ubiquinone has been researched along with cadmium-telluride* in 1 studies
1 other study(ies) available for ubiquinone and cadmium-telluride
Article | Year |
---|---|
Tunneling of redox enzymes to design nano-probes for monitoring NAD(+) dependent bio-catalytic activity.
Monitoring of bio-catalytic events by using nano-probes is of immense interest due to unique optical properties of metal nanoparticles. In the present study, tunneling of enzyme activity was achieved using redox cofactors namely oxidized cytochrome-c (Cyt-c) and Co-enzyme-Q (Co-Q) immobilized on Quantum dots (QDs) which acted as a bio-probe for NAD(+) dependent dehydrogenase catalyzed reaction. We studied how electron transfer from substrate to non-native electron acceptors can differentially modify photoluminescence properties of CdTe QDs. Two probes were designed, QD-Ox-Cyt-c and QD-Ox-Co-Q, which were found to quench the fluorescence of QDs. However, formaldehyde dehydrogenase (FDH) catalyzed reduction of Cyt-c and Co-Q on the surface of QDs lead to fluorescence turn-on of CdTe QDs. This phenomenon was successfully used for the detection of HCHO in the range of 0.01-100,000ng/mL (LOD of 0.01ng/mL) using both QD-Ox-Cyt-c (R(2)=0.93) and QD-Ox-Co-Q (R(2)=0.96). Further probe performance and stability in samples like milk, wine and fruit juice matrix were studied and we could detect HCHO in range of 0.001-100,000ng/mL (LOD of 0.001ng/mL) with good stability and sensitivity of probe in real samples (R(2)=0.97). Appreciable recovery and detection sensitivity in the presence of metal ions suggests that the developed nano-probes can be used successfully for monitoring dehydrogenase based bio-catalytic events even in the absence of NAD(+). Proposed method is advantageous over classical methods as clean up/ derivatization of samples is not required for formaldehyde detection. Topics: Aldehyde Oxidoreductases; Animals; Biosensing Techniques; Cadmium Compounds; Cytochromes c; Electron Transport; Enzymes, Immobilized; Food Analysis; Formaldehyde; Fruit and Vegetable Juices; Milk; NAD; Oxidation-Reduction; Quantum Dots; Tellurium; Ubiquinone; Wine | 2016 |