ubiquinone and plumbagin

ubiquinone has been researched along with plumbagin* in 3 studies

Other Studies

3 other study(ies) available for ubiquinone and plumbagin

ArticleYear
Inhibition of ANO1/TMEM16A Chloride Channel by Idebenone and Its Cytotoxicity to Cancer Cell Lines.
    PloS one, 2015, Volume: 10, Issue:7

    The expression levels of anoctamin 1 (ANO1, TMEM16A), a calcium-activated chloride channel (CaCC), are significantly increased in several tumors, and inhibition of ANO1 is known to reduce cell proliferation and migration. Here, we performed cell-based screening of a collection of natural products and drug-like compounds to identify inhibitors of ANO1. As a result of the screening, idebenone, miconazole and plumbagin were identified as novel ANO1 inhibitors. Electrophysiological studies showed that idebenone, a synthetic analog of coenzyme Q10, completely blocked ANO1 activity in FRT cells expressing ANO1 without any effect on intracellular calcium signaling and CFTR, a cAMP-regulated chloride channel. The CaCC activities in PC-3 and CFPAC-1 cells expressing abundant endogenous ANO1 were strongly blocked by idebenone. Idebenone inhibited cell proliferation and induced apoptosis in PC-3 and CFPAC-1 cells, but not in A549 cells, which do not express ANO1. These data suggest that idebenone, a novel ANO1 inhibitor, has potential for use in cancer therapy.

    Topics: Animals; Anoctamin-1; Antineoplastic Agents; Antioxidants; Apoptosis; Biological Products; Calcium Signaling; Cell Line, Tumor; Cell Proliferation; Chloride Channels; Cystic Fibrosis Transmembrane Conductance Regulator; Humans; Miconazole; Naphthoquinones; Neoplasm Proteins; Rats; Rats, Inbred F344; Ubiquinone

2015
Purification and characterization of Plasmodium falciparum succinate dehydrogenase.
    Molecular and biochemical parasitology, 2000, Feb-05, Volume: 105, Issue:2

    Succinate dehydrogenase (SDH), a Krebs cycle enzyme and complex II of the mitochondrial electron transport system was purified to near homogeneity from the human malarial parasite Plasmodium falciparum cultivated in vitro by FPLC on Mono Q, Mono S and Superose 6 gel filtration columns. The malarial SDH activity was found to be extremely labile. Based on Superose 6 FPLC, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing-PAGE analyses, it was demonstrated that the malarial enzyme had an apparent native molecular mass of 90 +/- 8 kDa and contained two major subunits with molecular masses of 55 +/- 6 and 35 +/- 4 kDa (n = 8). The enzymatic reaction required both succinate and coenzyme Q (CoQ) for its maximal catalysis with Km values of 3 and 0.2 microM, and k(cat) values of 0.11 and 0.06 min(-1), respectively. Catalytic efficiency of the malarial SDH for both substrates were found to be relatively low (approximately 600-5000 M(-1) s(-1)). Fumarate, malonate and oxaloacetate were found to inhibit the malarial enzyme with Ki values of 81, 13 and 12 microM, respectively. The malarial enzyme activity was also inhibited by substrate analog of CoQ, 5-hydroxy-2-methyl-1,4-naphthoquinone, with a 50% inhibitory concentration of 5 microM. The quinone had antimalarial activity against the in vitro growth of P. falciparum with a 50% inhibitory concentration of 0.27 microM and was found to completely inhibit oxygen uptake of the parasite at a concentration of 0.88 microM. A known inhibitor of mammalian mitochondrial SDH, 2-thenoyltrifluoroacetone. had no inhibitory effect on both the malarial SDH activity and the oxygen uptake of the parasite at a concentration of 50 microM. Many properties observed in the malarial SDH were found to be different from the host mammalian enzyme.

    Topics: Animals; Antimalarials; Cytochrome c Group; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Kinetics; Mice; Mitochondria, Liver; Molecular Sequence Data; Naphthoquinones; Oxidation-Reduction; Oxygen; Plasmodium falciparum; Succinate Dehydrogenase; Succinic Acid; Thenoyltrifluoroacetone; Ubiquinone

2000
Artemia salina as a test organism for measuring superoxide-mediated toxicity.
    Free radical biology & medicine, 1995, Volume: 18, Issue:5

    The purpose of this study was to examine the possibility of using Artemia salina as a test organism in the search for compounds having the ability to protect against superoxide-mediated toxicity. The basic procedure for the assay using Artemia salina was performed as described in previous literature, with minor modifications. We found that Artemia salina are extremely sensitive to menadione bisulfite, a compound whose toxicity is probably mediated by intracellular superoxide generation. Desferrioxamine (desferal), a compound with known protective effects, was shown to display dramatic protective activity in our system. We also observed that an inhibitor of endogenous superoxide dismutase (SOD) activity increased the toxicity of menadione toward Artemia salina. In conclusion, this simple, inexpensive, and convenient assay could be a valuable addition to a screening effort in the search for compounds that will be protective against damage by superoxide or other active oxygen species.

    Topics: Animals; Artemia; Biological Assay; Deferoxamine; Dimethyl Sulfoxide; Drug Evaluation, Preclinical; Drug Interactions; Hydrogen Peroxide; Naphthoquinones; Paraquat; Potassium Cyanide; Reactive Oxygen Species; Sensitivity and Specificity; Superoxide Dismutase; Superoxides; Ubiquinone; Vitamin K; Vitamin K 3

1995