ubiquinone and malic-acid

ubiquinone has been researched along with malic-acid* in 7 studies

Other Studies

7 other study(ies) available for ubiquinone and malic-acid

ArticleYear
Modeling of human pathogenic mutations in Escherichia coli complex I reveals a sensitive region in the fourth inside loop of NuoH.
    Mitochondrion, 2009, Volume: 9, Issue:6

    Seven of the 45 subunits of mitochondrial NADH:ubiquinone oxidoreductase (complex I) are mitochondrially encoded and have been shown to harbor pathogenic mutations. We modeled the human disease-associated mutations A4136G/ND1-Y277C, T4160C/ND1-L285P and C4171A/ND1-L289M in a highly conserved region of the fourth matrix-side loop of the ND1 subunit by mutating homologous amino acids and surrounding conserved residues of the NuoH subunit of Escherichia coli NDH-1. Deamino-NADH dehydrogenase activity, decylubiquinone reduction kinetics, hexammineruthenium (HAR) reductase activity, and the proton pumping efficiency of the enzyme were assayed in cytoplasmic membrane preparations. Among the human disease-associated mutations, a statistically significant 22% decrease in enzyme activity was observed in the NuoH-L289C mutant and a 29% decrease in the double mutant NuoH-L289C/V297P compared with controls. The adjacent mutations NuoH-D295A and NuoH-R293M caused 49% and 39% decreases in enzyme activity, respectively. None of the mutations studied significantly affected the K(m) value of the enzyme for decylubiquinone or the amount of membrane-associated NDH-1 as estimated from the HAR reductase activity. In spite of the decrease in enzyme activity, all the mutant strains were able to grow on malate, which necessitates sufficient NDH-1 activity. The results show that in ND1/NuoH its fourth matrix-side loop is probably not directly involved in ubiquinone binding or proton pumping but has a role in modifying enzyme activity.

    Topics: Amino Acid Sequence; Amino Acid Substitution; Escherichia coli; Escherichia coli Proteins; Humans; Kinetics; Malates; Membrane Proteins; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation, Missense; NADH Dehydrogenase; Protein Structure, Quaternary; Proton Pumps; Ruthenium Compounds; Ubiquinone

2009
Mitochondrial oxidative phosphorylation is defective in the long-lived mutant clk-1.
    The Journal of biological chemistry, 2004, Dec-24, Volume: 279, Issue:52

    The long-lived mutant of Caenorhabditis elegans, clk-1, is unable to synthesize ubiquinone, CoQ(9). Instead, the mutant accumulates demethoxyubiquinone(9) and small amounts of rhodoquinone(9) as well as dietary CoQ(8). We found a profound defect in oxidative phosphorylation, a test of integrated mitochondrial function, in clk-1 mitochondria fueled by NADH-linked electron donors, i.e. complex I-dependent substrates. Electron transfer from complex I to complex III, which requires quinones, is severely depressed, whereas the individual complexes are fully active. In contrast, oxidative phosphorylation initiated through complex II, which also requires quinones, is completely normal. Here we show that complexes I and II differ in their ability to use the quinone pool in clk-1. This is the first direct demonstration of a differential interaction of complex I and complex II with the endogenous quinone pool. This study uses the combined power of molecular genetics and biochemistry to highlight the role of quinones in mitochondrial function and aging.

    Topics: Animals; Ascorbic Acid; Caenorhabditis elegans; Electron Transport Complex I; Electron Transport Complex II; Glutamic Acid; Hydroquinones; Malates; Mitochondria; Mutation; Oxidative Phosphorylation; Pyruvic Acid; Quinones; Substrate Specificity; Tetramethylphenylenediamine; Time Factors; Ubiquinone

2004
Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
    Molecular and biochemical parasitology, 2002, Aug-28, Volume: 123, Issue:2

    The rotenone-insensitive NADH dehydrogenase isolated from mitochondria of the procyclic form of Trypanosoma brucei has the ability to produce superoxide anions (Biochemistry 41 (2002) 3065). Superoxide production by the purified enzyme was 60% inhibited by diphenyl iodonium (DPI), stimulated significantly by ubiquinone analogues, and unaffected by metal ions. Production of reactive oxygen species (ROS) in intact cells was not affected by addition of rotenone with proline and malate as substrates; however, addition of rotenone inhibited 41% ROS production with succinate as substrate. These results suggest that complex I is not involved in production of ROS and that succinate-linked reversed electron transport occurs in trypanosome mitochondria. Superoxide formation in mitochondria with NADH as substrate was stimulated by antimycin A but was unaffected by myxothiazol plus stigmatellin, indicating that bc(1) complex is not a source of superoxide. DPI and fumarate inhibited by 68 and 36%, respectively, the rate of superoxide production with NADH as substrate. Addition of both fumarate and DPI blocked 70% superoxide production in mitochondria, a total inhibition similar to that observed with DPI addition alone. These results suggest that the rotenone-insensitive NADH dehydrogenase in addition to NADH fumarate reductase is a potential source of superoxide production in procyclic trypanosome mitochondria.

    Topics: Animals; Anti-Bacterial Agents; Antimycin A; Biphenyl Compounds; Fumarates; Malates; Methacrylates; Mitochondria; NAD; NADH Dehydrogenase; Onium Compounds; Polyenes; Proline; Rotenone; Substrate Specificity; Succinic Acid; Superoxides; Thiazoles; Trypanosoma brucei brucei; Ubiquinone; Uncoupling Agents

2002
Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum.
    European journal of biochemistry, 1998, Jun-01, Volume: 254, Issue:2

    In addition to a cytoplasmic, NAD-dependent malate dehydrogenase (EC 1.1.1.37), Corynebacterium glutamicum possesses a highly active membrane-associated malate dehydrogenase (acceptor) (EC 1.1.99.16). This enzyme also takes part in the citric acid cycle. It oxidizes L-malate to oxaloacetate and donates electrons to ubiquinone-1 and other artificial acceptors or, via the electron transfer chain, to oxygen. NAD is not an acceptor and the natural direct acceptor for the enzyme is most likely a quinone. The enzyme is therefore called malate:quinone oxidoreductase, abbreviated to Mqo. Mqo is a peripheral membrane protein and can be released from the membrane by addition of chelators. The solubilized form was partially purified and characterized biochemically. FAD is probably a tightly but non-covalently bound prosthetic group, and the enzyme is activated by lipids. A C. glutamicum mutant completely lacking Mqo activity was isolated. It grows poorly on several substrates tested. The mutant possesses normal levels of cytoplasmic NAD-dependent malate dehydrogenase. A plasmid containing the gene from C. glutamicum coding for Mqo was isolated by complementation of the Mqo-negative phenotype. It leads to overexpression of Mqo activity in the mutant. The nucleotide sequence of the mqo gene was determined and is the first sequence known for this enzyme. The derived protein sequence is similar to hypothetical proteins from Escherichia coli, Klebsiella pneumoniae, and Mycobacterium tuberculosis.

    Topics: Amino Acid Sequence; Base Sequence; Cloning, Molecular; Corynebacterium; Enzyme Activation; Flavin-Adenine Dinucleotide; Genes, Bacterial; Lipids; Malate Dehydrogenase; Malates; Membranes; Molecular Sequence Data; Mutation; Oligodeoxyribonucleotides; Oxaloacetates; Oxidation-Reduction; Sequence Homology, Amino Acid; Solubility; Substrate Specificity; Ubiquinone

1998
Aminooxyacetic acid striatal lesions attenuated by 1,3-butanediol and coenzyme Q10.
    Neuroscience letters, 1994, Aug-15, Volume: 177, Issue:1-2

    We previously showed that intrastriatal administration of aminooxyacetic acid (AOAA) produces striatal lesions by a secondary excitotoxic mechanism associated with impairment of oxidative phosphorylation. In the present study, we show that and the specific complex I inhibitor rotenone produces a similar neurochemical profile in the striatum, consistent with an effect of AOAA on energy metabolism. Lesions produced by AOAA were dose-dependently blocked by MK-801, with complete protection against GABA and substance P depletions at a dose of 3 mg/kg. AOAA lesions were significantly attenuated by pretreatment with either 1,3-butanediol or coenzyme Q10, two compounds which are thought to improve energy metabolism. These results provide further evidence that AOAA produces striatal excitotoxic lesions as a consequence of energy depletion and they suggest therapeutic strategies which may be useful in neurodegenerative diseases.

    Topics: Aminooxyacetic Acid; Animals; Aspartic Acid; Butylene Glycols; Coenzymes; Corpus Striatum; Dizocilpine Maleate; Ketone Bodies; Malates; Male; Mitochondria; NAD(P)H Dehydrogenase (Quinone); Neurotransmitter Agents; Oxidative Phosphorylation; Rats; Rats, Sprague-Dawley; Rotenone; Ubiquinone

1994
[The effect of inhibitors of the Q-cycle on cyano-resistant oxidation of malate by rat liver mitochondria in the presence of menadione].
    Biokhimiia (Moscow, Russia), 1993, Volume: 58, Issue:10

    Based on the inhibitor analysis data, it has been assumed that the Q-cycle plays a role in the cyano-resistant malate oxidation induced by menadione (90 microM) in rat liver mitochondria. The extent of involvement of Q-cycle transmitters in the cyano-resistant respiration of mitochondria is determined by the mode of the electron supply into the Q-cycle. In the presence of dicumarol, i.e., under conditions when CoQ and menadione are reduced by NADH-quinone reductase, the bulk of the electrons pass through the o-center of the Q-cycle. Myxothiazole inhibits the respiration by 70-80%, while antimycin--by only 20-30%. In the presence of myxothiazole and antimycin menadione oxidizes cytochrome b. In the presence of rotenone, when menadione is reduced by DT-diaphorase, the rate of cyano-resistant respiration decreases approximately twofold; its sensitivity towards myxothiazole and antimycin drops down to 40%. In the absence of rotenone and dicumarol the Q-cycle does not participate in the cyano-resistant respiration which under these conditions is insensitive either to myxothiazole or to antimycin. It is concluded that the mechanism of cyano-resistant respiration changes with an alteration in the rates of quinones K3 and CoQ reduction. The mechanism of cyano-resistant respiration is also controlled by the medium tonicity. A reduction in the medium tonicity decrease the participation of the Q-cycle and, correspondingly, the sensitivity of the cyano-resistant respiration towards myxothiazole and antimycin.

    Topics: Animals; Antimycin A; Cyanides; Electron Transport; Malates; Methacrylates; Mitochondria, Liver; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Rats; Rotenone; Thiazoles; Ubiquinone; Vitamin K

1993
Thyroxine-induced changes in rat liver mitochondrial ubiquinone.
    Biochemical and biophysical research communications, 1986, Jul-16, Volume: 138, Issue:1

    Ubiquinone was extracted from liver mitochondria isolated from euthyroid and hyperthyroid rats. The redox state of ubiquinone was determined during States III and IV respiration with succinate or glutamate-malate substrates. Ubiquinone was more reduced during State III or IV in the hyperthyroid mitochondria with either substrate. Furthermore, the concentration of ubiquinone increased in the hyperthyroid rats.

    Topics: Animals; Glutamates; Glutamic Acid; Hyperthyroidism; Malates; Male; Mitochondria, Liver; Oxidation-Reduction; Oxygen Consumption; Rats; Rats, Inbred Strains; Succinates; Succinic Acid; Thyroxine; Ubiquinone

1986