ubiquinone has been researched along with malonic-acid* in 8 studies
1 review(s) available for ubiquinone and malonic-acid
Article | Year |
---|---|
[Inhibitors of complex I and II of the mitochondrial respiratory chain].
Topics: Animals; Anthraquinones; Carboxin; Electron Transport; Electron Transport Complex I; Electron Transport Complex II; Energy Metabolism; Humans; Malonates; Mitochondria; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxidative Phosphorylation; Oxidoreductases; Rotenone; Succinate Dehydrogenase; Ubiquinone | 2002 |
7 other study(ies) available for ubiquinone and malonic-acid
Article | Year |
---|---|
Respiratory complex II in mitochondrial dysfunction-mediated cytotoxicity: Insight from cadmium.
In the present work we studied action of several inhibitors of respiratory complex II (CII) of mitochondrial electron transport chain, namely malonate and thenoyltrifluoroacetone (TTFA) on Cd Topics: Animals; Apoptosis; Cadmium; Cell Line, Tumor; Cell Survival; Electron Transport Complex II; Malonates; Mitochondria; PC12 Cells; Rats; Thenoyltrifluoroacetone; Ubiquinone | 2018 |
Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT.
Although the exact mechanism involved in the long-term depletion of brain serotonin (5-HT) produced by substituted amphetamines is not completely known, evidence suggests that oxidative and/or bioenergetic stress may contribute to 3,4-methylenedioxymethamphetamine (MDMA)-induced 5-HT toxicity. In the present study, the effect of supplementing energy substrates was examined on the long-term depletion of striatal 5-HT and dopamine produced by the local perfusion of MDMA (100 microM) and malonate (100 mM) and the depletion of striatal and hippocampal 5-HT concentrations produced by the systemic administration of MDMA (10 mg/kg i.p. x4). The effect of systemic administration of MDMA on ATP levels in the striatum and hippocampus also was examined. Reverse dialysis of MDMA and malonate directly into the striatum resulted in a 55-70% reduction in striatal concentrations of 5-HT and dopamine, and these reductions were significantly attenuated when MDMA and malonate were co-perfused with nicotinamide (1 mM). Perfusion of nicotinamide or ubiquinone (100 microM) also attenuated the depletion of 5-HT in the striatum and hippocampus produced by the systemic administration of MDMA. Finally, the systemic administration of MDMA produced a 30% decrease in the concentration of ATP in the striatum and hippocampus. These results support the conclusion that MDMA produces a dysregulation of energy metabolism which contributes to the mechanism of MDMA-induced 5-HT neurotoxicity. Topics: Adenosine Triphosphate; Animals; Brain; Brain Chemistry; Dopamine; Drug Interactions; Energy Metabolism; Male; Malonates; Microdialysis; N-Methyl-3,4-methylenedioxyamphetamine; Niacinamide; Rats; Rats, Sprague-Dawley; Serotonin; Serotonin Agents; Time Factors; Ubiquinone | 2005 |
Kinetic interaction between oxidases and dehydrogenases in plant mitochondria.
Topics: Benzoquinones; Kinetics; Malonates; Mitochondria; Mitochondrial Proteins; Oxidation-Reduction; Oxidoreductases; Oxygen Consumption; Plant Proteins; Plants; Succinate Dehydrogenase; Ubiquinone | 1997 |
Coenzyme Q10 in the central nervous system and its potential usefulness in the treatment of neurodegenerative diseases.
Coenzyme Q10 is an essential cofactor of the electron transport chain and is an antioxidant. We examined the effects of oral feeding with coenzyme Q10 in young animals on brain concentrations. Feeding with coenzyme Q10 at a dose of 200 mg/kg for 1-2 months in young rats resulted in significant increases in liver concentrations, however, there was no significant increase in brain concentrations of either reduced- or total coenzyme Q10 levels. Nevertheless there was a reduction in malonate-induced increases in 2,5 dihydroxybenzoic acid to salicylate, consistent with an antioxidant effect. In other studies we found that oral administration of coenzyme Q10 significantly reduced increased concentrations of lactate in the occipital cortex of Huntington's disease patients. These findings suggest that coenzyme Q10 might be useful in treating neurodegenerative diseases. Topics: Administration, Oral; Animals; Antioxidants; Brain; Coenzymes; Corpus Striatum; Electron Transport; Gentisates; Humans; Hydroxybenzoates; Injections; Liver; Male; Malonates; Neurodegenerative Diseases; Neuroprotective Agents; Oxidation-Reduction; Oxidative Stress; Rats; Rats, Sprague-Dawley; Salicylates; Salicylic Acid; Ubiquinone | 1997 |
Neuroprotective strategies for treatment of lesions produced by mitochondrial toxins: implications for neurodegenerative diseases.
Neuronal death in neurodegenerative diseases may involve energy impairment leading to secondary excitotoxicity, and free radical generation. Potential therapies for the treatment of neurodegenerative diseases therefore include glutamate release blockers, excitatory amino acid receptor antagonists, agents that improve mitochondrial function, and free radical scavengers. In the present study we examined whether these strategies either alone or in combination had neuroprotective effects against striatal lesions produced by mitochondrial toxins. The glutamate release blockers lamotrigine and BW1003C87 significantly attenuated lesions produced by intrastriatal administration of 1-methyl-4-phenylpyridinium. Lamotrigine significantly attenuated lesions produced by systemic administration of 3-nitropropionic acid. Memantine, an N-methyl-D-aspartate antagonist, protected against malonate induced striatal lesions. We previously found that coenzyme Q10 and nicotinamide, and the free radical spin trap n-tert-butyl-alpha-(2-sulfophenyl)-nitrone (S-PBN) dose-dependently protect against lesions produced by intrastriatal injection of malonate. In the present study we found that the combination of MK-801 (dizocipiline) with coenzyme Q10 exerted additive neuroprotective effects against malonate. Lamotrigine with coenzyme Q10 was more effective than coenzyme Q10 alone. The combination of nicotinamide with S-PBN was more effective than nicotinamide alone. These results provide further evidence that glutamate release inhibitors and N-acetyl-D-aspartate antagonists can protect against secondary excitotoxic lesions in vivo. Furthermore, they show that combinations of agents which act at sequential steps in the neurodegenerative process can produce additive neuroprotective effects. These findings suggest that combinations of therapies to improve mitochondrial function, to block excitotoxicity and to scavenge free radicals may be useful in treating neurodegenerative diseases. Topics: 1-Methyl-4-phenylpyridinium; Animals; Anticonvulsants; Coenzymes; Cyclic N-Oxides; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Free Radicals; Lamotrigine; Male; Malonates; Memantine; Mitochondria; Nervous System Diseases; Neuroprotective Agents; Neurotoxins; Niacinamide; Nitro Compounds; Nitrogen Oxides; Propionates; Pyrimidines; Rats; Rats, Sprague-Dawley; Spin Labels; Thallium; Triazines; Ubiquinone | 1996 |
Coenzyme Q10 and nicotinamide block striatal lesions produced by the mitochondrial toxin malonate.
A potential mechanism of neuronal injury in neurodegenerative diseases is a defect in energy metabolism that may lead to slow excitotoxic neuronal death. Consistent with this possibility, we showed that specific inhibitors of the electron transport chain produce excitotoxic lesions in vivo. In the present study we examined whether agents that improve energy metabolism can block lesions produced by the mitochondrial toxin malonate. Striatal lesions produced by the complex II inhibitor malonate were blocked in a dose-dependent manner by oral pretreatment with coenzyme Q10. Administration of nicotinamide by Alzet pump for 1 week attenuated malonate-induced lesions, but riboflavin had no effect. Administration of nicotinamide intraperitoneally just prior to and following induction of the lesions produced dose-dependent neuroprotection. A combination of coenzyme Q10 with nicotinamide was more effective than either compound alone, as shown by both lesion size and magnetic resonance imaging in vivo. Both coenzyme Q10 and nicotinamide blocked adenosine triphosphate depletions and lactate increases. These results confirm that mitochondrial toxins produce striatal excitotoxic lesions by a mechanism involving energy depletion in vivo. Furthermore, they suggest novel neuroprotective strategies that may be useful in the treatment of both mitochondrial encephalopathies and neurodegenerative diseases. Topics: Animals; Coenzymes; Corpus Striatum; Dose-Response Relationship, Drug; Magnetic Resonance Imaging; Male; Malonates; Mitochondria; Niacinamide; Rats; Rats, Sprague-Dawley; Ubiquinone | 1994 |
[Interaction of succinate dehydrogenase and oxaloacetate].
The equilibrium and rate constants for interaction of the reduced and oxidized membrane-bound succinate dehydrogenase (EC 1.3.99.1) with oxaloacetate were determined. The 10-fold decrease in the oxaloacetate affinity for the reduced enzyme was shown to be due to the 10-fold increase of the enzyme-inhibitor complex dissociation rate, which occurs upon its reduction. The rate of dissociation induced by succinate is 10 times higher than that induced by malonate in the submitochondrial particles, being equal in the soluble enzyme preparations. The rates of dissociation induced by malonate excess, or by the enzyme irreversibly utilizing oxaloacetate (transaminase in the presence of glutamate) are also equal. The data obtained suggest that succinate dehydrogenase interaction with succinate and oxaloacetate results from the competition for a single dicarboxylate-specific site. In submitochondrial particles all succinate dehydrogenase molecules are in redox equilibrium provided for by endogenous ubiquinone. No electronic equilibrium between the individual enzyme molecules exists, when succinate dehydrogenase is solubilized. Topics: Enzyme Activation; In Vitro Techniques; Kinetics; Malonates; Mitochondria; Oxaloacetates; Oxidation-Reduction; Protein Binding; Submitochondrial Particles; Substrate Specificity; Succinate Dehydrogenase; Ubiquinone | 1984 |