Page last updated: 2024-08-26

u 73122 and paclitaxel

u 73122 has been researched along with paclitaxel in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (66.67)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Apostolakos, P; Galanopoulou, D; Galatis, B; Komis, G; Quader, H1
Chen, Y; Wang, ZJ; Yang, C1

Other Studies

3 other study(ies) available for u 73122 and paclitaxel

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Phospholipase C signaling involvement in macrotubule assembly and activation of the mechanism regulating protoplast volume in plasmolyzed root cells of Triticum turgidum.
    The New phytologist, 2008, Volume: 178, Issue:2

    Topics: Diacylglycerol Kinase; Dose-Response Relationship, Drug; Estrenes; Mannitol; Microtubules; Neomycin; Paclitaxel; Phosphoinositide Phospholipase C; Plant Roots; Protoplasts; Pyrimidinones; Pyrrolidinones; Signal Transduction; Thiazoles; Time Factors; Triticum

2008
Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain.
    Neuroscience, 2011, Oct-13, Volume: 193

    Topics: Analysis of Variance; Anilides; Animals; Ankyrins; Antineoplastic Agents, Phytogenic; Capsaicin; Carbazoles; Central Nervous System; Cinnamates; Cyclic AMP-Dependent Protein Kinases; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Estrenes; Gene Expression Regulation; Hyperalgesia; Male; Mice; Mice, Inbred ICR; Neuralgia; Oligopeptides; Paclitaxel; Pain Measurement; Physical Stimulation; Protein Kinase C; Pyrroles; Pyrrolidinones; Receptor, PAR-2; Sulfonamides; Time Factors; TRPV Cation Channels; Tryptases; Type C Phospholipases

2011