ubiquinone has been researched along with mitoquinol* in 9 studies
1 trial(s) available for ubiquinone and mitoquinol
Article | Year |
---|---|
The effect of Mitoquinol (MitoQ) on heat stressed skeletal muscle from pigs, and a potential confounding effect of biological sex.
Heat stress (HS) poses a major threat to human health and agricultural production. Oxidative stress and mitochondrial dysfunction appear to play key roles in muscle injury caused by HS. We hypothesized that mitoquinol (MitoQ), would alleviate oxidative stress and cellular dysfunction in skeletal muscle during HS. To address this, crossbred barrows (male pigs) were treated with placebo or MitoQ (40 mg/d) and were then exposed to thermoneutral (TN; 20 °C) or HS (35 °C) conditions for 24 h. Pigs were euthanized following the environmental challenge and the red portion of the semitendinosus (STR) was collected for analysis. Unexpectedly, malondialdehyde concentration, an oxidative stress marker, was similar between environmental and supplement treatments. Heat stress decreased LC3A/B-I (p < 0.05) and increased the ratio of LC3A/B-II/I (p < 0.05), while p62 was similar among groups suggesting increased degradation of autophagosomes during HS. These outcomes were in disagreement with our previous results in muscle from gilts (female pigs). To probe the impact of biological sex on HS-mediated injury in skeletal muscle, we compared STR from these barrows to archived STR from gilts subjected to a similar environmental intervention. We confirmed our previous findings of HS-mediated dysfunction in muscle from gilts but not barrows. These data also raise the possibility that muscle from gilts is more susceptible to environment-induced hyperthermia than muscle from barrows. Topics: Animals; Antioxidants; Autophagy; Female; Heat-Shock Response; Male; Malondialdehyde; Microtubule-Associated Proteins; Muscle, Skeletal; Organophosphorus Compounds; Oxidative Stress; Sex Characteristics; Swine; Ubiquinone | 2021 |
8 other study(ies) available for ubiquinone and mitoquinol
Article | Year |
---|---|
MitoQ ameliorates testicular damage induced by gamma irradiation in rats: Modulation of mitochondrial apoptosis and steroidogenesis.
The deleterious effect of gamma radiation on testicular tissue is a challenging problem in nuclear medicine. This study investigated the potential radioprotective effect of mitoquinol (MitoQ), a mitochondria-targeted antioxidant, against testicular damage induced by gamma irradiation in rats.. Rats were allocated into four groups. The first group served as the control, the second group received MitoQ (2 mg / kg / day; i.p.) for seven days, the third group was exposed to gamma radiation (5 Gy as a single dose) and the last group received MitoQ prior to irradiation. Rats were sacrificed. Then, sperm analyses and the serum testosterone were determined. Moreover, evaluation of mitochondrial oxidative stress parameters (SOD, GSH and GPx) as well as apoptosis indicators (cytochrome-c, Bax, Bcl-2 and caspase-3) was performed. Additionally, analysis of steroidogensis biomarkers (StAR, 3β-HSD and 17β-HSD) and histopathological investigations were carried out.. MitoQ replenished mitochondrial SOD, GPx and GSH indicating its strong antioxidant effect in addition to its energy preservation manifested by the elevated ATP. MitoQ inhibited the intrinsic apoptosis via diminution of Bax, cytochrome-c and caspase-3 and alleviation of Bcl-2. This antioxidant conferred protection to steroidogenesis as verified by the increase in testosterone and the up-regulation of StAR, 3β-HSD and 17β-HSD expression; these effects might be correlated with its antioxidant/anti-apoptotic potential. Histopathological and sperm analyses corroborated the biochemical findings.. This study identifies MitoQ as a novel agent for the management of testicular toxicity induced by gamma irradiation. Topics: Adenosine Triphosphate; Animals; Apoptosis; Body Weight; Gamma Rays; Male; Mitochondria; Organ Size; Organophosphorus Compounds; Oxidative Stress; Rats; Rats, Wistar; Spermatogenesis; Steroids; Testis; Ubiquinone; Whole-Body Irradiation | 2019 |
Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells.
Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenylphosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCR(ATP)) (IC₅₀ values of 189 ± 13 nM for MitoQ and 181 ± 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidification in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H₂O₂ production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl)porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCR(ATP). In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H₂O₂. These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes. Topics: Acetylcysteine; Adenosine Triphosphate; Animals; Aorta; Cattle; Cell Respiration; Cells, Cultured; Endothelial Cells; Energy Metabolism; Glycolysis; Hydrogen Peroxide; Metalloporphyrins; Mitochondria; Onium Compounds; Organophosphorus Compounds; Oxidation-Reduction; Oxidative Stress; Oxygen Consumption; Plastoquinone; Protons; Reactive Oxygen Species; Superoxide Dismutase; Superoxides; Trityl Compounds; Ubiquinone | 2012 |
MitoQ10 induces adipogenesis and oxidative metabolism in myotube cultures.
Coenzyme Q(10) (CoQ(10)) plays an essential role in determination of mitochondrial membrane potential and substrate utilization in all metabolically important tissues. The objective of the present study was to investigate the effect of Coenzyme Q analog (MitoQ(10)) on oxidative phenotype and adipogenesis in myotubes derived from fast-glycolytic Pectoralis major (PM) and slow-oxidative Anterior latissimus dorsi (ALD) muscles of the turkey (Meleagris gallopavo). The myotubes were subjected to the following treatments: fusion media alone, fusion media+125 nM MitoQ(10), and 500 nM MitoQ(10). Lipid accumulation was visualized by Oil Red O staining and quantified by measuring optical density of extracted lipid at 500 nm. Quantitative Real-Time PCR was utilized to quantify the expression levels of peroxisome proliferator-activated receptor (PPARγ) and PPARγ co-activator-1α (PGC-1α). MitoQ(10) treatment resulted in the highest (P<0.05) lipid accumulation in PM myotubes. MitoQ(10) up-regulated genes controlling oxidative mitochondrial biogenesis and adipogenesis in PM myotube cultures. In contrast, MitoQ(10) had a limited effect on adipogenesis and down-regulated oxidative metabolism in ALD myotube cultures. Differential response to MitoQ(10) treatment may be dependent on the cellular redox state. MitoQ(10) likely controls a range of metabolic pathways through its differential regulation of gene expression levels in myotubes derived from fast-glycolytic and slow-oxidative muscles. Topics: Adipogenesis; Animals; Cells, Cultured; Lipids; Muscle Fibers, Skeletal; Organophosphorus Compounds; Oxidation-Reduction; PPAR gamma; Turkeys; Ubiquinone | 2011 |
Neonatal rat hypoxia-ischemia: Effect of the anti-oxidant mitoquinol, and S-PBN.
The production of oxygen free radicals after perinatal hypoxia-ischemia is thought to play a critical role in the pathogenesis of the brain injury. Administration of anti-oxidants may thus be neuroprotective. The aim of the present study was to investigate the effect of a mitochondria-targeted anti-oxidant mitoquinol (mitoQ) administered in the form of the prodrug mitoquinone, and an extracellular anti-oxidant N-tert-butyl-(2-sulfophenyl)-nitrone (S-PBN; Aldrich, St Louis, MO, USA), on neuronal survival in the rat striatum after acute perinatal hypoxia-ischemia.. Mitoquinone at 17 micromol/L (n = 6) or 51 micromol/L (n = 6), or its diluent (n = 12), was continuously infused over 3 days into the right striatum of Sprague-Dawley rats. Infusion was via an Alzet micro-osmotic pump (Alza, Los Angeles, CA, USA), stereotaxically implanted on postnatal day (PN) 7 under anesthesia. In another experiment, S-PBN (100 mg/kg) (n = 8) or its diluent (n = 8) was administered in six s.c. injections every 12 h from the evening of PN7. Hypoxia-ischemia was induced on PN8 by right common carotid artery ligation under anesthesia, followed 2.5 h later by exposure to 8% oxygen for 1.5 h. On PN14 the pups were euthanased and 40 microm serial sections were cut through the entire striatum. The total number of medium-spiny neurons within the right striatum was stereologically determined using the optical disector/Cavalieri method.. No significant difference was seen in the total number of striatal medium-spiny neurons between the 17 micromol/L or 51 micromol/L mitoQ-treated pups and their respective diluent-treated controls. No significant difference was seen in the total number of striatal medium-spiny neurons between the S-PBN-treated and diluent-treated pups.. Solely targeting mitochondrial oxidants with mitoQ, or extracellular oxidants with S-PBN, is not protective for striatal medium-spiny neurons after perinatal hypoxia-ischemia. Topics: Animals; Animals, Newborn; Antioxidants; Benzenesulfonates; Cell Survival; Corpus Striatum; Hypoxia-Ischemia, Brain; Neurons; Organophosphorus Compounds; Rats; Rats, Sprague-Dawley; Ubiquinone | 2008 |
Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers.
Mitoquinone (MitoQ(10) mesylate) is a mitochondria-targeted antioxidant formulated for oral administration in the treatment of neurodegenerative diseases. We have investigated the absorption and metabolism of MitoQ(10) in Caco-2 cell monolayers. The intracellular accumulation of MitoQ(10) was 18-41% of the total amount of MitoQ(10) added. Some of the intracellular MitoQ(10) was reduced to mitoquinol and subsequently metabolized to glucuronide and sulfate conjugates. Transport of MitoQ(10) was polarized with the apparent permeability (P(app)) from basolateral (BL) to apical (AP) (P(appBL-->AP)) being >2.5-fold the P(app) from apical to basolateral (P(appAP-->BL)). In the presence of 4% bovine serum albumin on the basolateral side, the P(appAP-->BL) value increased 7-fold compared with control. The P(appBL-->AP) value decreased by 26, 31 and 61% in the presence of verapamil 100 microM, ciclosporin 10 and 30 microM, respectively, whereas the P(appAP-->BL) value increased 71% in the presence of ciclosporin 30 microM. Apical efflux of mitoquinol sulfate and mitoquinol glucuronide conjugates was significantly decreased by ciclosporin 30 microM and the breast cancer receptor protein (BCRP) inhibitor, reserpine 25 microM, respectively. These results suggested that the bioavailability of MitoQ(10) may be limited by intracellular metabolism and the action of P-glycoprotein and BCRP. However, the dramatic increase in absorptive P(app) in the presence of bovine serum albumin on the receiver side suggests these barrier functions may be less significant in-vivo. Topics: Antioxidants; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Availability; Biological Transport; Caco-2 Cells; Humans; Neoplasm Proteins; Organophosphorus Compounds; Permeability; Serum Albumin, Bovine; Ubiquinone | 2007 |
Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria.
We used fluorescent probes and EPR to study the mechanism(s) underlying reactive oxygen species (ROS) production by endothelial cell mitochondria and the action of mitoquinol, a mitochondria-targeted antioxidant. ROS measured by fluorescence resulted from complex I superoxide released to the matrix and converted to H(2)O(2). In contrast, EPR largely detected superoxide generated at complex III and effluxed outward. ROS fluorescence by mitochondria fueled by the complex II substrate, succinate, was substantial but markedly inhibited by rotenone. Superoxide, detected by EPR, in succinate-fueled mitochondria was not inhibited by rotenone and likely derived from semiquinone formation at complex III. Mitoquinol decreased H(2)O(2) fluorescence by succinate-fueled mitochondria but had little effect on the EPR signal for superoxide. This was not associated with a detectable decrease in membrane potential. Mitoquinol markedly enhanced ROS fluorescence in mitochondria fueled by the complex I substrates, glutamate and malate. Inhibitor studies suggested that this occurred in complex I, at one or more Q binding pockets. The above effects of mitoquinol were determined in mitochondria isolated and subsequently exposed to the targeted antioxidant. However, similar effects were observed in mitochondria after antecedent exposure to mitoquinol/mitoquinone in culture, suggesting that the agent is retained after isolation of the organelles. In conclusion, ROS production in bovine aortic endothelial cell mitochondria results largely from reverse transport to complex I and through the Q cycle in complex III. Mitoquinol blocks ROS from reverse electron transport but increases superoxide production derived from forward transport. These effects likely occur at one or more Q binding sites in complex I. Topics: Animals; Antioxidants; Cattle; Cells, Cultured; Electron Spin Resonance Spectroscopy; Endothelium, Vascular; Female; Male; Membrane Potentials; Mice; Mice, Inbred C57BL; Mitochondria, Muscle; Mitochondrial Membranes; Organophosphorus Compounds; Oxidative Stress; Reactive Oxygen Species; Ubiquinone | 2006 |
Prevention of mitochondrial oxidative damage using targeted antioxidants.
Mitochondrial-targeted antioxidants that selectively block mitochondrial oxidative damage and prevent some types of cell death have been developed. These antioxidants are ubiquinone and tocopherol derivatives and are targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation. Because of the large mitochondrial membrane potential, these cations accumulated within mitochondria inside cells, where the antioxidant moiety prevents lipid peroxidation and protects mitochondria from oxidative damage. The mitochondrially localized ubiquinone also protected mammalian cells from hydrogen peroxide-induced apoptosis while an untargeted ubiquinone analogue was ineffective against apoptosis. When fed to mice these compounds accumulated within the brain, heart, and liver; therefore, using these mitochondrial-targeted antioxidants may help investigations of the role of mitochondrial oxidative damage in animal models of aging. Topics: Animals; Antioxidants; Apoptosis; Electron Transport; Female; Humans; Indicators and Reagents; Jurkat Cells; Mice; Mitochondria, Liver; Molecular Structure; Onium Compounds; Organophosphorus Compounds; Oxidation-Reduction; Rats; Thiobarbituric Acid Reactive Substances; Trityl Compounds; Ubiquinone | 2002 |
Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties.
With the recognition of the central role of mitochondria in apoptosis, there is a need to develop specific tools to manipulate mitochondrial function within cells. Here we report on the development of a novel antioxidant that selectively blocks mitochondrial oxidative damage, enabling the roles of mitochondrial oxidative stress in different types of cell death to be inferred. This antioxidant, named mitoQ, is a ubiquinone derivative targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation through an aliphatic carbon chain. Due to the large mitochondrial membrane potential, the cation was accumulated within mitochondria inside cells, where the ubiquinone moiety inserted into the lipid bilayer and was reduced by the respiratory chain. The ubiquinol derivative thus formed was an effective antioxidant that prevented lipid peroxidation and protected mitochondria from oxidative damage. After detoxifying a reactive oxygen species, the ubiquinol moiety was regenerated by the respiratory chain enabling its antioxidant activity to be recycled. In cell culture studies, the mitochondrially localized antioxidant protected mammalian cells from hydrogen peroxide-induced apoptosis but not from apoptosis induced by staurosporine or tumor necrosis factor-alpha. This was compared with untargeted ubiquinone analogs, which were ineffective in preventing apoptosis. These results suggest that mitochondrial oxidative stress may be a critical step in apoptosis induced by hydrogen peroxide but not for apoptosis induced by staurosporine or tumor necrosis factor-alpha. We have shown that selectively manipulating mitochondrial antioxidant status with targeted and recyclable antioxidants is a feasible approach to investigate the role of mitochondrial oxidative damage in apoptotic cell death. This approach will have further applications in investigating mitochondrial dysfunction in a range of experimental models. Topics: Animals; Antioxidants; Apoptosis; Biological Transport, Active; Cattle; Cell Survival; Electron Transport; Humans; Hydrogen Peroxide; Jurkat Cells; Mitochondria; Multienzyme Complexes; Organophosphorus Compounds; Oxidation-Reduction; Oxidative Stress; Rats; Tumor Cells, Cultured; Ubiquinone | 2001 |