ubiquinone and 5-n-undecyl-6-hydroxy-4-7-dioxobenzothiazole

ubiquinone has been researched along with 5-n-undecyl-6-hydroxy-4-7-dioxobenzothiazole* in 10 studies

Other Studies

10 other study(ies) available for ubiquinone and 5-n-undecyl-6-hydroxy-4-7-dioxobenzothiazole

ArticleYear
Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound.
    The Journal of biological chemistry, 2003, Aug-15, Volume: 278, Issue:33

    Bifurcated electron transfer during ubiquinol oxidation is the key reaction of cytochrome bc1 complex catalysis. Binding of the competitive inhibitor 5-n-heptyl-6-hydroxy-4,7-dioxobenzothiazole to the Qo site of the cytochrome bc1 complex from Saccharomyces cerevisiae was analyzed by x-ray crystallography. This alkylhydroxydioxobenzothiazole is bound in its ionized form as evident from the crystal structure and confirmed by spectroscopic analysis, consistent with a measured pKa = 6.1 of the hydroxy group in detergent micelles. Stabilizing forces for the hydroxyquinone anion inhibitor include a polarized hydrogen bond to the iron-sulfur cluster ligand His181 and on-edge interactions via weak hydrogen bonds with cytochrome b residue Tyr279. The hydroxy group of the latter contributes to stabilization of the Rieske protein in the b-position by donating a hydrogen bond. The reported pH dependence of inhibition with lower efficacy at alkaline pH is attributed to the protonation state of His181 with a pKa of 7.5. Glu272, a proposed primary ligand and proton acceptor of ubiquinol, is not bound to the carbonyl group of the hydroxydioxobenzothiazole ring but is rotated out of the binding pocket toward the heme bL propionate A, to which it is hydrogen-bonded via a single water molecule. The observed hydrogen bonding pattern provides experimental evidence for the previously proposed proton exit pathway involving the heme propionate and a chain of water molecules. Binding of the alkyl-6-hydroxy-4,7-dioxobenzothiazole is discussed as resembling an intermediate step of ubiquinol oxidation, supporting a single occupancy model at the Qo site.

    Topics: Binding Sites; Binding, Competitive; Crystallography, X-Ray; Electron Transport; Electron Transport Complex III; Hydrogen Bonding; Oxidation-Reduction; Phospholipids; Protein Structure, Tertiary; Saccharomyces cerevisiae; Substrate Specificity; Thiazoles; Ubiquinone

2003
Mechanism of ubiquinol oxidation by the bc(1) complex: role of the iron sulfur protein and its mobility.
    Biochemistry, 1999, Nov-30, Volume: 38, Issue:48

    Native structures of ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from different sources, and structures with inhibitors in place, show a 16-22 A displacement of the [2Fe-2S] cluster and the position of the C-terminal extrinsic domain of the iron sulfur protein. None of the structures shows a static configuration that would allow catalysis of all partial reactions of quinol oxidation. We have suggested that the different conformations reflect a movement of the subunit necessary for catalysis. The displacement from an interface with cytochrome c(1) in native crystals to an interface with cytochrome b is induced by stigmatellin or 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and involves ligand formation between His-161 of the [2Fe-2S] binding cluster and the inhibitor. The movement is a rotational displacement, so that the same conserved docking surface on the iron sulfur protein interacts with cytochrome c(1) and with cytochrome b. The mobile extrinsic domain retains essentially the same tertiary structure, and the anchoring N-terminal tail remains in the same position. The movement occurs through an extension of a helical segment in the short linking span. We report details of the protein structure for the two main configurations in the chicken heart mitochondrial complex and discuss insights into mechanism provided by the structures and by mutant strains in which the docking at the cytochrome b interface is impaired. The movement of the iron sulfur protein represents a novel mechanism of electron transfer, in which a tethered mobile head allows electron transfer through a distance without the entropic loss from free diffusion.

    Topics: Amino Acid Sequence; Animals; Anti-Bacterial Agents; Binding Sites; Chickens; Computer Simulation; Crystallography; Cytochrome b Group; Electron Transport Complex III; Enzyme Inhibitors; Iron-Sulfur Proteins; Ligands; Mitochondria, Heart; Molecular Sequence Data; Mutation; Oxidation-Reduction; Polyenes; Protein Engineering; Protein Structure, Secondary; Sequence Alignment; Stilbenes; Thiazoles; Ubiquinone

1999
Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors.
    Biochemistry, 1999, Nov-30, Volume: 38, Issue:48

    Structures of mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from several animal sources have provided a basis for understanding the functional mechanism at the molecular level. Using structures of the chicken complex with and without inhibitors, we analyze the effects of mutation on quinol oxidation at the Q(o) site of the complex. We suggest a mechanism for the reaction that incorporates two features revealed by the structures, a movement of the iron sulfur protein between two separate reaction domains on cytochrome c(1) and cytochrome b and a bifurcated volume for the Q(o) site. The volume identified by inhibitor binding as the Q(o) site has two domains in which inhibitors of different classes bind differentially; a domain proximal to heme b(L), where myxothiazole and beta-methoxyacrylate- (MOA-) type inhibitors bind (class II), and a distal domain close to the iron sulfur protein docking interface, where stigmatellin and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiaole (UHDBT) bind (class I). Displacement of one class of inhibitor by another is accounted for by the overlap of their volumes, since the exit tunnel to the lipid phase forces the hydrophobic "tails" to occupy common space. We conclude that the site can contain only one "tailed" occupant, either an inhibitor or a quinol or one of their reaction products. The differential sensitivity of strains with mutations in the different domains is explained by the proximity of the affected residues to the binding domains of the inhibitors. New insights into mechanism are provided by analysis of mutations that affect changes in the electron paramagnetic resonance (EPR) spectrum of the iron sulfur protein, associated with its interactions with the Q(o)-site occupant. The structures show that all interactions with the iron sulfur protein must occur at the distal position. These include interactions between quinone, or class I inhibitors, and the reduced iron sulfur protein and formation of a reaction complex between quinol and oxidized iron sulfur protein. The step with high activation energy is after formation of the reaction complex, likely in formation of the semiquinone and subsequent dissociation of the complex into products. We suggest that further progress of the reaction requires a movement of semiquinone to the proximal position, thus mapping the bifurcated reaction to the bifurcated volume. We suggest that such a movement, together with a change in conformation of the site,

    Topics: Animals; Binding Sites; Chickens; Electron Transport Complex III; Mitochondria, Heart; Oxidation-Reduction; Polyenes; Thiazoles; Ubiquinone

1999
Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria.
    Biochemistry, 1999, Nov-30, Volume: 38, Issue:48

    Crystallographic structures for the mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from different sources, and with different inhibitors in cocrystals, have revealed that the extrinsic domain of the iron sulfur subunit is not fixed [Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y.-I., Kim, K. K., Hung, L.-W., Crofts, A. R., Berry, E. A., and Kim, S.-H. (1998) Nature (London), 392, 677-684], but moves between reaction domains on cytochrome c(1) and cytochrome b subunits. We have suggested that the movement is necessary for quinol oxidation at the Q(o) site of the complex. In this paper, we show that the electron-transfer reactions of the high-potential chain of the complex, including oxidation of the iron sulfur protein by cytochrome c(1) and the reactions by which oxidizing equivalents become available at the Q(o) site, are rapid compared to the rate-determining step. Activation energies of partial reactions that contribute to movement of the iron sulfur protein have been measured and shown to be lower than the high activation barrier associated with quinol oxidation. We conclude that the movement is not the source of the activation barrier. We estimate the occupancies of different positions for the iron sulfur protein from the crystallographic electron densities and discuss the parameters determining the binding of the iron sulfur protein in different configurations. The low activation barrier is consistent with a movement between these locations through a constrained diffusion. Apart from ligation in enzyme-substrate or inhibitor complexes, the binding forces in the native structure are likely to be < = RT, suggesting that the mobile head can explore the reaction interfaces through stochastic processes within the time scale indicated by kinetic measurements.

    Topics: Animals; Binding Sites; Crystallography; Cytochrome b Group; Cytochromes c1; Electron Transport Complex III; Iron-Sulfur Proteins; Kinetics; Oxidation-Reduction; Protein Conformation; Temperature; Thermodynamics; Thiazoles; Ubiquinone

1999
Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton trans
    Biochemistry, 1997, Jan-28, Volume: 36, Issue:4

    The cytochrome bo3 ubiquinol oxidase complex from Escherichia coli contains two binding sites for ubiquinone(ol) (UQ(H2)). One of these binding sites, the ubiquinol oxidation site, is clearly in dynamic equilibrium with the UQ(H2) pool in the membrane. The second site has a high affinity for ubiquinone (UQ), stabilizes a semiquinone species, and is located physically close to the low-spin heme b component of the enzyme. The UQ molecule in this site has been proposed to remain strongly bound to the enzyme during enzyme turnover and to act as a cofactor facilitating the transfer of electrons from the substrate ubiquinol to heme b [Sato-Watanabe et al. (1994) J. Biol. Chem. 269, 28908-28912]. In this paper, the steady-state turnover of the enzyme is examined in the presence and absence of inhibitors (UHDBT and NQNO) that appear to be recognized as ubisemiquinone analogs. It is found that the kinetics are accounted for best by a noncompetitive inhibitor binding model. Furthermore, at high concentrations, the substrates ubiquinol-1 and ubiquinol-2 inhibit turnover in an uncompetitive fashion. Together, these observations strongly suggest that there must be at least two UQ(H2) binding sites that are in rapid equilibrium with the UQ(H2) pool under turnover conditions. Although these data do not rule out the possibility that a strongly bound UQ molecule functions to facilitate electron transfer to heme b, they are more consistent with the behavior expected if the two UQ(H2) binding sites were to function in a Q(H2)-loop mechanism (similar to that of the cytochrome bc1 complex) as originally proposed by Musser and co-workers [(1993) FEBS Lett. 327, 131-136]. In this model, ubiquinol is oxidized at one site and ubiquinone is reduced at the second site. While the structural similarities of the heme-copper ubiquinol and cytochrome c oxidase complexes suggest the possibility that these two families of enzymes translocate protons by similar mechanisms, the current observations indicate that the Q(H2)-loop proton translocation mechanism for the heme-copper ubiquinol oxidase complexes should be further investigated and experimentally tested.

    Topics: Binding Sites; Binding, Competitive; Cytochrome b Group; Cytochromes; Electron Transport; Energy Metabolism; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Models, Chemical; Molecular Structure; Protons; Thiazoles; Ubiquinone

1997
Antimycin inhibition of the cytochrome bd complex from Azotobacter vinelandii indicates the presence of a branched electron transfer pathway for the oxidation of ubiquinol.
    FEBS letters, 1994, May-30, Volume: 345, Issue:2-3

    Antimycin A and UHBDT inhibit the activity of the purified cytochrome bd complex from Azotobacter vinelandii. Inhibition of activity is non-competitive and antimycin A binding induces a shift to the red in the spectrum of a b-type haem. No inhibitory effects were seen with myxothiazol. Steady-state experiments indicate that the site of inhibition for antimycin A lies on the low-potential side of haem b558. In the presence of antimycin A at concentrations sufficient to inhibit respiration, some direct electron transfer from ubiquinol-1 to haem b595 and haem d still occurs. The results are consistent with a branched electron transfer pathway from ubiquinol to the oxygen reduction site.

    Topics: Antimycin A; Azotobacter vinelandii; Cytochrome b Group; Cytochromes; Dithiothreitol; Electron Transport; Electron Transport Chain Complex Proteins; Escherichia coli Proteins; Kinetics; Methacrylates; Oxidation-Reduction; Oxidoreductases; Thiazoles; Ubiquinone

1994
EPR characterization of the cytochrome b-c1 complex from Rhodobacter sphaeroides.
    Biochimica et biophysica acta, 1990, Nov-05, Volume: 1020, Issue:2

    EPR characteristics of cytochrome c1, cytochromes b-565 and b-562, the iron-sulfur cluster, and an antimycin-sensitive ubisemiquinone radical of purified cytochrome b-c1 complex of Rhodobacter sphaeroides have been studied. The EPR specra of cytochrome c1 shows a signal at g = 3.36 flanked with shoulders. The oxidized form of cytochrome b-562 shows a broad EPR signal at g = 3.49, while oxidized cytochrome b-565 shows a signal at g = 3.76, similar to those of two b cytochromes in the mitochondrial complex. The distribution of cytochromes b-565 and b-562 in the isolated complex is 44 and 56%, respectively. Antimycin and 2,5-dibromo-3-methyl-6-isopropyl-1,4-benzoquinone (DBMIB) have little effect on the g = 3.76 signal, but they cause a slight downfield and upfield shifts of the g = 3.49 signal, respectively. 5-Undecyl-6-hydroxyl-4,7-dioxobenzothiazole (UHDBT) shifts the g = 3.49 signal downfield to g = 3.56 and sharpens the g = 3.76 signal slightly. Myxothiazol causes an upfield shift of both g = 3.49 and g = 3.76 signals. EPR characteristics of the reduced iron-sulfur cluster in bacterial cytochrome b-c1 complex are: gx = 1.8 with a small shoulder at g = 1.76, gy = 1.89 and gz = 2.02, similar to those observed with the mitochondrial enzyme. The gx = 1.8 signal decreased and the shoulder increased concurrently as the redox potential decreased, indicating that the environment of the iron-sulfur cluster is sensitive to the redox state of the complex. UHDBT sharpens the gz and and shifts it downfield from g = 2.02 to 2.03, and shifts gx upfield from g = 1.80 to 1.78. UHDBT also causes an upfield shift of gy but to a much lesser extent compared to the other two signals. Addition of DBMIB causes a downfield shift of the gy from 1.89 to 1.94 and broadens the gx signal with an upfield to g = 1.75. Myxothiazol and antimycin show little effect on the gy and gz signals, but they broaden and shift the gx signal upfield to g = 1.74. However, the myxothiazol effect is partially reversed by UHDBT. An antimycin-sensitive ubisemiquinone radical was detected in the cytochrome b-c1 complex. At pH 8.4, the antimycin-sensitive ubisemiquinone radical has a maximal concentration of 0.66 mol per mol complex at 100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)

    Topics: Antimycin A; Coenzymes; Cytochrome b Group; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex III; Iron-Sulfur Proteins; Methacrylates; Oxidation-Reduction; Rhodobacter sphaeroides; Thiazoles; Ubiquinone

1990
On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides.
    Biochimica et biophysica acta, 1981, Volume: 636, Issue:2

    Topics: Antimycin A; Cytochrome b Group; Cytochrome c Group; Cytochromes; Electron Transport; Herbicides; Kinetics; Oxidation-Reduction; Photic Stimulation; Photosynthesis; Rhodobacter sphaeroides; Rhodopseudomonas; Thiazoles; Triazines; Ubiquinone

1981
Inhibition of the oxidant--induced reduction of cytochrome b by a synthetic analogue of ubiquinone.
    FEBS letters, 1980, Jun-30, Volume: 115, Issue:2

    Topics: Animals; Cattle; Cytochrome b Group; Cytochromes; Kinetics; Mitochondria, Heart; Oxidation-Reduction; Succinate Cytochrome c Oxidoreductase; Thiazoles; Ubiquinone

1980
The role of the Rieske iron-sulfur center as the electron donor to ferricytochrome c2 in Rhodopseudomonas sphaeroides.
    Biochimica et biophysica acta, 1980, Oct-03, Volume: 592, Issue:3

    The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t 1/2 3-5 microseconds). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (102 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske Center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center. UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of HII(+); these may reflect additional sites of action of the inhibitor.

    Topics: Antimycin A; Bacteriochlorophylls; Cytochrome c Group; Electron Spin Resonance Spectroscopy; Hydrogen-Ion Concentration; Iron-Sulfur Proteins; Light; Metalloproteins; Oxidation-Reduction; Rhodobacter sphaeroides; Thiazoles; Ubiquinone

1980