u-50488 and phenylalanyl-cyclo(cysteinyltyrosyl-tryptophyl-ornithyl-threonyl-penicillamine)threoninamide

u-50488 has been researched along with phenylalanyl-cyclo(cysteinyltyrosyl-tryptophyl-ornithyl-threonyl-penicillamine)threoninamide* in 12 studies

Other Studies

12 other study(ies) available for u-50488 and phenylalanyl-cyclo(cysteinyltyrosyl-tryptophyl-ornithyl-threonyl-penicillamine)threoninamide

ArticleYear
Accumbal μ-Opioid Receptors Modulate Ethanol Intake in Alcohol-Preferring Alko Alcohol Rats.
    Alcoholism, clinical and experimental research, 2016, Volume: 40, Issue:10

    The nucleus accumbens shell is a key brain area mediating the reinforcing effects of ethanol (EtOH). Previously, it has been shown that the density of μ-opioid receptors in the nucleus accumbens shell is higher in alcohol-preferring Alko Alcohol (AA) rats than in alcohol-avoiding Alko Non-Alcohol rats. In addition, EtOH releases opioid peptides in the nucleus accumbens and opioid receptor antagonists are able to modify EtOH intake, all suggesting an opioidergic mechanism in the control of EtOH consumption. As the exact mechanisms of opioidergic involvement remains to be elucidated, the aim of this study was to clarify the role of accumbal μ- and κ-opioid receptors in controlling EtOH intake in alcohol-preferring AA rats.. Microinfusions of the μ-opioid receptor antagonist CTOP (0.3 and 1 μg/site), μ-opioid receptor agonist DAMGO (0.03 and 0.1 μg/site), nonselective opioid receptor agonist morphine (30 μg/site), and κ-opioid receptor agonist U50488H (0.3 and 1 μg/site) were administered via bilateral guide cannulas into the nucleus accumbens shell of AA rats that voluntarily consumed 10% EtOH solution in an intermittent, time-restricted (90-minute) 2-bottle choice access paradigm.. CTOP (1 μg/site) significantly increased EtOH intake. Conversely, DAMGO resulted in a decreasing trend in EtOH intake. Neither morphine nor U50488H had any effect on EtOH intake in the used paradigm.. The results provide further evidence for the role of accumbens shell μ-opioid receptors but not κ-opioid receptors in mediating reinforcing effects of EtOH and in regulating EtOH consumption. The results also provide support for views suggesting that the nucleus accumbens shell has a major role in mediating EtOH reward.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcohol Drinking; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Ethanol; Male; Microinjections; Morphine; Nucleus Accumbens; Rats; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reward; Somatostatin; Species Specificity

2016
Opioidergic modulation of ethanol self-administration in the ventral pallidum.
    Alcoholism, clinical and experimental research, 2012, Volume: 36, Issue:2

    Striatopallidal medium spiny neurons have been viewed as a final common path for drug reward and the ventral pallidum as an essential convergent point for hedonic and motivational signaling in the brain. The medium spiny neurons are GABAergic, but they colocalize enkephalin. Purpose of this study was to investigate the role of the opioidergic mechanisms of the ventral pallidum in ethanol self-administration behavior.. Effects of bilateral microinjections of μ-, δ-, and κ-opioid receptor agonists and antagonists into the ventral pallidum on voluntary ethanol consumption were monitored in alcohol-preferring Alko Alcohol (AA) rats using the 90-minute limited access paradigm.. Stimulation of μ-opioid receptors with DAMGO (0.01 to 0.1 μg) or morphine (1 to 10 μg) in the ventral pallidum decreased ethanol intake dose-dependently. Conversely, blocking μ-receptors with CTOP (0.3 to 3 μg) increased ethanol intake significantly. Unlike CTOP, DAMGO also increased locomotor activity. Consumption of ethanol was not modified significantly by a broad-spectrum opioid receptor antagonist naltrexone, by δ-opioid receptor agonist DPDPE or antagonist naltrindole, or by a κ-opioid receptor agonist U50,488H or antagonist nor-BNI.. The study provides evidence for μ- but not δ- or κ-opioid receptors in the ventral pallidum playing a role in the regulation of voluntary ethanol consumption. Furthermore, present findings give support to earlier work, suggesting an essential role of pallidal opioidergic transmission in drug reward.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcohol Drinking; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Globus Pallidus; Male; Microinjections; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Self Administration; Somatostatin

2012
Depression of C fibre-evoked spinal field potentials by the spinal delta opioid receptor is enhanced in the spinal nerve ligation model of neuropathic pain: involvement of the mu-subtype.
    Neuropharmacology, 2008, Volume: 55, Issue:8

    The depression rate of C fibre-evoked spinal field potentials by spinally applied morphine is increased in two states of spinal hyperexcitation, namely the spinal ligation model (SNL) of neuropathic pain and long-term potentiation (LTP) of C fibre-evoked spinal field potentials. This present work sought to determine opioid receptor subtypes involved in such increase in the SNL model. We recorded spinal field potentials during spinal superfusion with increasing, cumulative concentrations of selective subtype-specific agonists in rats subjected to SNL, as well as in non-ligated animals. The mu opioid receptor (MOR) agonist DAMGO significantly depressed field potentials evoked by C (100 nM) or Adelta fibres (1 microM) both in neuropathic and non-ligated rats, whereas the kappa receptor opioid (KOR) agonist +/-U-50488 was ineffective. The delta opioid receptor (DOR) (D-Ala2)-Deltorphin II was more effective in reducing C fibre-evoked spinal field potentials in rats subjected to SNL (100 nM) than in non-ligated rats (100 microM). Subclinical MOR activation (10 nM DAMGO) produced a leftward shift in (D-Ala2)-Deltorphin II dose-response curve in non-ligated rats (IC50 16.59 +/- 0.99 microM vs 120.3 +/- 1.0 microM in the absence of DAMGO), and isobolar analysis revealed synergistic interaction (interaction index 0.25). MOR blockade (100 microM CTOP) disinhibited C fibre-evoked potentials in neuropathic, but not in basal animals, and partially impeded DOR depression in both groups. DOR blockade (1 mM naltrindole) was ineffective in either group. We show that DOR-mediated depression of spinal responses to peripheral unmyelinated fibre-input is increased in the SNL model, an increase that is contributed to by positive interaction with the spinal MOR.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Evoked Potentials; Male; Narcotic Antagonists; Nerve Fibers, Unmyelinated; Neuralgia; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Somatostatin; Spinal Cord

2008
Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum.
    Neuropeptides, 2000, Volume: 34, Issue:1

    The ascending excitatory reflex is part of the peristaltic reflex, an important participant in intestinal propulsion. The aim of this study was to characterize the role of different opioid receptors in the ascending reflex through exogenous application of non-selective (Met-enkephalin) and selective opioid agonists (mu-PLO17, delta-DPDPE, kappa-U-50, 488) as well as selective opioid receptor antagonists (mu: CTOP-NH(2), delta: ICI-174,864, kappa: Nor-Binaltorphimine). Metenkephalin (IC(50): 0.06 microM) and morphine (IC(50): 1.8 microM) inhibited the ascending reflex response concentration-dependently. Both the mu-selective agonist PLO17 (IC(50): 0.83 microM, n =11) and the kappa-selective agonist U-50,488 (IC(50): 0.68 microM, n =8) concentration-dependently inhibited the magnitude of the ascending contractile reflex response, whereas the delta-agonist DPDPE (10(-10)-10(-6)M) had no significant effect. In contrast, the latency of the response (time interval between start of the stimulus and onset of the contraction) was significantly prolonged by PLO17 > morphine > Met-enkephalin > DPDPE, whereas U-50,488 showed no effect. When the effect of the receptor-specific antagonists was tested, only CTOP-NH(2)and Nor-BNI caused a significant increase of the contractile response, whereas ICI-174 864 was ineffective. On the other hand, CTOP-NH(2)> ICI-174 864 decreased the latency significantly but the kappa-receptor agonist Nor-BNI had no influence. Thus, mu- and kappa-receptors seem to be involved in regulating the contraction strength of the ascending reflex, whereas both mu- and delta-receptors seem to be involved in the timing of the reflex response.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Endorphins; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Methionine; Ileum; In Vitro Techniques; Male; Morphine; Muscle, Smooth; Naltrexone; Narcotic Antagonists; Narcotics; Peristalsis; Rats; Rats, Wistar; Receptors, Opioid; Somatostatin

2000
Mu and delta opioid receptor regulation of pro-opiomelanocortin peptide secretion from the rat neurointermediate pituitary in vitro.
    Neuropeptides, 2000, Volume: 34, Issue:1

    We investigated the ability of selective opioid agonists and antagonists to influence pro-opiomelanocortin peptide secretion from the rat neurointermediate lobe in vitro. The mu-opioid agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin) significantly stimulated beta-endorphin and alpha-melanocyte-stimulating hormone release relative to controls early (30 min) in the incubation period. Similar effects on beta-endorphin secretion were observed with the selective mu-opioid agonist dermorphin. The delta-opioid receptor agonist DPDPE ([D-Pen(2,5)]enkephalin) weakly inhibited beta-endorphin secretion relative to controls while the kappa-opioid receptor agonist U50488 had no effect. The mu-opioid selective antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)) inhibited basal beta-endorphin secretion while kappa- and delta-opioid receptor antagonists had no effect. Our data support a role for local mu-opioid receptor control of intermediate lobe pro-opiomelanocortin peptide secretion. Peptide secretion from melanotropes appears to be tonically stimulated by activation of mu-opioid receptors in the absence of intact neuronal innervation to the intermediate lobe.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; alpha-MSH; Analgesics, Opioid; Animals; beta-Endorphin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; In Vitro Techniques; Male; Oligopeptides; Opioid Peptides; Pituitary Gland; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Somatostatin

2000
Place aversion induced by blockade of mu or activation of kappa opioid receptors in the dorsal periaqueductal gray matter.
    Behavioural pharmacology, 2000, Volume: 11, Issue:7-8

    Neural circuits in the dorsal periaqueductal grey matter (DPAG) play an important role in the integration of defensive behaviour. As considerable numbers of mu and kappa opioid receptors have been found in this region, we studied the effects of morphine, [3H]-[H-D-Phe-Cys-Tyr- D-Trp-Orn-Thr-Pen-Thr-NH2] (CTOP), a selective peptide antagonist for mu opioid receptors, U-50488H, a specific agonist for kappa opioid receptors, and nor-binaltorphimine (nor-BNI), a long-lasting selective antagonist for kappa opioid receptors, injected into the DPAG of rats submitted to the corral method, a conditioned place preference test. The behavioural testing apparatus was a circular open field consisting of four uniform quadrants that were equally preferred by the rats prior to drug treatments. For conditioning, rats received drug injections on three consecutive days and were placed into their assigned quadrant. Injection of 40 nmol of morphine into the DPAG produced place aversion effects, with reduced time spent in the drug-paired quadrant on the testing day. These place aversion effects were not inhibited by previous DPAG microinjection of CTOP (1 nmol) but were significantly reduced by prior systemic injections of nor-BNI (2 mg / kg). Microinjection of CTOP alone produced a clear decrease in the time spent in the treatment quadrant, whereas nor-BNI alone did not. Similarly, microinjection into the DPAG of the kappa agonist U-50488H (10 nmol) mimicked the effects of morphine, also producing place aversion for the drug-paired quadrant. These findings suggest that blockade of mu opioid receptors or activation of kappa opioid receptors in the DPAG may produce conditioned place aversion.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Behavior, Animal; Conditioning, Operant; Dose-Response Relationship, Drug; Male; Morphine; Naltrexone; Periaqueductal Gray; Rats; Rats, Wistar; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin

2000
Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPgammaS binding and immunohistochemistry.
    British journal of pharmacology, 1999, Volume: 128, Issue:6

    1 Although the ORL1 receptor is clearly located within the spinal cord, the functional signalling mechanism of the ORL1 receptor in the spinal cord has not been clearly documented. The present study was then to investigate the guanine nucleotide binding protein (G-protein) activation mediated through by the ORL1 receptor in the mouse spinal cord, measuring the modulation of guanosine-5'-o-(3-[35S]-thio) triphosphate ([35S]-GTPgammaS) binding by the putative endogenous ligand nociceptin, also referred as orphanin FQ. We also studied the anatomical distribution of nociceptin-like immunoreactivity and nociceptin-stimulated [35S]-GTPgammaS autoradiography in the spinal cord. 2 Immunohistochemical staining of mouse spinal cord sections revealed a dense plexus of nociceptin-like immunoreactive fibres in the superficial layers of the dorsal horn throughout the entire length of the spinal cord. In addition, networks of fibres were seen projecting from the lateral border of the dorsal horn to the lateral grey matter and around the central canal. 3 In vitro [35S]-GTPgammaS autoradiography showed high levels of nociceptin-stimulated [35S]-GTPgammaS binding in the superficial layers of the mouse dorsal horn and around the central canal, corresponding to the areas where nociceptin-like immunoreactive fibres were concentrated. 4 In [35S]-GTPgammaS membrane assay, nociceptin increased [35S]-GTPgammaS binding of mouse spinal cord membranes in a concentration-dependent and saturable manner, affording maximal stimulation of 64.1+/-2.4%. This effect was markedly inhibited by the specific ORL1 receptor antagonist [Phe1Psi (CH2-NH) Gly2] nociceptin (1 - 13) NH2. None of the mu-, delta-, and kappa-opioid and other G-protein-coupled receptor antagonists had a significant effect on basal or nociceptin-stimulated [35S]-GTPgammaS binding. 5 These findings suggest that nociceptin-containing fibres terminate in the superficial layers of the dorsal horn and the central canal and that nociceptin released in these areas may selectively stimulate the ORL1 receptor to activate G-protein. Furthermore, the unique pattern of G-protein activation in the present study provide additional evidence that nociceptin is distinct from the mu-, delta- or kappa-opioid system.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Atropine; Autoradiography; Baclofen; Binding, Competitive; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Haloperidol; Immunohistochemistry; In Vitro Techniques; Male; Membranes; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Propranolol; Receptors, Opioid; Somatostatin; Spinal Cord; Sulfur Radioisotopes; Yohimbine

1999
ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
    European journal of pharmacology, 1999, Dec-03, Volume: 385, Issue:2-3

    The ATP-gated K(+) channel openers - diazoxide, levcromakalim and morphine - enhance K(+) efflux by opening ATP-gated K(+) channels, thereby inducing cell hyperpolarization. Hyperpolarization decreases intracellular Ca(2+) levels, which leads to a decrease in neurotransmitter release contributing to the antinociceptive effects of the drugs. Previous findings implicate the release of endogenous opioids as the mediator of the antinociceptive effects of ATP-gated K(+) channel openers. Diazoxide and levcromakalim, administered intracerebroventricularly (i.c.v.), produced dose-dependent antinociception as determined by the tail-flick method ¿ED(50) 44 microg/mouse [95% confidence limits (CLs) from 28 to 68 microg/mouse] for diazoxide¿. Glyburide (10 microg/mouse), an ATP-gated K(+) channel antagonist, attenuated the effects of diazoxide, levcromakalim and morphine. Diazoxide- and levcromakalim-induced antinociception were both antagonized by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide), a mu-opioid receptor selective antagonist, and ICI 174,864 (N, N-diallyl-Tyr-Aib-Aib-Phe-Leu), a delta-opioid receptor antagonist, but were differentially attenuated by the kappa-opioid receptor antagonist, nor-Binaltorphimine. Combinations of inactive doses of the K(+) channel openers and opioid receptor agonists produced significant antinociceptive enhancement. Diazoxide (2 microg/mouse) shifted morphine's dose-response curve 47-fold, while levcromakalim (0.1 microg/mouse) shifted the curve 27-fold. The dose-response curve of kappa-opioid receptor agonist U50,488H (trans-(+/-)-3, 4 Dichloro-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane sulfonate) was shifted 106-fold by diazoxide in a parallel manner, while levcromakalim administration increased the potency of U50,488H by 15-fold. Diazoxide shifted the dose-response curve of the delta-opioid receptor agonist, DPDPE [(D-Pen(2,5))-enkephalin], leftward in a non-parallel manner, while DPDPE was 6-fold more potent when combined with levcromakalim. We hypothesize that endogenous opioids mediate ATP-gated K(+) channel opener-induced antinociception and enhancement of opioids.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenosine Triphosphate; Analgesics; Animals; Cromakalim; Diazoxide; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Glyburide; Injections, Intraventricular; Ion Channel Gating; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Narcotic Antagonists; Nociceptors; Opioid Peptides; Pain; Potassium Channels; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin

1999
Opioid actions on neurons of rat lateral amygdala in vitro.
    Brain research, 1993, May-28, Volume: 612, Issue:1-2

    Intracellular recordings were made from neurons in the lateral nucleus of the amygdala, in a slice of rat brain that was superfused in vitro. [Met5]enkephalin (3-30 microM) and the mu receptor selective agonist DAMGO (Tyr-D-Ala-Gly-MePhe-Gly-ol; 0.3-3 microM) hyperpolarized about 50% of cells; this was blocked by naloxone and by the mu receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2). The pA2s for naloxone and CTOP were 8.3 and 7.7, respectively. DPDPE (Tyr-D-Pen-Gly-Phe-D-Pen: delta receptor selective) and U50488 (trans-(+-)-3,4-dichloro-N-methyl-[2-(1-pyrrolidinyl)cyclohexyl] benzeneacetamide methane sulfonate; kappa receptor selective) had no effect. Synaptic potentials mediated by gamma-aminobutyric acid (GABA) acting at GABAA receptors were elicited by focal stimulation of the slice in a combination of 6-cyano-2,3-dihydroxy-7-nitroquinoxaline (10 microM) and 4-aminophosphonovaleric acid (30 microM). They were inhibited by up to 60% by DAMGO and by DPDPE. The action of DAMGO was blocked by CTOP but not by the delta-selective antagonist ICI174864 (N,N-bisallyl-Tyr-Aib-Aib-Phe-Leu-OH, Aib = aminoisobutyrate). The action of DPDPE was blocked by ICI174864 but not by CTOP. Depolarizations elicited by addition of GABA to the superfusing solution were not affected by opioids. It is concluded that activation of mu opioid receptors hyperpolarizes about 50% of lateral amygdala neurons. Activation of either mu or delta receptors also inhibits presynaptically the release of GABA.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Amino Acids; Amygdala; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Methionine; Enkephalins; GABA-A Receptor Antagonists; In Vitro Techniques; Molecular Sequence Data; Naloxone; Narcotic Antagonists; Narcotics; Neurons; Pyrrolidines; Rats; Somatostatin; Synapses

1993
Inhibition of spinal opioid analgesia by supraspinal administration of selective opioid antagonists.
    Brain research, 1992, Nov-20, Volume: 596, Issue:1-2

    The effect of intracerebroventricular administration of a selective mu- (CTOP) or delta- (ICI 174,864) opioid receptor antagonist on the antinociceptive effects produced by intrathecal administration of selective mu- (DAMGO), delta- (DPDPE) and kappa- (U50-488H) opioid receptor agonists was evaluated using the Randall-Selitto paw-withdrawal test, in the rat. While the intracerebroventricular administration of CTOP or ICI 174,864, alone, had no effect on nociceptive thresholds, intracerebroventricular administration of CTOP and ICI 174,864 produced marked antagonism of the antinociceptive effects of intrathecal DAMGO. The antinociceptive effects of intrathecal administration of DPDPE or U50,488H were not antagonized by intracerebroventricular administration of CTOP or ICI 174,864. These data suggest that, in the rat, along with the established descending antinociceptive pathways, there is an ascending antinociceptive control mechanism projecting from the spinal cord to the brainstem. The ascending antinociceptive control involves mu- and delta-opioid agonism at supraspinal sites and appears to be mediated selectively by mu-, but not by delta- or kappa-opioid agonism at the spinal level.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Narcotic Antagonists; Pain Threshold; Pyrrolidines; Rats; Rats, Sprague-Dawley; Somatostatin

1992
Evidence that the aversive effects of opioid antagonists and kappa-agonists are centrally mediated.
    Psychopharmacology, 1989, Volume: 98, Issue:2

    The role of central versus peripheral opioid receptors in mediating the aversive effects of opioids was examined by use of an unbiased place preference conditioning procedure in rats. The non-selective opioid antagonist naloxone (NLX) produced conditioned aversions for the drug-associated place after subcutaneous (SC) as well as intracerebroventricular (ICV) administration. Place aversions were also observed in response to the ICV administration of the selective mu-antagonist CTOP. In contrast, the selective delta-antagonist ICI 174,864 and the selective kappa-antagonist norbinaltorphimine (nor-BNI) (ICV) were without effect. Place aversions were also produced by central applications of the selective kappa-agonist U50,488H and the dynorphin derivative E-2078. For those opioid ligands tested, the doses required to produce place aversions were substantially lower following ICV as compared to SC administration. These data confirm that kappa-agonists and opioid antagonists produce aversive states in the drug-naive animal and demonstrate that this effect is centrally mediated. Furthermore, the ability of NLX and CTOP, in contrast to both ICI 174,864 and nor-BNI, to produce place aversions suggests that the aversive effects of opioid antagonists result from the blockade of mu-receptors.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Brain; Conditioning, Operant; Enkephalin, Leucine; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Somatostatin

1989
Role of mu and kappa opioid receptors in conditional fear-induced analgesia: the antagonistic actions of nor-binaltorphimine and the cyclic somatostatin octapeptide, Cys2Tyr3Orn5Pen7-amide.
    The Journal of pharmacology and experimental therapeutics, 1989, Volume: 250, Issue:3

    When rats are returned to an environment in which they previously received electric shock they show a reduction in sensitivity to painful stimuli. This conditional fear-induced analgesia was measured using the formalin test. The octapeptide Cys2Tyr3Orn5Pen7-amide (CTOP; 0, 10, 40 and 160 ng/rat) dose-dependently reversed conditional analgesia when administered i.c.v. The 40-ng dose partially attenuated fear-induced analgesia, whereas the 160-ng dose reversed it completely. Using similar procedures, CTOP was tested for its ability to reverse the analgesia produced by i.c.v. administered [D-Ala2,-NMPhe4, Glyol5]-enkephalin, [D-Pen2,D-Pen5]-enkephalin and U50488H, which are highly selective opioid agonists at mu, delta and kappa receptors, respectively. At 40 ng/rat, CTOP reversed the analgesia produced by the mu selective ligand but not that produced by the delta ligand or the kappa ligand. At 80 ng CTOP antagonized the analgesia produced both by both enkephalin analogs but not U50488H. Nor-binaltorphimine (0, 1, 3, 10 and 30 micrograms/rat) had no effect on conditional analgesia. However, the 10- and 30-micrograms doses could reverse completely the analgesia produced by U50488H. Therefore, it appears that mu and delta, but not kappa receptors, are involved in this opioid form of stress-induced analgesia.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Fear; Female; Formaldehyde; Naltrexone; Pain; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin

1989