ubiquinone has been researched along with geranylgeranyl-pyrophosphate* in 2 studies
2 other study(ies) available for ubiquinone and geranylgeranyl-pyrophosphate
Article | Year |
---|---|
Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening.
The characteristic pigmentation of ripe tomato fruit is due to the deposition of carotenoid pigments. In tomato, numerous colour mutants exist. The Cnr tomato mutant has a colourless, non-ripening phenotype. In this work, carotenoid formation in the Cnr mutant has been studied at the biochemical level. The carotenoid composition of Ailsa Craig (AC) and Cnr leaves was qualitatively and quantitatively similar. However, Cnr fruits had low levels of total carotenoids and lacked detectable levels of phytoene and lycopene. The presence of normal tocopherols and ubiquinone-9 levels in the ripe Cnr fruits suggested that other biosynthetically related isoprenoids were unaffected by the alterations to carotenoid biosynthesis. In vitro assays confirmed the virtual absence of phytoene synthesis in the ripe Cnr fruit. Extracts from ripe fruit of the Cnr mutant also revealed a reduced ability to synthesise the carotenoid precursor geranylgeranyl diphosphate (GGPP). These results suggest that besides affecting the first committed step in carotenoid biosynthesis (phytoene synthase) the Cnr mutation also affects the formation of the isoprenoid precursor (GGPP). Topics: Carotenoids; Color; Lycopene; Mutation; Pigments, Biological; Plant Leaves; Polyisoprenyl Phosphates; Solanum lycopersicum; Tocopherols; Ubiquinone | 2001 |
Effect of squalestatin 1 on the biosynthesis of the mevalonate pathway lipids.
The effects of squalestatin 1 on rat brain and liver homogenates and on Chinese hamster ovary tissue culture cells have been investigated. This compound effectively inhibits squalene biosynthesis in a highly selective manner. Cytoplasmic farnesyl pyrophosphate and geranylgeranyl pyrophosphate synthases are not affected, which is also the case for microsomal cis-prenyltransferase. In tissue culture cells, squalestatin 1 inhibits cholesterol biosynthesis completely, but does not alter dolichol synthesis or protein isoprenylation to a great extent. Incorporation of [3H]mevalonate into ubiquinone-9 and -10 increases 3-4-fold, probably as a result of increased synthesis of this lipid. Squalestatin 1 appears not only to be an effective inhibitor of cholesterol biosynthesis, but also to be more specific than other inhibitors used earlier in various in vitro and in vivo systems. Topics: Animals; Bridged Bicyclo Compounds; Bridged Bicyclo Compounds, Heterocyclic; CHO Cells; Cricetinae; Lipids; Male; Mevalonic Acid; Polyisoprenyl Phosphates; Rats; Rats, Sprague-Dawley; Sesquiterpenes; Tricarboxylic Acids; Ubiquinone | 1994 |