitrosalicyl-N-alkylamide and antimycin A acting on QH2:cytochrome c reductase.
3-Nitrosalicyl N-alkylamide was found to be an inhibitor different from antimycin A not only in its inhibitory nature but also in many other aspects. This difference indicated that the 11 kDa component, which was identified as the antimycin A (AA) binding factor in the QH2: cytochrome c reductase of Rhodopseudomonas sphaeroides by Wilson et al. ((1985) J. Biol. Chem. 260, 10288-10292) using the radioactive photoaffinity analogue 3-azidosalicyl N-octadecylamide, was not the genuine binding site of AA. Based on the observations that the 3-azidosalicyl N-alkylamide specifically inhibits the reactions of ubiquinone catalyzed by Q-related enzymes of the respiratory chain, the labeled 11 kDa factor might be one of the ubiquinone binding proteins in QH2:cytochrome c reductase. Topics: Antimycin A; Azides; Binding Sites; Carrier Proteins; Cytochrome b Group; Electron Transport Complex III; Oxidation-Reduction; Rhodobacter sphaeroides; Salicylamides; Succinates; Succinic Acid; Ubiquinone | 1993 |
Autoxidation of lipids and antioxidation by alpha-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein.
Recent studies on the initial stages in oxidation of low density lipoprotein (LDL) have revealed certain previously unrecognized similarities to emulsion polymerization and some quite unexpected features including the following: (i) ascorbate is an extremely effective antioxidant for LDL containing alpha-tocopherol (alpha-TOH); (ii) in the presence of alpha-TOH and in the absence of both ascorbate and ubiquinol 10 (Q10H2), oxidation of LDL occurs via a free radical chain; (iii) Q10H2 is a much better antioxidant for LDL than alpha-TOH, although the reverse is true in homogeneous systems. We show here that these problems can be solved on the basis of three simple hypothesis, each of which is based on known chemistry: (i) alpha-TOH in LDL can be regenerated from its radical, alpha-TO., by ascorbate; (ii) in the absence of ascorbate and Q10H2, the alpha-TOH in LDL acts as a chain-transfer agent rather than as a radical trap; (iii) Q10H2 is a much more effective chain-breaking antioxidant than alpha-TOH in LDL because the semiquinone radical Q10H. exports its radical character from the LDL into the aqueous phase. Our conclusions imply that the search for better antiatherosclerotic drugs might profitably focus on antioxidants capable of exporting radicals from LDL particles or otherwise increasing the traffic of radicals between particles. Topics: Antioxidants; Free Radicals; Humans; Kinetics; Lipids; Lipoproteins, LDL; Models, Theoretical; Oxidation-Reduction; Ubiquinone; Vitamin E | 1993 |
Antioxidant defense mechanisms in murine epidermis and dermis and their responses to ultraviolet light.
A comprehensive comparison of antioxidant defenses in the dermis and epidermis and their response to exposure to ultraviolet (UV) irradiation has not previously been attempted. In this study, enzymic and non-enzymic antioxidants in epidermis and dermis of hairless mice were compared. Enzyme activities are presented both as units/gram of skin and units/milligram of protein; arguments are presented for the superiority of skin wet weight as a reference base. Catalase, glutathione peroxidase, and glutathione reductase (units/gram of skin) were higher in epidermis than dermis by 49%, 86%, and 74%, respectively. Superoxide dismutase did not follow this pattern. Lipophilic antioxidants (alpha-tocopherol, ubiquinol 9, and ubiquinone 9) and hydrophilic antioxidants (ascorbic acid, dehydroascorbic acid, and glutathione) were 24-95% higher in epidermis than in dermis. In contrast, oxidized glutathione was 60% lower in epidermis than in dermis. Mice were irradiated with solar light to examine the response of these cutaneous layers to UV irradiation. After irradiation with 25 J/cm2 (UVA + UVB, from a solar simulator), 10 times the minimum erythemal dose, epidermal and dermal catalase and superoxide dismutase activities were greatly decreased. alpha-Tocopherol, ubiquinol 9, ubiquinone 9, ascorbic acid, dehydroascorbic acid, and reduced glutathione decreased in both epidermis and dermis by 26-93%. Oxidized glutathione showed a slight, non-significant increase. Because the reduction in total ascorbate and catalase was much more severe in epidermis than dermis, it can be concluded that UV light is more damaging to the antioxidant defenses in the epidermis than in the dermis. Topics: Animals; Antioxidants; Ascorbic Acid; Catalase; Epidermis; Female; Glutathione Peroxidase; Glutathione Reductase; Mice; Mice, Hairless; Skin; Superoxide Dismutase; Ubiquinone; Ultraviolet Rays; Vitamin E | 1993 |
Kinetic mechanism of beef heart ubiquinol:cytochrome c oxidoreductase.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme. Topics: Animals; Cattle; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Kinetics; Mitochondria, Heart; Ubiquinone | 1992 |
Methanol and ethanol oxidase respiratory chains of the methylotrophic acetic acid bacterium, Acetobacter methanolicus.
Acetobacter methanolicus is a unique acetic acid bacterium which has a methanol oxidase respiratory chain, as seen in methylotrophs, in addition to its ethanol oxidase respiratory chain. In this study, the relationship between methanol and ethanol oxidase respiratory chains was investigated. The organism is able to grow by oxidizing several carbon sources, including methanol, glycerol, and glucose. Cells grown on methanol exhibited a high methanol-oxidizing activity and contained large amounts of methanol dehydrogenase and soluble cytochromes c. Cells grown on glycerol showed higher oxygen uptake rate and dehydrogenase activity with ethanol but little methanol-oxidizing activity. Furthermore, two different terminal oxidases, cytochrome c and ubiquinol oxidases, have been shown to be involved in the respiratory chain; cytochrome c oxidase predominates in cells grown on methanol while ubiquinol oxidase predominates in cells grown on glycerol. Both terminal oxidases could be solubilized from the membranes and separated from each other. The cytochrome c oxidase and the ubiquinol oxidase have been shown to be a cytochrome co and a cytochrome bo, respectively. Methanol-oxidizing activity was diminished by several treatments that disrupt the integrity of the cells. The activity of the intact cells was inhibited with NaCl and/or EDTA, which disturbed the interaction between methanol dehydrogenase and cytochrome c. Ethanol-oxidizing activity in the membranes was inhibited with 2-heptyl-4-hydroxyquinoline N-oxide, which inhibited ubiquinol oxidase but not cytochrome c oxidase. Alcohol dehydrogenase has been purified from the membranes of glycerol-grown cells and shown to reduce ubiquinone-10 as well as a short side-chain homologue in detergent solution.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acetobacter; Alcohol Oxidoreductases; Cytochromes; Electron Transport; Electron Transport Complex IV; Ethanol; Methanol; Ubiquinone | 1992 |
The general mitochondrial processing peptidase from potato is an integral part of cytochrome c reductase of the respiratory chain.
The major mitochondrial processing activity removing presequences from nuclear encoded precursor proteins is present in the soluble fraction of fungal and mammalian mitochondria. We found that in potato, this activity resides in the inner mitochondrial membrane. Surprisingly, the proteolytic activity co-purifies with cytochrome c reductase, a protein complex of the respiratory chain. The purified complex is bifunctional, as it has the ability to transfer electrons from ubiquinol to cytochrome c and to cleave off the presequences of mitochondrial precursor proteins. In contrast to the nine subunit fungal complex, cytochrome c reductase from potato comprises 10 polypeptides. Protein sequencing of peptides from individual subunits and analysis of corresponding cDNA clones reveals that subunit III of cytochrome c reductase (51 kDa) represents the general mitochondrial processing peptidase. Topics: Amino Acid Sequence; Base Sequence; Cloning, Molecular; Cytochrome c Group; DNA; Endopeptidases; Macromolecular Substances; Membrane Proteins; Mitochondria; Molecular Sequence Data; NADH Dehydrogenase; Protein Processing, Post-Translational; Sequence Homology, Nucleic Acid; Serine Endopeptidases; Solanum tuberosum; Ubiquinone | 1992 |
Deletion of subunit 9 of the Saccharomyces cerevisiae cytochrome bc1 complex specifically impairs electron transfer at the ubiquinol oxidase site (center P) in the bc1 complex.
Deletion of QCR9, the nuclear gene encoding subunit 9 of the mitochondrial cytochrome bc1 complex in Saccharomyces cerevisiae, results in inactivation of the bc1 complex and inability of the yeast to grow on non-fermentable carbon sources. The loss of bc1 complex activity is due to loss of electron transfer activity at the ubiquinol oxidase site (center P) in the complex. Electron transfer at the ubiquinone reductase site (center N), is unaffected by the loss of subunit 9, but the extent of cytochrome b reduction is diminished. This is the first instance in which a supernumerary polypeptide, lacking a redox prosthetic group, has been shown to be required for an electron transfer reaction within the cytochrome bc1 complex. Topics: Cytochrome b Group; Cytochromes c1; Electron Transport; Electron Transport Complex III; Intracellular Membranes; Macromolecular Substances; Mitochondria; Oxidation-Reduction; Saccharomyces cerevisiae; Structure-Activity Relationship; Ubiquinone | 1992 |
A novel ubiquinone reductase activity in rat cytosol.
Ubiquinone (UQ) reductase activity which reduces UQ to ubiquinol (UQH2) in rat tissues was roughly proportional to the UQH2/total UQ ratio in respective tissues. The highest activity was found in the liver, showing the highest UQH2/total UQ ratio. A greater part of liver UQ reductase activity was located in the cytosol. Within a week, the liver UQ reductase activity decreased by 80% even at -20 degrees C. The DT-diaphorase activity was stable. UQ reductase required NADPH as the hydrogen donor and was not inhibited by a less than 1 microM concentration of dicoumarol. There was no stimulation of UQ reductase in the presence of bovine serum albumin nor in Triton X-100. Yet, both stimulated DT-diaphorase. As a result, UQ reductase appeared to be a novel NADPH-UQ oxidoreductase and responsible for the UQ redox state in liver. Topics: Animals; Cytosol; Liver; Male; Mitochondria; NAD(P)H Dehydrogenase (Quinone); Organ Specificity; Rats; Rats, Wistar; Ubiquinone | 1992 |
Vitamin E inhibits protein oxidation in skeletal muscle of resting and exercised rats.
It is well known that exercise induces lipid peroxidation in skeletal muscle and that vitamin E prevents exercise-induced lipid damage. In this study we show for the first time, an increase in protein oxidation in skeletal muscle after a single bout of exercise, related to an exercise-induced decrease in lipophilic antioxidants, and substantial protection against both resting and exercise-induced protein oxidation by supplementation with various isomers (alpha-tocopherol, alpha-tocotrienol) of vitamin E. Topics: Animals; Dietary Fats, Unsaturated; Female; Muscles; Organ Specificity; Oxidation-Reduction; Palm Oil; Physical Exertion; Plant Oils; Proteins; Rats; Rats, Sprague-Dawley; Reference Values; Ubiquinone; Vitamin E | 1992 |
The antioxidant activity of ubiquinol-3 in homogeneous solution and in liposomes.
With a view to determining the antioxidant effectiveness of ubiquinol, the autoxidation of egg phosphatidylcholine initiated by an azocompound was studied both in homogeneous solution and in liposomes, either in the presence or in the absence of ubiquinol-3. The results show that ubiquinol behaves as a chain-breaking antioxidant by trapping lipid peroxyl radicals, its inhibition rate constant being about one half of that of alpha-tocopherol in both systems under investigation. In organic solvents the stoichiometric factor was found approx. 2 and in liposomes approx. 0.5, i.e. one fourth of that of alpha-tocopherol. We suggest that the lower value found in model membranes is due to autoxidation of the quinol itself by a radical chain reaction taking place at the polar interface. Ubiquinol-3 exhibits a sparing effect toward alpha-tocopherol, both in liposomes and in tert-butanol. It is suggested, on a thermodynamic basis, that the regeneration of vitamin E from the corresponding radical is more likely to occur by reaction with the ubisemiquinone rather than with the ubiquinol. Although these results, obtained in in vitro systems, can not be directly extrapolated to an in vivo system, they may be useful to clarify the antioxidant role of ubiquinol in biomembranes. Topics: Antioxidants; Free Radical Scavengers; In Vitro Techniques; Lipid Peroxidation; Liposomes; Solutions; Ubiquinone; Vitamin E | 1992 |
Two-site property of thenoyltrifluoroacetone inhibiting succinate-ubiquinone reductase.
It is proved by using the Dixon plot and the Lineweaver-Burk plot that thenoyltrifluoroacetone (TTFA) has two inhibitive sites affecting the reduction of ubiquinone catalyzed by succinate-ubiquinone reductase. The high affinity site (inhibited at the concentration of thenoyltrifluoroacetone less than 20 mumol/L) shows noncompetitive with substrate Q2, while the low affinity site (inhibited at the concentration of TTFA over 20 mumol/L) shows competitive. It is suggested that both the reducing steps of Q----QH-. and QH-.----QH2 are inhibited by thenoyltrifluoroacetone. Topics: Animals; Binding, Competitive; Cattle; Coenzymes; Electron Transport Complex II; Multienzyme Complexes; Myocardium; Oxidoreductases; Succinate Dehydrogenase; Thenoyltrifluoroacetone; Ubiquinone | 1992 |
The mode of action of lipid-soluble antioxidants in biological membranes: relationship between the effects of ubiquinol and vitamin E as inhibitors of lipid peroxidation in submitochondrial particles.
The effects of ubiquinol and vitamin E on ascorbate- and ADP-Fe3+-induced lipid peroxidation were investigated by measuring oxygen consumption and malondialdehyde formation in beef heart submitochondrial particles. In the native particles, lipid peroxidation showed an initial lag phase, which was prolonged by increasing concentrations of ascorbate. Lipid peroxidation in these particles was almost completely inhibited by conditions leading to a reduction of endogenous ubiquinone, such as the addition of succinate or NADH in the presence of antimycin. Lyophilization of the particles followed by three or four consecutive extractions with pentane resulted in a complete removal of vitamin E and a virtually complete removal of ubiquinone, as revealed by reversed-phase high pressure liquid chromatography. In these particles, lipid peroxidation showed no significant lag phase and was not inhibited by either increasing concentrations of ascorbate or conditions leading to ubiquinone reduction. Treatment of the particles with a pentane solution of vitamin E (alpha-tocopherol) restored the lag phase and its prolongation by increasing ascorbate concentrations. Treatment of the extracted particles with pentane containing ubiquinone-10 resulted in a restoration of the inhibition of lipid peroxidation by succinate or NADH in the presence of antimycin, but not the initial lag phase or its prolongation by increasing concentrations of ascorbate. Malonate and rotenone, which prevent the reduction of ubiquinone by succinate and NADH, respectively, abolished, as expected, the inhibition of the initiation of lipid peroxidation in both native and ubiquinone-10-supplemented particles. Reincorporation of both vitamin E and ubiquinone-10 restored both effects.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Antioxidants; Cattle; Intracellular Membranes; Lipid Peroxidation; Lipids; Mitochondria, Heart; Solubility; Submitochondrial Particles; Ubiquinone; Vitamin E | 1992 |
Functional characterization of the lesion in the ubiquinol: cytochrome c oxidoreductase complex isolated from the nonphotosynthetic strain R126 of Rhodobacter capsulatus.
The cytochrome bc1 complexes from the nonphotosynthetic strain R126 of Rhodobacter capsulatus and from its revertant MR126 were purified. Between both preparations, no difference could be observed in the stoichiometries of the cytochromes, in their spectral properties, and in their midpoint redox potentials. Both also showed identical polypeptide patterns after electrophoresis on polyacrylamide gels in the presence of sodium dodecylsulfate. The ubiquinol: cytochrome c oxidoreductase activity was strongly inhibited in the complex from the mutant compared to the one from the revertant. So was the oxidant-induced extra reduction of cytochrome b. Both preparations, however, showed an antimycin-induced red shift of cytochrome b, as well as antimycin-sensitive reduction of cytochrome b by ubiquinol. In accordance with a preceding study of chromatophores (Robertson et al. (1986). J. Biol. Chem. 261, 584-591), it is concluded that the mutation affects specifically the ubiquinol oxidizing site, leaving the ubiquinol reducing site unchanged. Topics: Antimycin A; Catalysis; Centrifugation, Density Gradient; Electron Transport Complex III; Electrophoresis, Polyacrylamide Gel; Immunoblotting; Methacrylates; Mutation; Oxidation-Reduction; Rhodobacter capsulatus; Spectrum Analysis; Thermodynamics; Thiazoles; Ubiquinone | 1991 |
Significance of the "Rieske" iron-sulfur protein for formation and function of the ubiquinol-oxidation pocket of mitochondrial cytochrome c reductase (bc1 complex).
The binding of specific inhibitors to the ubiquinol oxidation pocket ("QP center") of cytochrome c reductase was analyzed before and after removal of bound phospholipid and the "Rieske" iron-sulfur protein using optical spectroscopy and fluorescence quench binding assays. The enzyme lacking iron-sulfur protein showed almost unchanged, tight binding of the E-beta-methoxyacrylate inhibitors oudemansin A and MOA-stilbene, whereas binding of the chromone inhibitor stigmatellin was almost completely abolished. The affinity of the weak inhibitor 3-undecyl-2-hydroxy-naphthoquinone was decreased. Oudemansin A binding to the defective pocket of the iron-sulfur protein-depleted enzyme was lowered by added phospholipid. It was deduced from these results that the QP center is a spacious pocket formed by domains of cytochrome b, bearing the E-beta-methoxcyacrylate binding site, and the iron-sulfur protein, bearing the stigmatellin binding site. Moreover, removal of the iron-sulfur protein leaves this pocket defective but essentially unchanged in its remaining binding capability. The affinity of three preparations of cytochrome c reductase, the complete, the delipidated, and the iron-sulfur depleted enzyme for E-beta-methoxyacrylate-stilbene, was analyzed for different redox states of the catalytic centers of cytochrome c reductase. The apparent Kd values for the different redox states were interpreted in terms of two conformational states. It is suggested that these changes reflect the two states of the "catalytic switch" proposed recently for the QP pocket of cytochrome c reductase (Brandt, U., and von Jagow, G. (1991) Eur. J. Biochem. 195, 163-170). According to the refined model presented in this work, changeover to the "b" state is triggered by reduction of the iron-sulfur cluster, and changeover back to the "FeS" state is triggered by electron transfer from the low potential onto the high potential heme b center. Our interpretation implies that the stability of the two states is affected by the redox states of the enzyme, but that additionally changing the redox states of the two centers is required for "switching" on a catalytic time scale. Topics: Acrylates; Animals; Binding Sites; Catalysis; Cattle; Electron Transport Complex III; Iron-Sulfur Proteins; Mitochondria, Heart; Oxidation-Reduction; Polyenes; Spectrometry, Fluorescence; Stilbenes; Ubiquinone | 1991 |
Protein-ubiquinone interaction in bovine heart mitochondrial succinate-cytochrome c reductase. Synthesis and biological properties of fluorine substituted ubiquinone derivatives.
To investigate the protein-ubiquinone interaction in the bovine heart mitochondrial succinate-cytochrome c reductase region of the respiratory chain, three fluorine substituted ubiquinone derivatives, 2,3-dimethoxy-6-(9'-fluorodecyl)-1,4-benzoquinone (9FQ), 2-methoxy-5-trifluoromethyl-6-decyl-1,4-benzoquinone (TFQ), and 2-methoxy-5-trifluoromethyl-6-(9'-fluorodecyl)-1,4-benzoquinone (9FTFQ), were synthesized. 9FQ was synthesized by radical coupling of Q0 and bis(10-fluoroundecanoyl)peroxide. The latter was prepared by fluorination of undecylenic acid followed by thionylchloride treatment and peroxidation. TFQ was synthesized from 2,2,2-trifluoro-p-cresol by methylation, nitration, reduction, acetylation, nitration, reduction, oxidation, and radical alkylation. 9FTFQ was prepared by the radical alkylation of 2-methoxy-5-trifluoromethyl-1,4-benzoquinone with bis(10-fluoroundecanoyl)peroxide. All three fluoro-Q derivatives are active (greater than 50% the activity of 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone) when used as electron acceptors for succinate-ubiquinone reductase. However, only 9FQ is active when used as an electron donor for ubiquinol-cytochrome c reductase or as an electron mediator for succinate-cytochrome c reductase. Both TFQ and 9FTFQ are competitive inhibitors for ubiquinol-cytochrome c reductase. A 19FNMR peak-broadening effect was observed for 9FQ when it was reconstituted with ubiquinone-depleted ubiquinol-cytochrome c reductase. A drastic up-field chemical shift was observed for TFQ when it was reconstituted with ubiquinone-depleted reductase. These results indicate that the binding environments of the benzoquinone ring and the alkyl side chain of the Q molecule are different. The strong up-field chemical shift for TFQ, and lack of significant chemical shift for 9FQ, suggest that the benzoquinone ring is bound near the paramagnetic cytochrome b heme. Topics: Animals; Cattle; Electron Transport; Electron Transport Complex II; Electron Transport Complex III; Fluorine; In Vitro Techniques; Magnetic Resonance Spectroscopy; Mitochondria, Heart; Multienzyme Complexes; Oxidoreductases; Solubility; Structure-Activity Relationship; Succinate Dehydrogenase; Ubiquinone | 1991 |
Hematoporphyrin-promoted photoinactivation of mitochondrial ubiquinol-cytochrome c reductase: selective destruction of the histidine ligands of the iron-sulfur cluster and protective effect of ubiquinone.
Purified ubiquinol-cytochrome c reductase of beef heart mitochondria is very stable in aqueous solution; it suffers little damage upon illumination with visible light under aerobic or anaerobic conditions. However, it is rapidly inactivated when the photosensitizer hematoporphyrin is present during illumination. The hematoporphyrin-promoted photoactivation is dependent on sensitizer dose, illumination time, and oxygen. Singlet oxygen is shown to be the destructive agent in this system. The photoinactivation of ubiquinol-cytochrome c reductase is prevented by excess exogenous ubiquinone, regardless of its redox state. This protective effect is not due to protein-ubiquinone interactions but to the singlet oxygen scavenger property of ubiquinone. Ubiquinone also protects against hematoporphyrin-promoted photoinactivation of succinate-ubiquinone reductase and cytochrome c oxidase. The photoinactivation site in ubiquinol-cytochrome c reductase is the iron-sulfur cluster of Rieske's protein. Two histidine residues, presumably serving as two ligands for the iron-sulfur cluster of Rieske's protein, are destroyed. No polypeptide bond cleavage is detected. Photoinactivation has little effect on the spectral properties of cytochromes b and c1 but alters their reduction rates substantially. this photoinactivation also causes the formation of proton-leaking channels in the complex. When the photoinactivated reductase is co-inlaid with intact ubiquinol-cytochrome c reductase or cytochrome c oxidase in a phospholipid vesicle, no proton ejection can be detected during the oxidation of their corresponding substrates. Topics: Animals; Cattle; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Hematoporphyrins; Histidine; Iron-Sulfur Proteins; Kinetics; Light; Mitochondria, Heart; Spectrophotometry; Superoxide Dismutase; Time Factors; Ubiquinone | 1991 |
Ubiquinol prevents alpha-tocopherol consumption during liposome peroxidation.
In this study we investigated whether alpha-tocopherol can be spared by ubiquinol-3 during autoxidation of multilamellar liposome. A lipophilic azocompound, 2,2'-azobis-(2,4-dimethyl-valeronitrile), was chosen to initiate liposome autoxidation. The effect of either alpha-tocopherol, ubiquinol-3, or a mixture of them was compared. Rates of conjugated diene formation and concomitant disappearance of the two antioxidants was measured. Since the inhibition rate constant for the scavenging of peroxyl radical for alpha-tocopherol was higher than that for quinol-3, it was concluded that alpha-tocopherol is regenerated by ubiquinol-3. Topics: Free Radicals; Kinetics; Lipid Peroxidation; Liposomes; Oxidation-Reduction; Peroxides; Substrate Cycling; Ubiquinone; Vitamin E | 1991 |
Characterization of a quinole-oxidase activity in crude extracts of Thermoplasma acidophilum and isolation of an 18-kDa cytochrome.
A quinol-oxidase activity was detected in crude extracts of the thermoacidophilic archaebacterium Thermoplasma acidophilum. The activity was optimal at pH 5.4 and 50 degrees C. The Km for ubiquinol-10 was 18 microM. The enzyme was inhibited by 2n-heptyl-4-hydroxyquinoline N-oxide with a Ki of 150 nM. Ubiquinols with different side-chain lengths were oxidized at similar rates, whereas menaquinols were converted at 6-12-fold higher rates compared to ubiquinols. Membranes from T. acidophilum contain cytochromes of b, d and a1 types, as shown by optical spectroscopy. CO difference spectroscopy suggests the existence of a cytochrome o. A b-type cytochrome with an apparent molecular mass of 18 kDa was purified in the presence of high detergent concentrations. It readily forms dimers on SDS/PAGE. This cytochrome also contains Cu, as shown by atomic-absorption spectroscopy. Redox titration suggests that the 18-kDa cytochrome may contain 2 heme groups; b558 with a midpoint potential of 75 mV and b562/553 with a midpoint potential of -150 mV. Topics: Chromatography, Gel; Chromatography, High Pressure Liquid; Cytochrome b Group; Electrophoresis, Polyacrylamide Gel; Enzyme Stability; Hydrogen-Ion Concentration; Hydroxyquinolines; Kinetics; Molecular Weight; Oxidoreductases; Substrate Specificity; Temperature; Thermoplasma; Ubiquinone; Vitamin K; Vitamin K 2 | 1991 |
Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol.
The temporal disappearance of natural antioxidants associated with human low density lipoprotein (LDL) in relation to the appearance of various classes of lipid hydroperoxides was investigated under three types of oxidizing conditions. Freshly isolated LDL from plasma of healthy subjects was free of detectable amounts of lipid hydroperoxides as measured by HPLC postcolumn chemiluminescence detection. Exposure of such LDL to a mild, constant flux of aqueous peroxyl radicals led to rapid and complete oxidation of ubiquinol-10, followed by slower partial depletion of lycopene, beta-carotene, and alpha-tocopherol. After an initial lag period of complete inhibition of detectable lipid peroxidation, formation of hydroperoxides of cholesterol esters, triglycerides, and phospholipids was observed. The onset of detectable lipid peroxidation corresponded closely with the completion of ubiquinol-10 consumption. However, small amounts of ascorbate, present as a contaminant in the LDL preparation, rather than ubiquinol-10 itself were responsible for the initial lag period. Thus, complete consumption of ubiquinol-10 was preceded by that of ascorbate, and exposure of ascorbate-free LDL to aqueous peroxyl radicals resulted in immediate formation of detectable amounts of lipid hydroperoxides. The rate of radical-mediated formation of lipid hydroperoxides in ascorbate-free LDL was low as long as ubiquinol-10 was present, but increased rapidly after its consumption, even though more than 80% and 95% of endogenous carotenoids and alpha-tocopherol, respectively, were still present. Qualitatively similar results were obtained when peroxyl radicals were generated within LDL or when the lipoprotein was exposed to oxidants produced by activated human polymorphonuclear leukocytes. LDL oxidation was reduced significantly by supplementing the lipoprotein preparation with physiological amounts of either ascorbate or ubiquinol-10. Our data show that ubiquinol-10 is much more efficient in inhibiting LDL oxidation than either lycopene, beta-carotene, or alpha-tocopherol. Topics: Adult; Antioxidants; Humans; Kinetics; Lipid Peroxidation; Lipoproteins, LDL; Male; Oxidation-Reduction; Ubiquinone; Vitamin E | 1991 |
Inhibition of lipid peroxidation by ubiquinol in submitochondrial particles in the absence of vitamin E.
The relationship between the antioxidant effects of reduced coenzyme Q10 (ubiquinol, UQH2) and vitamin E (alpha-tocopherol) was investigated in beef heart submitochondrial particles in which lipid peroxidation was initiated by incubation with ascorbate + ADP-Fe3+. These effects were examined after extraction of coenzyme Q10 (UQ-10) and vitamin E from the particles and reincorporation of the same components alone or in combination. The results show that UQH2 efficiently inhibits lipid peroxidation even when vitamin E is absent. It is concluded that UQH2 can inhibit lipid peroxidation directly, without the mediation of vitamin E. Topics: Adenosine Diphosphate; Animals; Antioxidants; Ascorbic Acid; Cattle; Iron; Lipid Peroxidation; Mitochondria, Heart; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidoreductases; Spectrophotometry, Ultraviolet; Submitochondrial Particles; Ubiquinone; Vitamin E | 1991 |
Epitopes of monoclonal antibodies which inhibit ubiquinol oxidase activity of Escherichia coli cytochrome d complex localize functional domain.
The aerobic respiratory chain of Escherichia coli contains two terminal oxidases: the cytochrome d complex and the cytochrome o complex. Each of these enzymes catalyzes the oxidation of ubiquinol-8 within the cytoplasmic membrane and the reduction of molecular oxygen to water. Both oxidases are coupling sites in the respiratory chain; electron transfer from ubiquinol to oxygen results in the generation of a proton electrochemical potential difference across the membrane. The cytochrome d complex is a heterodimer (subunits I and II) that has three heme prosthetic groups. Previous studies characterized two monoclonal antibodies that bind to subunit I and specifically block the ability of the enzyme to oxidize ubiquinol. In this paper, the epitopes of both of these monoclonal antibodies have been mapped to within a single 11-amino acid stretch of subunit I. The epitope is located in a large hydrophilic loop between the fifth and sixth putative membrane-spanning segments. Binding experiments with these monoclonal antibodies show this polypeptide loop to be periplasmic. Such localization suggests that the loop may be close to His186, which has been identified as one of the axial ligands of cytochrome b558. Together, these data begin to define a functional domain in which ubiquinol is oxidized near the periplasmic surface of the membrane. Topics: Amino Acid Sequence; Antibodies, Monoclonal; Base Sequence; Binding Sites; Binding, Competitive; Cloning, Molecular; Cytochrome b Group; Cytochrome d Group; Cytochromes; Electron Transport Chain Complex Proteins; Epitopes; Escherichia coli; Escherichia coli Proteins; Molecular Sequence Data; Oxidoreductases; Protein Conformation; Ubiquinone | 1990 |
The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex.
The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column. Topics: Cell Fractionation; Cyanides; Cytochrome c Group; Electron Transport; Hydroxyquinolines; Macromolecular Substances; Nitrate Reductase; Nitrate Reductases; Nitrates; Oxidation-Reduction; Rhodobacter capsulatus; Spectrum Analysis; Ubiquinone | 1990 |
Partial reversion of the electrogenic reaction in the ubiquinol: cytochrome c2-oxidoreductase of Rhodobacter sphaeroides chromatophores under neutral and alkaline conditions.
The interaction of the photosynthetic reaction center (RC)-generated ubiquinol with the ubiquinone-reducing center C of ubiquinol:cytochrome c2-oxidoreductase (bc1-complex) has been studied electrometrically in Rhodobacter sphaeroides chromatophores. The addition of myxothiazol inhibited the ubiquinol-oxidizing center Z, suppressing the phases of membrane potential generation by the bc1-complex, but at the same time induced an electrogenic phase of opposite polarity, sensitive to antimycin A, the inhibitor of center C. The rise time of this reverse phase varied from 3 ms at pH 6.0 to 1 ms at pH 9.5. At pH greater than 9.5 the reverse phase was limited by the rate of ubiquinol formation in RC. The magnitude of the reverse phase was constant within the pH range 7.5-10.0. It is assumed that the reverse phase is due to the electrogenic deprotonation reaction which takes place after the binding of the RC-generated ubiquinol to center C. Topics: Cytochrome c Group; Cytochromes c2; Electron Transport Complex III; Hydrogen-Ion Concentration; Membrane Potentials; Methacrylates; Photosynthesis; Photosynthetic Reaction Center Complex Proteins; Rhodobacter sphaeroides; Thiazoles; Ubiquinone | 1990 |
Mutants of ubiquinol-cytochrome c2 oxidoreductase resistant to Qo site inhibitors: consequences for ubiquinone and ubiquinol affinity and catalysis.
Seven single-site mutants in six residues of the cyt b polypeptide of Rhodobacter capsulatus selected for resistance to the Qo site inhibitors stigmatellin, myxothiazol, or mucidin [Daldal, F., Tokito, M.K., Davidson, E., & Faham, M. (1989) EMBO J. 8, 3951-3961] have been characterized by using optical and EPR spectroscopy and single-turnover kinetic analysis. The strains were compared with wild-type strain MT1131 and with the Ps- strain R126 (G158D), which is dysfunctional in its Qo site [Robertson, D.E., Davidson, E., Prince, R.C., van den Berg, W.H., Marrs, B.L., & Dutton, P.L. (1986) J. Biol. Chem. 261, 584-591]. Mutants selected for stigmatellin resistance induced a weakening in the binding of the inhibitor without discernible loss of ubiquinone(Q)/ubiquinol(QH2) binding affinity to the Qo site or kinetic impairment to catalysis. Mutants selected for myxothiazol or mucidin resistance, inducing weakening of inhibitor binding, all displayed impaired rates of Qo site catalysis: The most severe cases (F144L, F144S) displayed loss of affinity for Q, and evidence suggests that parallel loss of affinity for the substrate QH2 was incurred in these strains. The results provide a view of the nature of the interaction of Q and QH2 of the Qpool with the Qo site. Consideration of the mutational substitutions and their structural positions along with comparisons with the QA and QB sites of the photosynthetic reaction center suggests a model for the structure of the Qo site. Topics: Amino Acid Sequence; Anti-Bacterial Agents; Cytochrome b Group; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Fatty Acids, Unsaturated; Kinetics; Methacrylates; Models, Structural; Molecular Sequence Data; Mutation; Oxidation-Reduction; Polyenes; Protein Conformation; Rhodobacter capsulatus; Strobilurins; Thiazoles; Ubiquinone | 1990 |
The oxidation of ubiquinol by the isolated Rieske iron-sulfur protein in solution.
The pre-steady-state redox reactions of the Rieske iron-sulfur protein isolated from beef heart mitochondria have been characterized. The rates of oxidation by c-type cytochromes is much faster than the rate of reduction by ubiquinols. This enables the monitoring of the oxidation of ubiquinols by the Rieske protein through the steady-state electron transfer to cytochrome c in solution. The pH and ionic strength dependence of this reaction indicate that the ubiquinol anion is the direct reductant of the oxidized cluster of the iron-sulfur protein. The second electron from ubiquinol is diverted to oxygen by the isolated Rieske protein, and forms oxygen radicals that contribute to the steady-state reduction of cytochrome c. Under anaerobic conditions, however, the reduction of cytochrome c catalyzed by the protein becomes mechanicistically identical to the chemical reduction by ubiquinols. The present kinetic work outlines that: (i) the electron transfer between the ubiquinol anion and the Rieske cluster has a comparable rate when the protein is isolated or inserted into the parent cytochrome c reductase enzyme; (ii) the Rieske protein may be a relevant generator of oxygen radicals during mitochondrial respiration. Topics: Animals; Cattle; Cytochromes; Electron Transport Complex III; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Kinetics; Mitochondria, Heart; Oxidation-Reduction; Solutions; Ubiquinone | 1990 |
Antioxidant action of ubiquinol homologues with different isoprenoid chain length in biomembranes.
Ubiquinones (CoQn) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions they may act as free radical scavengers, yet their antioxidant function has received relatively little study. The efficiency of ubiquinols of varying isoprenoid chain length (from Q0 to Q10) in preventing (Fe2+ + ascorbate)-dependent or (Fe2+ + NADPH)-dependent lipid peroxidation was investigated in rat liver microsomes and brain synaptosomes and mitochondria. Ubiquinols, the reduced forms of CoQn, possess much greater antioxidant activity than the oxidized ubiquinone forms. In homogenous solution the radical scavenging activity of ubiquinol homologues does not depend on the length of their isoprenoid chain. However in membranes ubiquinols with short isoprenoid chains (Q1-Q4) are much more potent inhibitors of lipid peroxidation than the longer chain homologues (Q5-Q10). It is found that: i) the inhibitory action, that is, antioxidant efficiency of short-chain ubiquinols decreases in order Q1 greater than Q2 greater than Q3 greater than Q4; ii) the antioxidant efficiency of long-chain ubiquinols is only slightly dependent on their concentrations in the order Q5 greater than Q6 greater than Q7 greater than Q8 greater than Q9 greater than Q10 and iii) the antioxidant efficiency of Q0 is markedly less than that of other homologues. Interaction of ubiquinols with oxygen radicals was followed by their effects on luminol-activated chemiluminescence. Ubiquinols Q1-Q4 at 0.1 mM completely inhibit the luminol-activated NADPH-dependent chemiluminescent response of microsomes, while homologues Q6-Q10 exert no effect. In contrast to ubiquinol Q10 (ubiquinone Q10) ubiquinone Q1 synergistically enhances NADPH-dependent regeneration of endogenous vitamin E in microsomes thus providing for higher antioxidant protection against lipid peroxidation. The differences in the antioxidant potency of ubiquinols in membranes are suggested to result from differences in partitioning into membranes, intramembrane mobility and non-uniform distribution of ubiquinols resulting in differing efficiency of interaction with oxygen and lipid radicals as well as different efficiency of ubiquinols in regeneration of endogenous vitamin E. Topics: Animals; Antioxidants; Biological Transport; Cytochrome P-450 Enzyme System; Free Radicals; Lipid Peroxidation; Male; Microsomes, Liver; Mitochondria; NADP; Oxidation-Reduction; Oxygen; Rats; Rats, Inbred Strains; Synaptosomes; Terpenes; Ubiquinone; Vitamin E | 1990 |
Decreases in tissue levels of ubiquinol-9 and -10, ascorbate and alpha-tocopherol following spinal cord impact trauma in rats.
Generation of free radicals and subsequent lipid peroxidation have been proposed to contribute to delayed tissue damage following traumatic spinal cord injury (SCI). Ubiquinols (reduced coenzyme Q), ascorbate (vitamin C), and alpha-tocopherol (vitamin E) are endogenous antioxidants; decreases in tissue levels of these compounds may, therefore, reflect ongoing oxidative reactions. In the present studies, alterations in tissue levels of ubiquinol-9 and -10, ascorbate, and alpha-tocopherol were examined after SCI of varying severity in the rat. Levels of alpha-tocopherol did not change significantly after injury. Ascorbate and ubiquinol levels were decreased after trauma. Changes in tissue levels of ubiquinol, but not ascorbate reflected the degree of trauma. Thus, ubiquinol levels may provide a useful marker of the oxidative component of the secondary injury response. Topics: Animals; Antioxidants; Ascorbic Acid; Male; Rats; Rats, Inbred Strains; Spinal Cord Injuries; Ubiquinone; Vitamin E | 1990 |
Reversible inhibition of electron transfer in the ubiquinol. Cytochrome c reductase segment of the mitochondrial respiratory chain in hibernating ground squirrels.
Electron transfer through the ubiquinol:cytochrome c1-segment of liver mitochondria isolated from hibernating ground squirrels Citellus undulatus is repressed by 70-80% as compared to mitochondria from the active animals. The inhibition site is likely to be localized between ubiquinone and the cytochrome bc1 complex. Partial release of the inhibition can be observed upon swelling of the isolated mitochondria in a hypoosmotic medium, the effect being prevented by phospholipase A2 inhibitors. Possible role of phospholipase A2 in regulation of ubiquinol oxidation by complex bc1 is discussed. Topics: Animals; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cytochrome Reductases; Cytochromes; Electron Transport; Hibernation; Kinetics; Mitochondria, Liver; NADH Dehydrogenase; Oxygen Consumption; Rotenone; Sciuridae; Ubiquinone | 1990 |
Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations.
It is well known that ubiquinone-10 (coenzyme Q10, ubiquinone 50) acts as an electron carrier of the respiratory chain in mitochondria. In this paper we show that ubiquinol-10, the reduced form of ubiquinone-10, also efficiently scavenges free radicals generated chemically within liposomal membranes. Ubiquinol-10 is about as effective in preventing peroxidative damage to lipids as alpha-tocopherol, which is considered the best lipid-soluble antioxidant in humans. The number of radicals scavenged by each molecule of ubiquinol-10 is 1.1 under our experimental conditions. In contrast to alpha-tocopherol, ubiquinol-10 is not recycled by ascorbate. However, it is known that ubiquinol-10 can be recycled by electron transport carriers present in various biomembranes and possibly by some enzymes. We also show that ubiquinol-10 spares alpha-tocopherol when both antioxidants are present in the same liposomal membranes and that ubiquinol-10, like alpha-tocopherol, does not interact with reduced glutathione. Our data together with previous work on the antioxidant function of ubiquinol reported in the literature strongly suggest that ubiquinol-10 is an important physiological lipid-soluble antioxidant. Topics: Kinetics; Lipid Peroxidation; Liposomes; Phosphatidylcholines; Solubility; Ubiquinone; Vitamin E | 1990 |
Structure and function of the mitochondrial bc1 complex. A mutational analysis of the yeast Rieske iron-sulfur protein.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to a single complementation group (G12) have been determined to have lesions in the iron-sulfur protein (Rieske protein) of ubiquinol: cytochrome c reductase. Mutants capable of expressing the protein were chosen for further studies. The genes from 13 independent isolates were cloned and their mutations sequenced. Twelve mutations were ascertained to cause single amino acid substitutions in the carboxyl-terminal regions of the protein between residues 127 and 173. This region is proposed to be part of the catalytic domain with the ligands responsible for co-ordinating the two irons of the 2Fe-2S cluster. Based on the catalytic properties of the ubiquinol: cytochrome c reductase complex and the electron paramagnetic resonance (e.p.r.) signals of the iron-sulfur protein, the mutants describe two different phenotypes. A subset of mutants have no detectable iron-sulfur cluster and are completely deficient in ubiquinol: cytochrome c reductase activity. These strains identify mutations in residues considered to be essential for binding of the iron or for maintaining a proper tertiary structure of the catalytic domain. A second group of mutants have reduced levels of enzymatic activity and exhibit e.p.r. spectra characteristic of the Rieske iron-sulfur cluster. The mutations in the latter strains have been ascribed to residues that influence the redox properties of the cluster by distorting the iron-binding pocket. A secondary and tertiary structure model is presented of the carboxyl-terminal 65 residues constituting the catalytic domain of the iron-sulfur protein. It is postulated that the two irons of the cluster are co-ordinated by three cysteine and a single histidine residue located in a loop structure. The catalytic domain also contains two short alpha-helices and three beta-strands that form a partial beta-barrel. Most of the hydrophilic amino acids are present in turns that map to one pole of the domain. When viewed in the context of the model, mutations that abolish the iron-sulfur cluster are mostly in residues defining the boundaries of the alpha-helices and beta-strands. The notable exception is a cysteine residue that has been assigned to the loop with the iron ligands. This cysteine residue is proposed to co-ordinate one iron of the cluster. Mutations that reduce ubiquinol: cytochrome c reductase activity and alter the redox potential of the cluster occur in residues located in the Topics: Amino Acid Sequence; Amino Acids; Cytochrome Reductases; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Fungal Proteins; Iron-Sulfur Proteins; Macromolecular Substances; Metalloproteins; Mitochondria; Models, Structural; Molecular Sequence Data; Mutation; NADH Dehydrogenase; Phenotype; Protein Conformation; Saccharomyces cerevisiae; Ubiquinone | 1989 |
Cytochrome o (bo) is a proton pump in Paracoccus denitrificans and Escherichia coli.
Spheroplasts from aerobically grown wild-type Paracoccus denitrificans cells respire with succinate despite specific inhibition of the cytochrome bc1 complex by myxothiazol. Coupled to this activity, which involves only b-type cytochromes, there is translocation of 1.5-1.9 h+/e- across the cytoplasmic membrane. Similar H+ translocation ratios are observed during oxidation of ubiquinol in spheroplasts from aerobically grown mutants of Paracoccus lacking cytochrome c oxidase, or deficient in cytochrome c, as well as in a strain of E. coli from which cytochrome d was deleted. These observations show that the cytochrome o complex is a proton pump much like cytochrome aa3 to which it is structurally related. Topics: Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Oxidation-Reduction; Oxygen Consumption; Paracoccus denitrificans; Protons; Spheroplasts; Ubiquinone | 1989 |
A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
Membranes of Klebsiella pneumoniae, grown anaerobically on citrate, contain a NADH oxidase activity that is activated specifically by Na+ or Li+ ions and effectively inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Cytochromes b and d were present in the membranes, and the steady state reduction level of cytochrome b increased on NaCl addition. Inverted bacterial membrane vesicles accumulated Na+ ions upon NADH oxidation. Na+ uptake was completely inhibited by monensin and by HQNO and slightly stimulated by carbonylcyanide-p-trifluoromethoxy phenylhydrazone (FCCP), thus indicating the operation of a primary Na+ pump. A Triton extract of the bacterial membranes did not catalyze NADH oxidation by O2, but by ferricyanide or menadione in a Na+-independent manner. The Na+-dependent NADH oxidation by O2 was restored by adding ubiquinone-1 in micromolar concentrations. After inhibition of the terminal oxidase with KCN, ubiquinol was formed from ubiquinone-1 and NADH. The reaction was stimulated about 6-fold by 10 mM NaCl and was severely inhibited by low amounts of HQNO. Superoxide radicals were formed during electron transfer from NADH to ubiquinone-1. These radicals disappeared by adding NaCl, but not with NaCl and HQNO. It is suggested that the superoxide radicals arise from semiquinone radicals which are formed by one electron reduction of quinone in a Na+-independent reaction sequence and then dismutase in a Na+ and HQNO sensitive reaction to quinone and quinol. The mechanism of the respiratory Na+ pump of K. pneumoniae appears to be quite similar to that of Vibrio alginolyticus. Topics: Electron Transport; Hydrogen-Ion Concentration; Klebsiella pneumoniae; NAD; Oxidation-Reduction; Quinone Reductases; Quinones; Sodium Channels; Ubiquinone | 1989 |
Presence of cholesteryl ester hydroperoxide in human blood plasma.
An analytical method for quantitating the cholesteryl ester hydroperoxide and ubiquinols-9 and 10 in biological samples, especially plasma, was described. About 3 nM cholesteryl ester hydroperoxide, 20 nM ubiquinol-9, and 620 nM ubiquinol-10 were found in the hexane extract of healthy human plasma. Cholesteryl ester hydroperoxide was identified by its retention time, which was the same as that of standard hydroperoxide, its reduction with triphenylphosphine, and its splitting by cholesterol esterase. Since cholesteryl ester hydroperoxide was stable and no significant oxidation took place during the extraction procedure, cholesteryl ester hydroperoxide is most likely to be present in healthy human plasma. Topics: Adult; Arachidonic Acids; Cholesterol Esters; Chromatography, High Pressure Liquid; Humans; Luminescent Measurements; Middle Aged; Peroxides; Reference Values; Ubiquinone | 1989 |
Location of heme axial ligands in the cytochrome d terminal oxidase complex of Escherichia coli determined by site-directed mutagenesis.
The cytochrome d terminal oxidase complex is one of two terminal oxidases which are components of the aerobic respiratory chain of Escherichia coli. This membrane-bound enzyme catalyzes the two-electron oxidation of ubiquinol and the four-electron reduction of oxygen to water. Enzyme turnover generates proton and voltage gradients across the bilayer. The oxidase is a heterodimer containing 2 mol of protoheme IX and 1 or 2 mol of heme d per mol of complex. To explain the functional properties of the enzyme, a simple model has been proposed in which it is speculated that the heme prosthetic groups define two separate active sites on opposite sides of the membrane at which the oxidation of quinol and the reduction of water, respectively, are catalyzed. This paper represents an initial effort to define the axial ligands of each of the three or four hemes within the amino acid sequence of the oxidase subunits. Each of the 10 histidine residues has been altered by site-directed mutagenesis with the expectation that histidine residues are likely candidates for heme ligands. Eight of the 10 histidine residues are not essential for enzyme activity, and 2 appear to function as heme axial ligands. Histidine 186 in subunit I is required for the cytochrome b558 component of the enzyme. This residue is likely to be located near the periplasmic surface of the membrane. Histidine 19, near the amino terminus of subunit I also appears to be a heme ligand. It is concluded that two of the four or five expected heme axial ligands have been tentatively identified, although further work is required to confirm these conclusions. A minimum of two additional axial ligands must be residues other than histidine. Topics: Amino Acid Sequence; Binding Sites; Blotting, Western; Cloning, Molecular; Codon; Cytochrome b Group; Cytochromes; DNA, Bacterial; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Heme; Histidine; Molecular Sequence Data; Mutation; Oxidation-Reduction; Oxidoreductases; Oxygen; Protein Conformation; Structure-Activity Relationship; Ubiquinone; Water | 1989 |
[The action of a homologous series of ubiquinols on lipid peroxidation in brain mitochondrial and synaptosomal membranes].
The effects of inhibition of ubiquinols and ubiquinones with various length of isoprenoid chain on the lipid peroxidation in membranes of brain mitochondria and synaptosomes were studied. The efficiency of inhibition effects of ubiquinols depends on the length of isoprenoid chain. Ubiquinols with shorter isoprenoid chains demonstrated more effective inhibition. Topics: Animals; Brain; Intracellular Membranes; Lipid Peroxidation; Membrane Lipids; Mitochondria; Rats; Structure-Activity Relationship; Synaptosomes; Ubiquinone | 1989 |
Trypsin proteolysis of the cytochrome d complex of Escherichia coli selectively inhibits ubiquinol oxidase activity while not affecting N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity.
The cytochrome d complex is one of two membrane-bound terminal oxidases of the Escherichia coli aerobic respiratory chain. Previous studies have shown that this enzyme reconstituted into proteoliposomes rapidly oxidizes ubiquinol-8 as well as the soluble homologue, ubiquinol-1, and that quinol oxidase activity is accompanied by the formation of a transmembrane H+ electrochemical gradient. The enzyme also oxidizes the artificial reductant, N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) with the generation of a H+ electrochemical gradient. In this work, it is established that trypsin digestion of the purified cytochrome d complex cleaves subunit I while subunit II is unaffected. Proteolysis of subunit I is correlated with loss of ubiquinol-8 and ubiquinol-1 oxidase activities. Trypsin digestion has no effect on TMPD oxidase activity. The cytochrome d complex is concluded to possess three distinct active sites for 1) ubiquinol oxidation, 2) TMPD oxidation, and 3) oxygen binding and reduction. Data also suggest that both sites of ubiquinol and TMPD oxidations are located on the periplasmic side of the E. coli membrane while the site of oxygen reduction is on the opposite side. Topics: Animals; Cytochrome d Group; Cytochromes; Dialysis; Escherichia coli; Macromolecular Substances; Oxidoreductases, N-Demethylating; Quinone Reductases; Tetramethylphenylenediamine; Trypsin; Ubiquinone | 1988 |
The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli.
The cytochrome d terminal oxidase complex is one of two terminal oxidases in the aerobic respiratory chain of Escherichia coli. The enzyme is located in the cytoplasmic membrane where it oxidizes ubiquinol-8 in the bilayer and reduces oxygen to water. Enzyme turnover is coupled to the generation of a proton-motive force, resulting in electrogenic translocation across the membrane of one proton per electron passing through the system. The enzyme is an alpha beta heterodimer containing four hemes. The cyd locus, encoding both subunits, has previously been genetically mapped and cloned. This work describes an insertion and deletion analysis of cyd which indicates the direction of transcription, defines the coding regions, and suggests that cyd is an operon. In addition, the complete DNA sequence of the cyd gene is reported. Two open reading frames, separated by 18 base pairs, encode the two subunits of the oxidase complex. Hydropathy profiles of the deduced protein sequence indicate that subunits I and II are each likely to have multiple transmembrane elements. There are only 10 histidines in both subunits, several of which are likely to serve as heme axial ligands. Topics: Amino Acid Sequence; Base Sequence; Chromosome Deletion; Chromosome Mapping; Cloning, Molecular; Cytochrome b Group; Cytochromes; DNA Restriction Enzymes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Intracellular Membranes; Macromolecular Substances; Molecular Sequence Data; Oxidation-Reduction; Oxidoreductases; Oxygen; Ubiquinone | 1988 |
Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems.
O2- generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1-. and O2- during enzyme-catalyzed reduction and O2+ coenzyme Q1-. are in equilibrium with O2- + coenzyme Q1 in the presence of enough O2. The coenzyme Q1-. produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2- generated, thereby preventing the reduction of coenzyme Q1 by O2-. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1-. is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M-1.s-1 at 258 microM O2, pH 7.5 and 25 degrees C. Topics: Anaerobiosis; Animals; Cattle; Electron Spin Resonance Spectroscopy; Electron Transport; Free Radicals; Fumarates; Hydrogen-Ion Concentration; Kinetics; Mitochondria; Mitochondria, Heart; Models, Biological; NADP; NADPH-Ferrihemoprotein Reductase; Oxidation-Reduction; Oxygen Consumption; Potassium Cyanide; Submitochondrial Particles; Succinates; Succinic Acid; Superoxide Dismutase; Superoxides; Ubiquinone; Vitamin K | 1988 |
Determination of reduced and total ubiquinones in biological materials by liquid chromatography with electrochemical detection.
A convenient and reliable liquid chromatographic (LC) method with electrochemical detection (ED) was developed for the determination of reduced (ubiquinol) and total ubiquinones in biological materials. After extraction of samples with n-hexane, ubiquinol was separated on a reversed-phase column and assayed directly by ED. In order to determine the total amount of a ubiquinone in biological samples, the unbiquinone was converted into the corresponding reduced form by treatment with sodium borohydride. No significant interfering peak (plastoquinol-9, ubichromenol-9, etc.) was observed in the elution areas of ubiquinol-7 to -11. This LC-ED method was about 70 times more sensitive than the previous LC-UV method and was able to detect 150 pg of ubiquinol-10. The method was applied satisfactorily to the determination of the contents of ubiquinol homologues in biological materials. The content of ubiquinols is a major component of the total ubiquinones in human plasma and urine and rat plasma and liver, but a minor component in rat heart and kidney. Topics: Animals; Chromatography, Liquid; Creatinine; Electrochemistry; Male; Rats; Rats, Inbred Strains; Ubiquinone | 1988 |
Evaluation of an isoluminol chemiluminescence assay for the detection of hydroperoxides in human blood plasma.
An assay for the separation and detection of lipid hydroperoxides and hydrogen peroxide in biological samples using HPLC and isoluminol chemiluminescence was recently described (Y. Yamamoto, M. H. Brodsky, J. C. Baker, and B. N. Ames (1987) Anal. Biochem. 160, 7-13; Y. Yamamoto and B. N. Ames (1987) Free Rad. Biol. Med. 3, 359-361). In this paper the application of this assay to the analysis of human blood plasma is described in detail, and three compounds producing chemiluminescence that were observed in the initial studies in plasma extracted with methanol and hexane are further characterized. It is shown that various lipid hydroperoxides added to plasma are detected by the assay. In contrast, hydrogen peroxide added to plasma is rapidly degraded by endogenous catalase. Hydrogen peroxide and a second, minor compound producing chemiluminescence, which appear in the assay of the methanol and the hexane extract of plasma, respectively, appear to be generated during analysis and are not likely to be present in plasma. The third compound yielding a chemiluminescence peak, which is extracted into the hexane phase of plasma and was earlier assigned to cholesterol ester hydroperoxide, is shown to be neither a cholesterol ester nor a hydroperoxide, but the hydroquinone ubiquinol-10. As the chemiluminescence response of hydroperoxides, but not of hydroquinones, is eliminated by reducing reagents such as sodium borohydride or triphenylphosphine, such reduction should be used to confirm that any chemiluminescence producing lipid observed in the assay is a hydroperoxide, not a hydroquinone. We conclude that isolated human plasma from healthy subjects is very unlikely to contain hydrogen peroxide in concentrations greater than about 0.25 microM and does not contain lipid hydroperoxides in concentrations greater than 0.03 microM. The method described, when used with appropriate precautions, is a convenient and very sensitive assay for lipid hydroperoxides in biological tissues. Topics: Chromatography, High Pressure Liquid; Humans; Hydrogen Peroxide; Lipid Peroxides; Luminescent Measurements; Luminol; Pyridazines; Ubiquinone | 1988 |
Relationships between membrane-bound cytochrome o from Vitreoscilla and that of Escherichia coli.
The cytochrome o terminal oxidases from the bacteria Vitreoscilla and Escherichia coli are structurally and functionally related. They have similar optical spectra, both exhibit ubiquinol-1 oxidase activity and are inhibited similarly. Both enzymes contain four subunits by SDS-polyacrylamide gel electrophoresis analysis and contain protoheme IX and Cu2+ prosthetic groups. Antibodies raised against the oxidase purified from E. coli crossreact with the Vitreoscilla oxidase. Topics: Antibodies, Bacterial; Bacteria; Bacterial Proteins; Cross Reactions; Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Species Specificity; Ubiquinone | 1988 |
Protonmotive stoichiometry of rat liver cytochrome c oxidase: determination by a new rate/pulse method.
The stoichoimetry of vectorial H+ ejection coupled to electron flow through the cytochrome c oxidase (EC 1.9.3.1) of rat liver mitochondria was determined by a new rate/pulse method. This is a modification of the oxygen-pulse method. Electron flow through the oxidase is initiated by adding oxygen to suspensions of anaerobic mitochondria at a known and constant rate. Cytochrome c oxidase was examined directly or in combination with cytochrome c reductase (ubiquinol:ferricytochrome c oxidoreductase). In both cases the----H0+/2e- ratio was found to be constant during the time-course of oxygen reduction, and thus independent of delta pH. The stoichiometries observed were consistent with mechanistic stoichiometries of 2 and 6 for cytochrome c oxidase alone and cytochrome c oxidase together with cytochrome c reductase, respectively. The stoichiometry of cytochrome c reductase alone was also examined, by using ferricyanide in place of oxygen. The results obtained were consistent with the accepted mechanistic stoichiometry of 4 for this enzyme. Topics: Animals; Electron Transport; Electron Transport Complex IV; Ferricyanides; Mitochondria, Liver; Osmolar Concentration; Oxygen; Protons; Rats; Ubiquinone | 1987 |
The kinetics of reduction of yeast complex III by a substrate analog.
The kinetics of reduction of the cytochrome and quinone constituents of yeast complex III by the substrate homolog Q1H2 have been measured under a variety of conditions. The maximum rates of reduction of cytochromes b and c1 and of the endogenous Q6 by Q1H2 were sufficiently fast to support the Vmax for the reduction of cytochrome c by this substrate. The absorbance at 562 nm showed an initial increase which was subsequently followed by a decrease. This decrease was synchronous with the appearance of reduced cytochrome c1 and is interpreted as reflecting the absorbance contribution of c1 at 562 nm under conditions where the steady state level of the b cytochromes is constant. Prereduction of c1 and the Fe/S cluster did not affect the initial very rapid reduction of b, but the second phase was eliminated. Antimycin abolished the very rapid rate of reduction of cytochrome b in untreated complex III and completely inhibited the reduction of cytochrome b in complex III in which c1 and the Fe/S cluster had been prereduced. However, the reduction of the endogenous quinone was essentially unaffected by these treatments. Antimycin had no effect on the reduction of c1. Funiculosin also suppressed the very rapid reduction of b while both myxothiazol and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole did not modify this phase of the reaction; no secondary decrease in absorbance was observed in the presence of any of these inhibitors. Most of the observed kinetic changes could be reproduced by simulation of the Q-cycle; simple linear and branched schemes were unable to reproduce the data. Topics: Electron Transport; Electron Transport Complex III; Kinetics; Mathematics; Oxidation-Reduction; Saccharomyces cerevisiae; Spectrophotometry; Ubiquinone | 1987 |
Electron flow and heme-heme interaction between cytochromes b-558, b-595 and d in a terminal oxidase of Escherichia coli.
The ESR signals of the cytochromes in the Escherichia coli terminal oxidase cytochrome d complex were studied at cryogenic temperature. The intensities and g values of the rhombic high-spin signals changed when the electronic state of cytochrome d was changed from the oxidized state to the reduced or oxygen-binding or CO-binding state. These rhombic signals were therefore assigned to cytochrome b-595, which is located near cytochrome d in the oxidase complex. This assignment was supported by the finding that the Em value of the rhombic signals differed from that of cytochrome d (Hata, A. et al. (1985) Biochim. Biophys. Acta 810, 62-72). Photolysis and ligand-exchange experiments with the reduced CO complex of the oxidase were performed in the presence of oxygen at -140 degrees C. The ESR spectra of three intermediate forms trapped by controlled low temperatures were detected. These forms were designated as the oxygen-binding intermediate I (ESR-silent), oxygen-binding intermediate II (giving ESR signals at g = 6.3, 5.5 and 2.15), and oxygen-binding intermediate III (giving signals at g = 6.3, 5.5 and 6.0). From these results, electron flow in the cytochrome d complex is proposed to proceed in the order, cytochrome b-558----cytochrome b-595----cytochrome d----O2. A model of the mechanism of four-electron chemistry for oxidation of ubiquinol-8 and formation of H2O by the cytochrome d complex is presented. Topics: Bacterial Proteins; Carbon Monoxide; Cytochrome b Group; Cytochromes; Cytochromes a1; Electron Spin Resonance Spectroscopy; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Heme; Multienzyme Complexes; NADPH Oxidases; Oxidation-Reduction; Oxidoreductases; Oxygen; Protein Binding; Ubiquinone | 1987 |
Discrete catalytic sites for quinone in the ubiquinol-cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation.
A non-photosynthetic mutant (Ps-) of Rhodopseudomonas capsulata, designated R126, was analyzed for a defect in the cyclic electron transfer system. Compared to a Ps+ strain MR126, the mutant was shown to have a full complement of electron transfer components (reaction centers, ubiquinone-10, cytochromes b, c1, and c2, the Rieske 2-iron, 2-sulfur (Rieske FeS) center, and the antimycin-sensitive semiquinone). Functionally, mutant R126 failed to catalyze complete cytochrome c1 + c2 re-reduction or cytochrome b reduction following a short (10 microseconds) flash of actinic light. Evidence (from flash-induced carotenoid band shift) was characteristic of inhibition of electron transfer proximal to cytochrome c1 of the ubiquinol-cytochrome c2 oxidoreductase. Three lines of evidence indicate that the lesion of R126 disrupts electron transfer from quinol to Rieske FeS: 1) the degree of cytochrome c1 + c2 re-reduction following a flash is indicative of electron transfer from Rieske FeS to cytochrome c1 + c2 without redox equilibration with an additional electron from a quinol; 2) inhibitors that act at the Qz site and raise the Rieske FeS midpoint redox potential (Em), namely 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole or 3-alkyl-2-hydroxy-1,4-napthoquinone, have no effect on cytochrome c1 + c2 oxidation in R126; 3) the Rieske FeS center, although it exhibits normal redox behavior, is unable to report the redox state of the quinone pool, as metered by its EPR line shape properties. Flash-induced proton binding in R126 is indicative of normal functional primary (QA) and secondary (QB) electron acceptor activity of the photosynthetic reaction center. The Qc functional site of cytochrome bc1 is intact in R126 as measured by the existence of antimycin-sensitive, flash-induced cytochrome b reduction. Topics: Antimycin A; Benzoquinones; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Methacrylates; Multienzyme Complexes; Mutation; Oxidation-Reduction; Photolysis; Quinone Reductases; Quinones; Rhodopseudomonas; Thiazoles; Ubiquinone | 1986 |
Purification and properties of a cytochrome b560-d complex, a terminal oxidase of the aerobic respiratory chain of Photobacterium phosphoreum.
A cytochrome b560-d complex, a terminal oxidase in the respiratory chain of Photobacterium phosphoreum grown under aerobic conditions, was purified to near homogeneity. The purified oxidase complex is composed of equimolar amounts of two polypeptides with molecular weights of 41,000 and 54,000, as determined by gel electrophoresis in the presence of sodium dodecyl sulfate. It contains 10.2 nmol of protoheme and 22.5 nmol of iron/mg of protein. The enzyme is a "cytochrome bd-type oxidase," showing absorption peaks at 560 and 625 nm in its reduced minus oxidized difference spectrum at 77K. This oxidase combined with CO, and its CO difference spectrum at room temperature in the Soret region showed a peak at 418 nm and a trough at 434 nm. In addition, a trough at 560 nm (cytochrome b), and a trough at 620 nm and a peak at 639 nm (cytochrome d) were observed in the CO-binding spectrum. This cytochrome b560-d complex catalyzed the oxidation of ubiquinol-1 and ascorbate in the presence of N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride or phenazine methosulfate. The oxidase activity required phospholipids and was inhibited by the respiratory inhibitors, KCN and NaN3, and the divalent cation, ZnSO4. Formation of a membrane potential by the cytochrome b560-d complex reconstituted into liposomes was observed with the fluorescent dye, 3,3'-dipropylthiodicarbocyanine iodide, on the addition of ubiquinol-1, showing that the enzyme provided a coupling site for oxidative phosphorylation. Topics: Amino Acids; Bacteria, Aerobic; Cyanides; Cytochrome b Group; Cytochrome d Group; Cytochromes; Electron Transport Complex II; Kinetics; Liposomes; Membrane Potentials; Molecular Weight; Oxidoreductases; Peptides; Photobacterium; Spectrophotometry; Ubiquinone | 1986 |
Demonstration of a collisional interaction of ubiquinol with the ubiquinol-cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides.
Ubiquinone-10 can be extracted from lyophilized chromatophores of Rhodobacter sphaeroides (previously called Rhodopseudomonas sphaeroides) without significant losses in other components of the electron-transfer chain or irreversible damages in the membrane structure. The pool of ubiquinone can be restored with exogenous UQ-10 to sizes larger than the ones in unextracted membranes. The decrease in the pool size has marked effects on the kinetics of reduction of cytochrome b-561 induced by a single flash of light and measured in the presence of antimycin. The initial rate of reduction, which in unextracted preparations increases on reduction of the suspension over the Eh range between 170 and 100 mV (pH 7), is also stimulated in partially UQ-depleted membranes, although at more negative Eh's. When the UQ pool is completely extracted the rate of cytochrome (Cyt) b-561 reduction is low and unaffected by the redox potential. In membranes enriched in UQ-10 above the physiological level the titration curve of the rate of Cyt b-561 reduction is displaced to Eh values more positive than in controls. This effect is saturated when the size of the UQ pool is about 2-3 times larger than the native one. The reduction of Cyt b-561 always occurs a short time after the flash is fired; also the duration of this lag is dependent on Eh and on the size of the UQ pool. A decrease or an increase in the pool size causes a displacement of the titration curve of the lag to more negative or to more positive Eh's, respectively. Similarly, the lag becomes Eh independent and markedly longer than in controls when the pool is completely extracted. These results demonstrate that the rate of turnover of the ubiquinol oxidizing site in the b-c1 complex depends on the actual concentration of ubiquinol present in the membrane and that ubiquinol from the pool is oxidized at this site with a collisional mechanism. Kinetic analysis of the data indicates that this reaction obeys a Michaelis-Menten type equation, with a Km of 3-5 ubiquinol molecules per reaction center. Topics: Bacterial Chromatophores; Cytochrome b Group; Electron Transport; Electron Transport Complex III; Kinetics; Oxidation-Reduction; Photosynthesis; Rhodopseudomonas; Ubiquinone | 1986 |
Use of an azido-ubiquinone derivative to identify subunit I as the ubiquinol binding site of the cytochrome d terminal oxidase complex of Escherichia coli.
The radiolabeled, photoreactive azido-ubiquinone derivative (azido-Q), 3-azido-2-methyl-5-methoxy-6-(3,7-dimethyl-[3H]octyl)- 1,4-benzoquinone, was used to investigate the active site of ubiquinol oxidase activity of the cytochrome d complex, a two-subunit terminal oxidase of Escherichia coli. The azido-Q, when reduced by dithioerythritol, was shown to support enzymatic oxygen consumption by the cytochrome d complex that was 8% of the rate observed with ubiquinol-1. This observation provided the rationale behind further studies of the possible photoinactivation and labeling of the active site by this azido-Q. Ten min of photolysis of the purified cytochrome d complex in the presence of the azido-Q resulted in a 60% loss of the ubiquinol-1 oxidase activity. Uptake of the radiolabeled azido-Q by the cytochrome d complex was correlated to the photoinactivation of the ubiquinol-1 oxidase activity. Both increased linearly during the first 4 min of photolysis and reached 90% of the maximum within 10 min. Photolysis times longer than 10 min resulted in no increase in the maximum of 2 mol of azido-Q incorporated per mol of enzyme. The rate of azido-Q uptake by subunit I, but not subunit II, correlated well with the rate of loss of ubiquinol oxidase activity. Use of ubiquinol-0, which is not oxidized by the enzyme, to competitively inhibit radiolabeling of nonspecific binding sites, resulted in a significant decrease (42%) of azido-Q labeling of subunit II while it did not affect the labeling of subunit I. After photolysis for 4 min, the ratio of radiolabeled azido-Q in subunits I to II of the complex was 4.3 to 1.0. These observations support the conclusion that the ubiquinol substrate binding site is located on subunit I of the cytochrome d complex. Topics: Azides; Binding Sites; Cytochrome b Group; Cytochromes; Electron Transport Chain Complex Proteins; Escherichia coli; Escherichia coli Proteins; Kinetics; Macromolecular Substances; Oxidoreductases; Photolysis; Ubiquinone | 1986 |
The respiratory nitrate reductase from Paracoccus denitrificans. Molecular characterisation and kinetic properties.
The respiratory nitrate reductase from Paracoccus denitrificans has been purified in the non-ionic detergent Nonidet P-40. The enzyme comprises three polypeptides, alpha, beta and gamma with estimated relative molecular masses of 127 000, 61 000 and 21 000. Duroquinol or reduced-viologen compounds acted as the reducing substrates. The nitrate reductase contained a b-type cytochrome that was reduced by duroquinol and oxidised by nitrate. A preparation of the enzyme that lacked both detectable b-type cytochrome and the gamma subunit was obtained from a trailing peak of nitrate reductase activity collected from a gel filtration column. Absence of the gamma subunit correlated with failure to use duroquinol as reductant; activity with reduced viologens was retained. It is concluded that in the plasma membrane of P. denitrificans the gamma subunit catalyses electron transfer to the alpha and beta subunits of nitrate reductase from ubiquinol which acts as a branch point in the respiratory chain. A new assay was introduced for both nitrate and quinol-nitrate oxidoreductase activity. Diaphorase was used to couple the oxidation of NADH to the production of duroquinol which acted as electron donor to nitrate reductase. Under anaerobic conditions absorbance changes at 340 nm were sensitive to nitrate concentrations in the low micromolar range. This coupled assay was used to determine that the purified enzyme had Km(NO-3) of 13 microM and a Km of 470 microM for ClO-3, an alternative substrate. With viologen substrates Km(NO-3) of 283 microM and Km(ClO-3) of 470 microM were determined; the enzymes possessed a considerably higher Vmax with either NO-3 or ClO-3 than was found when duroquinol was substrate. Azide was a competitive inhibitor of nitrate reduction in either assay system (Ki = 0.55 microM) but 2-n-heptyl-4-hydroxyquinoline N-oxide was effective only with the complete three-subunit enzyme and duroquinol as substrate, consistent with a site of action for this inhibitor on the b-type cytochrome. The low Km for nitrate observed in the duriquinol assay is comparable with the apparent Km(NO-3) recently reported for intact cells of P. denitrificans [Parsonage, D., Greenfield, A. J. & Ferguson, S. J. (1985) Biochim. Biophys. Acta 807, 81-95]. This similarity is discussed in terms of a possible requirement for a nitrate transport system. The nitrate reductase system from P. denitrificans is compared with that from Escherichia coli. Topics: Chromatography, Gel; Counterimmunoelectrophoresis; Electrophoresis, Polyacrylamide Gel; Hydroquinones; Kinetics; Molecular Weight; Nitrate Reductase; Nitrate Reductases; Nitrates; Oxygen Consumption; Paracoccus denitrificans; Spectrum Analysis; Ubiquinone | 1986 |
Fluorescence probe studies of the interaction of ubiquinone-10 and ubiquinol-10 with phosphatidylcholine bilayers.
Ubiquinone-10 and ubiquinol-10 were incorporated into dipalmitoylphosphatidylcholine vesicles and their interaction with the phospholipids was monitored by fluorescence measurements of diphenylhexatriene used as a probe. It was found that ubiquinone-10 did not perturb the phospholipid thermotropic pretransition but ubiquinol-10 was able to do so. Although, in ethanolic solution, ubiquinone-10 was a better quencher of diphenylhexatriene than ubiquinol-10, when incorporated into phospholipid multibilayers and at temperatures above Tc, ubiquinone-10 produced a smaller decrease in the intensity of the fluorescence probe than ubiquinol-10. Furthermore, the fluorescence anisotropy of the probe was significantly increased by ubiquinol-10 but not by ubiquinone-10. It was concluded that both forms of coenzyme Q have different localizations in the phospholipid bilayer. Topics: Diphenylhexatriene; Fluorescence Polarization; Kinetics; Lipid Bilayers; Models, Biological; Pulmonary Surfactants; Ubiquinone | 1986 |
Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions.
A fast single-step lipid extraction procedure and high-performance liquid chromatography with in-line uv and electrochemical detection are used for the simultaneous quantitative determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. The compounds of interest can be quantitatively extracted into hexane from a sodium dodecyl sulfate-treated aqueous homogenate after precipitation of protein by addition of an equal volume of ethanol. alpha-, gamma-, and delta-Tocopherol, ubiquinol 9, ubiquinol 10, and ubiquinones 9 and 10 can be well separated on a reversed phase column. Ubiquinones are detected at 275 nm by the uv detector, and ubiquinols and tocopherols by the electrochemical detector in the oxidative mode. Quantitation is done by comparing chromatographic peak heights to those of a standard solution containing known amounts of tocopherols, ubiquinols 9 and 10, and ubiquinones 9 and 10, analyzed under identical conditions. The high sensitivity of the electrochemical detection allows operation at low potentials (+0.5 V) with low detector response, but high selectivity for the easily oxidizable tocopherols and ubiquinols and decreased baseline noise. The uv detection limits the overall sensitivity of the procedure to 2 pmol ubiquinone, corresponding to 0.1 microM ubiquinone in the lipid extract. The ranges of values obtained for rat and guinea pig tissues, for rat liver mitochondria, and for blood and plasma from rats and humans are given. Topics: Adipose Tissue, Brown; Animals; Blood Chemical Analysis; Humans; Liver; Muscles; Reference Standards; Subcellular Fractions; Ubiquinone; Vitamin E | 1986 |
The chromone inhibitor stigmatellin--binding to the ubiquinol oxidation center at the C-side of the mitochondrial membrane.
Stigmatellin, a chromone inhibitor acting at the Q0 center of the bc1 complex, binds to the heme b-566 domain of cytochrome b as well as to the Fe2S2 protein. Its binding induces a shift of the alpha-band of heme b-566 to 568 nm. It does not influence the ligand field of the heme b-562 center. Concomitant with the red shift, stigmatellin gives rise to an alteration of the EPR line shape of the Fe2S2 cluster, namely linewidth narrowing and g value shifts at all 3 principal values. The midpoint redox potential of the Fe2S2 protein is shifted from 290 to 540 mV. Topics: Animals; Binding Sites; Binding, Competitive; Cattle; Electron Spin Resonance Spectroscopy; Electron Transport Complex III; Intracellular Membranes; Iron-Sulfur Proteins; Methacrylates; Mitochondria; Multienzyme Complexes; Oxidation-Reduction; Polyenes; Protein Binding; Quinone Reductases; Thiazoles; Ubiquinone | 1985 |
Novel purification of cytochrome c1 from mitochondrial Complex III. Reconstitution of antimycin-insensitive electron transfer with the iron-sulfur protein and cytochrome c1.
Complex III of beef heart mitochondria was separated into the iron-sulfur protein and the complex devoid of it as described previously (Shimomura, Y., Nishikimi, M., and Ozawa, T. (1984) J. Biol. Chem. 259, 14059-14063). From the latter preparation, cytochrome c1 was subsequently purified by detergent-exchange chromatography on a phenyl-Sepharose column and DEAE-Sepharose column chromatography. In the former chromatography, the resolution of the iron-sulfur protein-depleted complex was achieved by changes of detergents on the surface of the complex; nearly homogeneous cytochrome c1 was eluted from the column with dodecyl octaethylene glycol mono-ether after dissociation of core proteins and subunit VI with guanidine and cholate. The purified cytochrome c1 consists of a single polypeptide as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and contains 39 nmol of heme/mg of protein. The isolated iron-sulfur protein catalyzes reduction of cytochrome c by ubiquinol, which is insensitive to antimycin, at a rate of 0.03 mumol of cytochrome c reduced/min/nmol of protein, while the purified cytochrome c1 has no such catalytic activity. When cytochrome c1 and the iron-sulfur protein form a complex, the rate of cytochrome c reduction increases to 0.12 mumol/min/nmol of the iron-sulfur protein. In this reaction, cytochrome c1 mediates antimycin-insensitive electron transfer from the iron-sulfur protein to cytochrome c, thereby constituting a pathway of electrons: ubiquinol----iron-sulfur protein----cytochrome c1----cytochrome c. The complex formation between the iron-sulfur protein and cytochrome c1 was verified by binding of cytochrome c1 to a column of protein A-Sepharose to which the iron-sulfur protein was linked with immobilized anti-iron-sulfur protein antibody. The electron-transfer activity of the mixture is at a comparable level to that of antimycin-inhibited Complex III, and both activities are partially sensitive to superoxide dismutase. Thus, the above-described coupling of the iron-sulfur protein and cytochrome c1 is considered as reconstitution of the antimycin-insensitive pathway of electrons in Complex III. Topics: Animals; Antimycin A; Cattle; Chromatography, Affinity; Chromatography, Gel; Chromatography, Ion Exchange; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Electrophoresis, Polyacrylamide Gel; Iron-Sulfur Proteins; Macromolecular Substances; Metalloproteins; Mitochondria, Heart; Molecular Weight; Multienzyme Complexes; Quinone Reductases; Ubiquinone | 1985 |
Reduction of the spin-label TEMPONE by ubiquinol in the electron transport chain of intact rabbit spermatozoa.
When the hydrophilic spin label TEMPONE (deuterated 2,2,6,6-tetramethylpiperidine-N-oxyl) was incubated with intact rabbit spermatozoa at concentrations greater than 0.3 X 10(9) cells/ml, the electron spin resonance signal height decreased with time. This loss of signal amplitude was reversed by the oxidizing reagent potassium dichromate, indicating that the signal loss was due to a reduction of the paramagnetic nitroxide species to the nonparamagnetic hydroxylamine. Using inhibitors that act on the respiratory chain, we observed that, relative to controls, the rate of TEMPONE reduction was decreased in the presence of rotenone, but increased in the presence of antimycin A and potassium cyanide (KCN). Parallel studies measuring oxygen consumption showed decreases with all three inhibitors. We interpret these observations to mean that TEMPONE is reduced by ubiquinol in the respiratory chain. Supporting this conclusion is the observation that the midpoint potential of TEMPONE was determined by be +48mV, which is close to the midpoint potential of +40 mV for the ubiquinone/ubiquinol couple. Furthermore, in a cell-free test system, ubiquinol reduced TEMPONE, but ubiquinone, NADH, and succinate did not. Topics: Animals; Antimycin A; Cyclic N-Oxides; Electron Transport; Male; Mitochondria; Oxidation-Reduction; Oxygen Consumption; Potassium Cyanide; Rabbits; Rotenone; Spermatozoa; Spin Labels; Succinates; Succinic Acid; Ubiquinone | 1985 |
Characterization of purified cytochrome b-c1 complex from Rhodopseudomonas sphaeroides R-26.
A highly purified cytochrome b-c1 complex from Rhodopseudomonas sphaeroides R-26 was isolated by a procedure involving Triton X-100 solubilization, calcium phosphate column chromatography, and ammonium sulfate fractionation. The purified enzyme complex contains, in nanomoles/mg of protein, cytochrome b, 8.3; cytochrome c1, 8.3; iron-sulfur protein, 15; phospholipids, 182; and ubiquinone, 5. Four major polypeptides with apparent molecular weights of 48,000, 30,000, 24,000, and 12,000 were detected in the sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The Mr = 48,000 and 30,000 proteins are cytochromes b and c1, respectively. The enzyme complex catalyzes electron transfer from ubiquinol to cytochrome c with a specific activity of 12.6 mumol of cytochrome c reduced per min/mg of protein at 23 degrees C. This is lower than that of the mitochondrial enzyme, although both systems have similar essential redox components and a similar Km for ubiquinol. The activity is fully sensitive to antimycin A and 5-n-undecyl-6-hydroxy-4, 7-dioxobenzothiazole. The enzyme complex is stable at neutral pH and at lower temperatures, but became less stable when the incubation temperature was raised. At 37 degrees C, the half-life is 15 min. The enzymatic activity was insensitive to treatment with N',N'-dicyclohexylcarbodiimide. No p-chloromercuriphenylsulfonate-alkylable sulfhydryl groups were detected. The major phospholipids associated with the purified enzyme complex are phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol with molar per cent distributions of 25, 21, and 35, respectively. About 60% of the enzymatic activity was abolished upon treatment with phospholipase A2. The phospholipase A2-inactivated activity can be partially restored by the addition of EDTA followed with phospholipids prepared from either the cytochrome b-c1 complex of the same source or a mixture of phosphatidylglycerol and asolectin.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Electron Transport; Electron Transport Complex III; Kinetics; Macromolecular Substances; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Phospholipases A; Phospholipases A2; Quinone Reductases; Rhodobacter sphaeroides; Spectrophotometry; Ubiquinone | 1984 |
An inhibitor of mitochondrial respiration which binds to cytochrome b and displaces quinone from the iron-sulfur protein of the cytochrome bc1 complex.
Myxothiazol, an antibiotic from Myxococcus fulvus, which inhibits mitochondrial respiration in the bc1 complex of the respiratory chain, has effects on the redox components of isolated succinate-cytochrome c reductase complex which suggest that it interacts with both cytochrome b and the iron-sulfur protein of the bc1 complex. The inhibitor appears to increase the midpoint potentials of cytochromes b-562 and b-566, as indicated by an increase in their reducibility by the succinate/fumarate couple. It also causes a red shift in the optical spectrum of ferrocytochrome b-566, as reported previously (Becker, W. F., Von Jagow , G., Anke , T., Steglisch , W. (1981) FEBS Lett. 132, 329-333). This red shift is enhanced by Triton X-100, and there is no shift in the spectrum of b-562. These results are consistent with evidence that mutations conferring myxothiazol resistance in yeast map to the mitochondrial gene for cytochrome b ( Thierbach , G., and Michaelis, G. (1982) Mol. Gen. Genet. 186, 501-506). In addition, myxothiazol has effects on reduction of the cytochromes b and c1 by succinate or ubiquinol which are identical to those caused by removal of the iron-sulfur protein from the bc1 complex. It blocks reduction of cytochrome c1 during single and multiple turnovers of the bc1 complex, but does not block reduction of the b cytochromes. In the presence of antimycin, it blocks reduction of both cytochromes b and c1. In contrast to antimycin, myxothiazol inhibits oxidant-induced reduction of both b cytochromes and does not inhibit their oxidation by fumarate. Myxothiazol also inhibits reduction of the iron-sulfur protein by ubiquinol and shifts the gx resonance in the EPR spectrum of the iron-sulfur protein from g = 1.79 to 1.76. It does not affect the midpoint potential of the iron-sulfur protein, but does eliminate the increase in midpoint potential which is caused by inhibitory hydroxyquinones which bind to the iron-sulfur protein. The effects of myxothiazol are consistent with a protonmotive Q cycle pathway of electron transfer in which myxothiazol binds to cytochrome b and displaces quinone from the iron-sulfur protein of the bc1 complex. These results suggest either that a myxothiazol-induced conformational change in cytochrome b is transmitted to a quinone binding site on the iron-sulfur protein, or that there is a quinone binding site which consists of peptide domains from both cytochrome b and iron-sulfur protein. Topics: Animals; Antifungal Agents; Cattle; Cytochrome b Group; Cytochromes c1; Electron Transport Complex III; Iron-Sulfur Proteins; Kinetics; Metalloproteins; Methacrylates; Mitochondria, Heart; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxygen Consumption; Quinone Reductases; Quinones; Succinates; Succinic Acid; Thiazoles; Ubiquinone | 1984 |
Light-activated proton-motive force generation in lipid vesicles containing cytochrome b-c1 complex and bacterial reaction centres.
(1) Purified bovine heart mitochondrial cytochrome b-c1 complex (ubiquinone-cytochrome c oxidoreductase) and photosynthetic reaction centres isolated from Rhodopseudomonas sphaeroides strain R-26 have been incorporated into lipid vesicles. In the presence of cytochrome c and ubiquinone-2, light activation caused a cyclic electron transfer involving both components. (2) Since cytochrome c is added outside the vesicles, it is both reduced by the cytochrome b-c1 complex and oxidised by the reaction centre on the outside of the vesicles. Ubiquinone-2, however, is reduced by the reaction centres at a site in contact with the inside of the vesicles, but the reduced form, ubiquinol-2, is oxidised by the cytochrome b-c1 complex at a site in contact with the outer aqueous phase. (3) In the presence of valinomycin plus K+, initiation of cyclic electron flow causes protons to move from inside the vesicles to the outer medium and the H +/2e- ratio was calculated to be close to 4. Topics: Animals; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cattle; Electron Transport Complex III; Kinetics; Lipid Bilayers; Mitochondria, Heart; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Photic Stimulation; Photosynthetic Reaction Center Complex Proteins; Plant Proteins; Protons; Quinone Reductases; Rhodobacter sphaeroides; Ubiquinone | 1983 |
Complete inhibition of electron transfer from ubiquinol to cytochrome b by the combined action of antimycin and myxothiazol.
Topics: Animals; Antifungal Agents; Antimycin A; Binding Sites; Cattle; Cytochrome b Group; Cytochromes; Electron Transport; Kinetics; Methacrylates; Oxidation-Reduction; Spectrophotometry, Ultraviolet; Spectrum Analysis; Submitochondrial Particles; Thiazoles; Ubiquinone | 1981 |
Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain.
Topics: Animals; Benzoquinones; Cattle; Cytochrome Reductases; Electron Transport; Free Radicals; Mitochondria, Heart; NADH Dehydrogenase; Oxidation-Reduction; Quinones; Submitochondrial Particles; Ubiquinone | 1980 |
On the specificity of activation of mitochondrial succinate dehydrogenase by ubiquinol.
Topics: Alcohols; Animals; Catechols; Dinitrophenols; Enzyme Activation; Hydroquinones; Mitochondria, Liver; Nitrophenols; Oxidation-Reduction; Plant Proteins; Quinones; Rats; Resorcinols; Succinate Dehydrogenase; Succinates; Ubiquinone | 1972 |