ubiquinone-9 has been researched along with beta-resorcylic-acid* in 2 studies
2 other study(ies) available for ubiquinone-9 and beta-resorcylic-acid
Article | Year |
---|---|
β-RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in
Coenzyme Q (CoQ) deficiency has been associated with primary defects in the CoQ biosynthetic pathway or to secondary events. In some cases, the exogenous CoQ supplementation has limited efficacy. In the Topics: Animals; Brain; Disease Models, Animal; Energy Metabolism; Histocytochemistry; Hydroxybenzoates; Mice; Mitochondrial Encephalomyopathies; Neuroprotective Agents; Salicylic Acid; Survival Analysis; Treatment Outcome; Ubiquinone | 2019 |
The clinical heterogeneity of coenzyme Q10 deficiency results from genotypic differences in the Coq9 gene.
Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype-phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9(Q95X) and Coq9(R239X)), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9(R239X) mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9(Q95X) mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9(R239X) mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype-phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder. Topics: Animals; Ataxia; Disease Models, Animal; Genetic Variation; Genotype; Hydroxybenzoates; Mammals; Mice; Mice, Transgenic; Mitochondrial Diseases; Muscle Weakness; Mutation, Missense; Ubiquinone | 2015 |