ubiquinone has been researched along with duroquinone* in 11 studies
11 other study(ies) available for ubiquinone and duroquinone
Article | Year |
---|---|
Genetic evidence for NAD(P)H:quinone oxidoreductase 1-catalyzed quinone reduction on passage through the mouse pulmonary circulation.
The quinones duroquinone (DQ) and coenzyme Q(1) (CoQ(1)) and quinone reductase inhibitors have been used to identify reductases involved in quinone reduction on passage through the pulmonary circulation. In perfused rat lung, NAD(P)H:quinone oxidoreductase 1 (NQO1) was identified as the predominant DQ reductase and NQO1 and mitochondrial complex I as the CoQ(1) reductases. Since inhibitors have nonspecific effects, the goal was to use Nqo1-null (NQO1(-)/(-)) mice to evaluate DQ as an NQO1 probe in the lung. Lung homogenate cytosol NQO1 activities were 97 ± 11, 54 ± 6, and 5 ± 1 (SE) nmol dichlorophenolindophenol reduced·min(-1)·mg protein(-1) for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs, respectively. Intact lung quinone reduction was evaluated by infusion of DQ (50 μM) or CoQ(1) (60 μM) into the pulmonary arterial inflow of the isolated perfused lung and measurement of pulmonary venous effluent hydroquinone (DQH(2) or CoQ(1)H(2)). DQH(2) efflux rates for NQO1(+/+), NQO1(+/-), and NQO1(-/-) lungs were 0.65 ± 0.08, 0.45 ± 0.04, and 0.13 ± 0.05 (SE) μmol·min(-1)·g dry lung(-1), respectively. DQ reduction in NQO1(+/+) lungs was inhibited by 90 ± 4% with dicumarol; there was no inhibition in NQO1(-/-) lungs. There was no significant difference in CoQ(1)H(2) efflux rates for NQO1(+/+) and NQO1(-/-) lungs. Differences in DQ reduction were not due to differences in lung dry weights, wet-to-dry weight ratios, perfusion pressures, perfused surface areas, or total DQ recoveries. The data provide genetic evidence implicating DQ as a specific NQO1 probe in the perfused rodent lung. Topics: Animals; Benzoquinones; Dicumarol; Lung; Mice; NAD(P)H Dehydrogenase (Quinone); Oxidation-Reduction; Pulmonary Circulation; Ubiquinone | 2011 |
Role of mitochondrial electron transport complex I in coenzyme Q1 reduction by intact pulmonary arterial endothelial cells and the effect of hyperoxia.
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity. Topics: Aerobiosis; Animals; Benzoquinones; Cattle; Cell Survival; Cells, Cultured; Chromatography, High Pressure Liquid; Culture Media; Electron Transport Complex I; Endothelial Cells; Enzyme Inhibitors; Ferricyanides; Hyperoxia; L-Lactate Dehydrogenase; Mitochondria; Oxidation-Reduction; Oxygen Consumption; Pulmonary Artery; Spectrophotometry; Tolonium Chloride; Ubiquinone | 2007 |
Quinone analogues regulate mitochondrial substrate competitive oxidation.
Quinone derivatives are among the rare compounds successfully used as therapeutic reagents to fight mitochondrial diseases. However, their beneficial effect appears to depend on their side chain which presumably governs their interaction with the respiratory chain. The effect of four quinone derivatives was comparatively studied on NADH- and succinate-competitive oxidation by a sub-mitochondrial fraction. Under our experimental conditions, the less hydrophobic derivatives (menadione, duroquinone) poorly affected electron flow from either NADH or succinate to oxygen, yet readily diverting electrons from isolated complex I. This latter effect was abolished by succinate addition. More hydrophobic derivatives (idebenone, decylubiquinone) stimulated oxygen uptake from succinate. But while NADH oxidation was slightly inhibited by idebenone, it was somewhat increased by decylubiquinone. As a result, idebenone strongly favoured succinate over NADH oxidation. This study therefore suggests that any therapeutic use of quinone analogues should take into account their specific effect on each respiratory chain dehydrogenase. Topics: Animals; Benzoquinones; Binding, Competitive; Cell Respiration; Cells, Cultured; Dose-Response Relationship, Drug; Homeostasis; Mice; Mice, Inbred C57BL; Mitochondria, Liver; NAD; Oxidation-Reduction; Oxygen; Oxygen Consumption; Quinones; Substrate Specificity; Ubiquinone; Vitamin K 3 | 2004 |
Quenching of chlorophyll fluorescence by quinones.
Quinones caused quenching of Chl a fluorescence in native and model systems. Menadione quenched twofold the fluorescence of Chl a and BChl a in pea chloroplasts, chromatophores of purple bacteria, and liposomes at concentrations of 50-80 microM. To obtain twofold quenching in Triton X-100 micelles and in ethanol, the addition of 1.3 mM and 11 mM menadione was required, respectively. A proportional decrease in the lifetime and yield of Chl a fluorescence in chloroplasts, observed as the menadione concentration increased, is indicative of the efficient excitation energy transfer from bulk Chl to menadione. The decrease in the lifetime and yield of fluorescence was close to proportional in liposomes, but not in detergent micelles. The insensitivity of the menadione quenching effect to DCMU in chloroplasts, and similarity of its action in chloroplasts and liposomes indicate that menadione in chloroplasts interacts with antenna Chl, i.e., nonphotochemical quenching of fluorescence occurs. Topics: Bacterial Chromatophores; Bacteriochlorophylls; Benzoquinones; Chlorophyll; Chlorophyll A; Chloroplasts; Diuron; Fluorescence; Liposomes; Micelles; Pisum sativum; Quinones; Rhodobacter sphaeroides; Rhodospirillum rubrum; Spectrometry, Fluorescence; Ubiquinone; Vitamin K | 1998 |
Steady-state kinetics of reduction of coenzyme Q analogs by glycerol-3-phosphate dehydrogenase in brown adipose tissue mitochondria.
We have undertaken a study of the role of coenzyme Q (CoQ) in glycerol-3-phosphate oxidation in mitochondrial membranes from hamster brown adipose tissue, using either quinone homologs, as CoQ1 and CoQ2, or the analogs duroquinone and decylubiquinone as artificial electron acceptors. We have found that the most suitable electron acceptor for glycerol-3-phosphate:CoQ reductase activity in situ in the mitochondrial membrane is the homolog CoQ1 yielding the highest rate of enzyme activity (225 +/- 41 nmol x min(-1) x mg(-1) protein). With all acceptors tested the quinone reduction rates were completely insensitive to Complex III inhibitors, indicating that all acceptors were easily accessible to the quinone-binding site of the dehydrogenase preferentially with respect to the endogenous CoQ pool, in such a way that Complex III was kept in the oxidized state. We have also experimentally investigated the saturation kinetics of endogenous CoQ (1.35 nmol/mg protein of a mixture of 70% CoQ9 and 30% CoQ10) by stepwise pentane extraction of brown adipose tissue mitochondria and found a K(m) of the integrated activity of glycerol-3-phosphate cytochrome c reductase for endogenous CoQ of 0.22 nmol/mg protein, indicating that glycerol-3-phosphate-supported respiration is over 80% of V(max) with respect to the CoQ pool. A similar K(m) of 0.19 nmol CoQ/mg protein was found in glycerol-3-phosphate cytochrome c reductase in cockroach flight muscle mitochondria. Topics: Adipose Tissue, Brown; Animals; Benzoquinones; Cricetinae; Cytochrome c Group; Electron Transport; Electron Transport Complex III; Glycerolphosphate Dehydrogenase; Kinetics; Mitochondria; NADH Dehydrogenase; Oxidation-Reduction; Ubiquinone | 1997 |
Opposing effects of oxidants and antioxidants on K+ channel activity and tone in rat vascular tissue.
K+ channels regulate tone in both the systemic and pulmonary circulations. K+ channel inhibition leads to membrane depolarization, Ca2+ influx and vasoconstriction; K+ channel activation leads to hyperpolarization and vasodilatation. The sulfhydryl oxidant diamide opens K+ channels in pulmonary smooth muscle and acts as a potent vasodilator in perfused lungs. We examined the hypothesis that antioxidants cause constriction and oxidants cause relaxation through their effects on K+ channels in vascular smooth muscle. The oxidant diamide (380 microM and 3.8 mM) inhibited the reduction of cytochrome C by ferrous sulphate in vitro whilst the antioxidants co-enzyme Q10 (770 microM) and duroquinone (700 microM) increased the rate of reduction. Both antioxidants caused dose-dependent constriction of endothelium-intact and -denuded rat pulmonary artery and aortic rings. This constriction could be reversed by 1 microM diamide. Co-enzyme Q10 and duroquinone (both at 100 microM) partially inhibited (approximately 30%) whole-cell K+ channel currents and depolarized membranes of isolated pulmonary artery smooth muscle cell recorded using the amphotericin-perforated-patch-clamp technique. Diamide (100 microM) increased whole-cell K+ channel currents and hyperpolarized the membrane. The data suggest that oxidants and antioxidants may modulate vascular tone via an effect on K+ channels. Topics: Animals; Antioxidants; Aorta, Thoracic; Benzoquinones; Cytochrome c Group; Diamide; Endothelium, Vascular; In Vitro Techniques; Membrane Potentials; Muscle Contraction; Muscle Tonus; Muscle, Smooth, Vascular; Oxidants; Oxidation-Reduction; Patch-Clamp Techniques; Potassium Channels; Rats; Ubiquinone | 1995 |
The interaction of quinone analogues with wild-type and ubiquinone-deficient yeast mitochondria.
The interaction of the exogenous quinones, duroquinone (DQ) and the decyl analogue of ubiquinone (DB) with the mitochondrial respiratory chain was studied in both wild-type and a ubiquinone-deficient mutant of yeast. DQ can be reduced directly by NADH dehydrogenase, but cannot be reduced by succinate dehydrogenase in the absence of endogenous ubiquinone. The succinate-driven reduction of DQ can be stimulated by DB in a reaction inhibited 50% by antimycin and 70-80% by the combined use of antimycin and myxothiazol, suggesting that electron transfer occurs via the cytochrome b-c1 complex. Both DQ and DB can effectively mediate the reduction of cytochrome b by the primary dehydrogenases through center o, but their ability to mediate the reduction of cytochrome b through center i is negligible. Two reaction sites for ubiquinol seem to be present at center o: one is independent of endogenous Q6 with a high reaction rate and a high Km; the other is affected by endogenous Q6 and has a low reaction rate and a low Km. By contrast, only one ubiquinol reaction site was observed at center i, where DB appears to compete with endogenous Q6. DB can oxidize most of the pre-reduced cytochrome b, while DQ can oxidize only 50%. On the basis of these data, the possible binding patterns of DB on different Q-reaction sites and the requirement for ubiquinone in the continuous oxidation of DQH are discussed. Topics: Antimycin A; Benzoquinones; Cytochrome b Group; Electron Transport; Electron Transport Complex III; Kinetics; Methacrylates; Mitochondria; Oxidation-Reduction; Quinones; Saccharomyces cerevisiae; Succinate Dehydrogenase; Succinates; Succinic Acid; Thiazoles; Ubiquinone | 1988 |
The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain.
In uncoupled pig-heart mitochondria the rate of the reduction of duroquinone by succinate in the presence of cyanide is inhibited by about 50% by antimycin. This inhibition approaches completion when myxothiazol is also added or British anti-Lewisite-treated (BAL-treated) mitochondria are used. If mitochondria are replaced by isolated succinate:cytochrome c oxidoreductase, the inhibition by antimycin alone is complete. The reduction of a plastoquinone homologue with an isoprenoid side chain (plastoquinone-2) is strongly inhibited by antimycin with either mitochondria or succinate:cytochrome c reductase. The reduction by succinate of plastoquinone analogues with an n-alkyl side chain in the presence of mitochondria is inhibited neither by antimycin nor by myxothiazol, but is sensitive to the combined use of these two inhibitors. On the other hand, the reduction of the ubiquinone homologues Q2, Q4, Q6 and Q10 and an analogue, 2,3-dimethoxyl-5-n-decyl-6-methyl-1,4-benzoquinone, is not sensitive to any inhibitor of QH2:cytochrome c reductase tested or their combined use, either in normal or BAL-treated mitochondria or in isolated succinate:cytochrome c reductase. It is concluded that quinones with a ubiquinone ring can be reduced directly by succinate:Q reductase, whereas those with a plastoquinone ring can not. Reduction of the latter compounds requires participation of either center i or center o (Mitchell, P. (1975) FEBS Lett. 56, 1-6) or both, of QH2:cytochrome c oxidoreductase. It is proposed that a saturated side chain promotes, while an isoprenoid side chain prevents reduction of these compounds at center o. Topics: Animals; Antimycin A; Benzoquinones; Dimercaprol; Electron Transport; Electron Transport Complex III; Mitochondria; Oxidation-Reduction; Plastoquinone; Quinones; Structure-Activity Relationship; Succinates; Succinic Acid; Swine; Ubiquinone | 1986 |
Thermodynamic control of electron flux through mitochondrial cytochrome bc1 complex.
The redox states of exogenously added ubiquinone-2 and cytochrome c, and the protonmotive force (delta p) of rat liver mitochondria were measured as the respiration rate was titrated with the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone. The force ratio delta Eh/delta p across the bc1 complex was close to 1:1 in State 4, indicating an H+/e- stoichiometry of 1:1 for the cytochrome bc1 complex, excluding protons moved by pool ubiquinone. Assuming a constant stoichiometry the rate of electron transport increased linearly with the disequilibrium (delta Eh - delta p) across the complex. Topics: Animals; Benzoquinones; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cytochrome c Group; Electron Transport; Electron Transport Complex III; In Vitro Techniques; Membrane Potentials; Mitochondria, Liver; Multienzyme Complexes; NADH, NADPH Oxidoreductases; Oxygen Consumption; Quinone Reductases; Quinones; Rats; Thermodynamics; Ubiquinone | 1985 |
Molecular basis for inhibition of mitochondrial respiration by naphthalene.
Topics: Animals; Benzoquinones; Cattle; Mitochondria, Heart; Naphthalenes; Quinones; Spectrophotometry, Ultraviolet; Ubiquinone | 1983 |
Activation of site I redox-driven H+ pump by exogenous quinones in intact mitochondria.
The site I redox-driven H+ pump has been activated by the addition of exogenous quinones to antimycin A-KCN-inhibited mitochondria. The rate of quinone reduction and the degree of rotenone sensitivity increase in the order, duroquinone less than ubiquinone0 less than ubiquinone1. Apparent Km, Vmax, and degree of sigmoidicity during e- transfer in the absence and presence of rotenone have been determined for each quinone. The data support the view that the NADH dehydrogenase possesses two redox sites, one accounting for the rotenone-sensitive reduction and another accounting for the rotenone-insensitive reduction. The degree of activation of the redox H+ pump, which reflects the rotenone-sensitive e- transfer, depends, for each quinone, on the relative Km, Vmax, and sigmoidicity of the rotenone-sensitive and insensitive processes. The redox H+ pump activation is highest with ubiquinone1, where the rotenone-sensitive reaction has a lower Km than that of the rotenone-insensitive reaction, and lowest with duroquinone where the rotenone-insensitive reaction has a high Vmax and no sigmoidicity with respect to that of the rotenone-sensitive reaction. Using ubiquinone1 the stoichiometry of the site I redox-driven H+ pump has been determined on either the flow or the force ratios. The flow ratios approached values of 4 H+/2 e- under conditions close to stationary state for H+ pumping and to zero for H+ electrochemical gradient. The force ratio also approached values close to 4 H+/2 e- under static head conditions. Topics: Adenosine Triphosphatases; Animals; Benzoquinones; Biological Transport, Active; Calcium; Hydrogen-Ion Concentration; Kinetics; Mitochondria, Liver; Oxidation-Reduction; Proton-Translocating ATPases; Quinones; Rats; Structure-Activity Relationship; Ubiquinone | 1982 |