ubiquinone has been researched along with fumaric-acid* in 7 studies
7 other study(ies) available for ubiquinone and fumaric-acid
Article | Year |
---|---|
The iron-sulfur clusters in Escherichia coli succinate dehydrogenase direct electron flow.
Succinate dehydrogenase is an indispensable enzyme involved in the Krebs cycle as well as energy coupling in the mitochondria and certain prokaryotes. During catalysis, succinate oxidation is coupled to ubiquinone reduction by an electron transfer relay comprising a flavin adenine dinucleotide cofactor, three iron-sulfur clusters, and possibly a heme b556. At the heart of the electron transport chain is a [4Fe-4S] cluster with a low midpoint potential that acts as an energy barrier against electron transfer. Hydrophobic residues around the [4Fe-4S] cluster were mutated to determine their effects on the midpoint potential of the cluster as well as electron transfer rates. SdhB-I150E and SdhB-I150H mutants lowered the midpoint potential of this cluster; surprisingly, the His variant had a lower midpoint potential than the Glu mutant. Mutation of SdhB-Leu-220 to Ser did not alter the redox behavior of the cluster but instead lowered the midpoint potential of the [3Fe-4S] cluster. To correlate the midpoint potential changes in these mutants to enzyme function, we monitored aerobic growth in succinate minimal medium, anaerobic growth in glycerol-fumarate minimal medium, non-physiological and physiological enzyme activities, and heme reduction. It was discovered that a decrease in midpoint potential of either the [4Fe-4S] cluster or the [3Fe-4S] cluster is accompanied by a decrease in the rate of enzyme turnover. We hypothesize that this occurs because the midpoint potentials of the [Fe-S] clusters in the native enzyme are poised such that direction of electron transfer from succinate to ubiquinone is favored. Topics: Electron Spin Resonance Spectroscopy; Electron Transport; Escherichia coli; Fumarates; Iron-Sulfur Proteins; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Oxidation-Reduction; Plasmids; Protein Structure, Quaternary; Reactive Oxygen Species; Succinate Dehydrogenase; Ubiquinone | 2006 |
Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria.
The rotenone-insensitive NADH dehydrogenase isolated from mitochondria of the procyclic form of Trypanosoma brucei has the ability to produce superoxide anions (Biochemistry 41 (2002) 3065). Superoxide production by the purified enzyme was 60% inhibited by diphenyl iodonium (DPI), stimulated significantly by ubiquinone analogues, and unaffected by metal ions. Production of reactive oxygen species (ROS) in intact cells was not affected by addition of rotenone with proline and malate as substrates; however, addition of rotenone inhibited 41% ROS production with succinate as substrate. These results suggest that complex I is not involved in production of ROS and that succinate-linked reversed electron transport occurs in trypanosome mitochondria. Superoxide formation in mitochondria with NADH as substrate was stimulated by antimycin A but was unaffected by myxothiazol plus stigmatellin, indicating that bc(1) complex is not a source of superoxide. DPI and fumarate inhibited by 68 and 36%, respectively, the rate of superoxide production with NADH as substrate. Addition of both fumarate and DPI blocked 70% superoxide production in mitochondria, a total inhibition similar to that observed with DPI addition alone. These results suggest that the rotenone-insensitive NADH dehydrogenase in addition to NADH fumarate reductase is a potential source of superoxide production in procyclic trypanosome mitochondria. Topics: Animals; Anti-Bacterial Agents; Antimycin A; Biphenyl Compounds; Fumarates; Malates; Methacrylates; Mitochondria; NAD; NADH Dehydrogenase; Onium Compounds; Polyenes; Proline; Rotenone; Substrate Specificity; Succinic Acid; Superoxides; Thiazoles; Trypanosoma brucei brucei; Ubiquinone; Uncoupling Agents | 2002 |
Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (Succinate-ubiquinone oxidoreductase) and fumarate reductase (Menaquinol-fumarate oxidoreductase) from Escherichia coli.
Escherichia coli succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate reductase (QFR) are excellent model systems to understand the function of eukaryotic Complex II. They have structural and catalytic properties similar to their eukaryotic counterpart. An exception is that potent inhibitors of mammalian Complex II, such as thenoyltrifluoroacetone and carboxanilides, only weakly inhibit their bacterial counterparts. This lack of good inhibitors of quinone reactions and the higher level of side reactions in the prokaryotic enzymes has hampered the elucidation of the mechanism of quinone oxidation/reduction in E. coli Complex II. In this communication DT-diaphorase and an appropriate quinone are used to measure quinol-fumarate reductase activity and E. coli bo-oxidase and quinones are used to determine succinate-quinone reductase activity. Simple Michaelis kinetics are observed for both enzymes with ubiquinones and menaquinones in the succinate oxidase (forward) and fumarate reductase (reverse) reactions. The comparison of E. coli SQR and QFR demonstrates that 2-n-heptyl 4-hydroxyquinoline-N-oxide (HQNO) is a potent inhibitor of QFR in both assays; however, SQR is not sensitive to HQNO. A series of 2-alkyl-4,6-dinitrophenols and pentachlorophenol were found to be potent competitive inhibitors of both SQR and QFR. In addition, the isolated E. coli SQR complex demonstrates a mixed-type inhibition with carboxanilides, whereas the QFR complex is resistant to this inhibitor. The kinetic properties of SQR and QFR suggest that either ubiquinone or menaquinone operates at a single exchangeable site working in forward or reverse reactions. The pH activity profiles for E. coli QFR and SQR are similar showing maximal activity between pH 7.4 and 7.8, suggesting the importance of similar catalytic groups in quinol deprotonation and oxidation. Topics: Anilides; Dinitrophenols; Electron Transport Complex II; Enzyme Inhibitors; Escherichia coli; Eukaryotic Cells; Fumarates; Hydrogen-Ion Concentration; Hydroxyquinolines; Kinetics; Multienzyme Complexes; Naphthols; Oxidoreductases; Pentachlorophenol; Prokaryotic Cells; Succinate Dehydrogenase; Succinic Acid; Terpenes; Ubiquinone | 1999 |
Requirement for ubiquinone downstream of cytochrome(s) b in the oxygen-terminated respiratory chains of Escherichia coli K-12 revealed using a null mutant allele of ubiCA.
An Escherichia coli knockout ubiCA mutant has been constructed using a gene replacement method and verified using both Southern hybridization and PCR. The mutant, which was unable to synthesize ubiquinone (Q), showed severely diminished growth yields aerobically but not anaerobically with either nitrate or fumarate as terminal electron acceptors. Low oxygen uptake rates were demonstrated in membrane preparations using either NADH or lactate as substrates. However, these rates were greatly stimulated by the addition of ubiquinone-1 (Q-1). The rate of electron transfer to those oxidase components observable by photodissociation of their CO complexes was studied at sub-zero temperatures. In the ubiCA mutant, the reduced form of haemoproteins--predominantly cytochrome b595--was reoxidized significantly faster in the presence of oxygen than in a Ubi+ strain, indicating the absence of Q as electron donor. Continuous multiple-wavelength recordings of the oxidoreduction state of cytochrome(s) b during steady-state respiration showed greater reduction in membranes from the ubiCA mutant than in wildtype membranes. A scheme for the respiratory electron-transfer chain in E. coli is proposed, in which Q functions downstream of cytochrome(s) b. Topics: Aerobiosis; Alkyl and Aryl Transferases; Alleles; Anaerobiosis; Cell Membrane; Cloning, Molecular; Cytochrome b Group; DNA, Bacterial; Electron Transport; Escherichia coli; Fumarates; Lactic Acid; NAD; Nitrates; Oxidation-Reduction; Oxo-Acid-Lyases; Oxygen; Plasmids; Polymerase Chain Reaction; Ubiquinone | 1998 |
Schistosoma mansoni sporocysts contain rhodoquinone and produce succinate by fumarate reduction.
Although schistosomes were thought to be one of the few parasitic helminths that do not produce succinate via fumarate reduction, it was recently demonstrated that sporocysts of Schistosoma mansoni produce, under certain conditions, succinate in addition to lactate. This succinate production was only observed when the respiratory chain activity of the sporocysts was inhibited, which suggested that succinate is produced by fumarate reduction. In this report the presence of essential components for fumarate reduction was investigated in various stages of S. mansoni and it was shown that, in contrast to adults, sporocysts contained a substantial amount of rhodoquinone which is essential for efficient fumarate reduction in eukaryotes. This rhodoquinone was not made by modification of ubiquinone obtained from the host, but was synthesized de novo. Furthermore, it was shown that complex II of the electron-transport chain in schistosomes has the kinetic properties of a dedicated fumarate reductase instead of those of a succinate dehydrogenase. The presence of such an enzyme, together with the substantial amounts of rhodoquinone, shows that in S. mansoni sporocysts succinate is produced via fumarate reduction. Therefore, the energy metabolism of schistosomes does not differ in principle from most other parasitic helminths, which are known to rely heavily on fumarate reduction. Topics: Animals; Fumarates; Oxidation-Reduction; Schistosoma mansoni; Succinate Dehydrogenase; Succinic Acid; Ubiquinone | 1997 |
Developmental changes in the respiratory chain of Ascaris mitochondria.
The Ascaris larval respiratory chain, particularly complex II (succinate-ubiquinone oxidoreductase), was characterized in isolated mitochondria. Low-temperature difference spectra showed the presence of substrate-reducible cytochromes aa3 of complex IV, c+c1 and b of complex III (ubiquinol-cytochrome c oxidoreductase) in mitochondria from second-stage larvae (L2 mitochondria). Quinone analysis by high-performance liquid chromatography showed that, unlike adult mitochondria, which contain only rhodoquinone-9, L2 mitochondria contain ubiquinone-9 as a major component. Complex II in L2 mitochondria was kinetically different from that in adult mitochondria. The individual oxidoreductase activities comprising succinate oxidase, and fumarate reductase were determined in mitochondria from L2 larvae, from larvae cultured to later stages, and from adult nematodes. The L2 mitochondria exhibited the highest specific activity of cytochrome c oxidase, indicating that L2 larvae have the most aerobic respiratory chain among the stages studied. The Cybs subunit of complex II in L2 and cultured-larvae mitochondria exhibited different reactivities against anti-adult Cybs antibodies. Taken together, these results indicate that the complex II of larvae is different from its adult counterpart. In parallel with this change in mitochondrial biogenesis, biosynthetic conversion of quinones occurs during development in Ascaris nematodes. Topics: Animals; Ascaris suum; Cattle; Electron Transport Complex II; Fumarates; Larva; Mitochondria; Models, Biological; Multienzyme Complexes; Myocardium; NAD(P)H Dehydrogenase (Quinone); Oxidoreductases; Quinones; Succinate Dehydrogenase; Succinates; Succinic Acid; Ubiquinone | 1993 |
Mechanism of O2- generation in reduction and oxidation cycle of ubiquinones in a model of mitochondrial electron transport systems.
O2- generation in mitochondrial electron transport systems, especially the NADPH-coenzyme Q10 oxidoreductase system, was examined using a model system, NADPH-coenzyme Q1-NADPH-dependent cytochrome P-450 reductase. One electron reduction of coenzyme Q1 produces coenzyme Q1-. and O2- during enzyme-catalyzed reduction and O2+ coenzyme Q1-. are in equilibrium with O2- + coenzyme Q1 in the presence of enough O2. The coenzyme Q1-. produced can be completely eliminated by superoxide dismutase, identical to bound coenzyme Q10 radical produced in a succinate/fumarate couple-KCN-submitochondrial system in the presence of O2. Superoxide dismutase promotes electron transfer from reduced enzyme to coenzyme Q1 by the rapid dismutation of O2- generated, thereby preventing the reduction of coenzyme Q1 by O2-. The enzymatic reduction of coenzyme Q1 to coenzyme Q1H2 via coenzyme Q1-. is smoothly achieved under anaerobic conditions. The rate of coenzyme Q1H2 autoxidation is extremely slow, i.e., second-order constant for [O2][coenzyme Q1H2] = 1.5 M-1.s-1 at 258 microM O2, pH 7.5 and 25 degrees C. Topics: Anaerobiosis; Animals; Cattle; Electron Spin Resonance Spectroscopy; Electron Transport; Free Radicals; Fumarates; Hydrogen-Ion Concentration; Kinetics; Mitochondria; Mitochondria, Heart; Models, Biological; NADP; NADPH-Ferrihemoprotein Reductase; Oxidation-Reduction; Oxygen Consumption; Potassium Cyanide; Submitochondrial Particles; Succinates; Succinic Acid; Superoxide Dismutase; Superoxides; Ubiquinone; Vitamin K | 1988 |