u-50488 has been researched along with norbinaltorphimine* in 215 studies
215 other study(ies) available for u-50488 and norbinaltorphimine
Article | Year |
---|---|
κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to ischemia and reperfusion injury via STAT3-OPA1 pathway.
Mitochondrial dynamics, determining mitochondrial morphology, quality and abundance, have recently been implicated in myocardial ischemia and reperfusion (MI/R) injury. The roles of κ-opioid receptor activation in cardioprotection have been confirmed in our previous studies, while the underlying mechanism associated with mitochondrial dynamics remains unclear. This study aims to investigate the effect of κ-opioid receptor activation on the pathogenesis of MI/R and its underlying mechanisms. MI/R mouse model and hypoxia-reoxygenation cardiomyocyte model were established in this study. Mitochondrial dynamics were analyzed with transmission electron microscopy in vivo and confocal microscopy in vitro. STAT3 phosphorylation and OPA1 expression were detected by Western blotting. We show here that κ-opioid receptor activation with its selective receptor agonist U50,488H promoted mitochondrial fusion and enhanced myocardial resistance to MI/R injury, while these protective effects were blockaded by nor-BNI, a selective κ-opioid receptor antagonist. In addition, κ-opioid receptor activation increased STAT3 phosphorylation and OPA1 expression, which were blockaded by nor-BNI. Furthermore, inhibition of STAT3 phosphorylation by stattic, a specific STAT3 inhibitor, repressed the effects of κ-opioid receptor activation on promoting OPA1 expression and mitochondrial fusion, as well as inhibiting cell apoptosis and oxidative stress both in vivo and in vitro during MI/R injury. Overall, our data for the first time provide evidence that κ-opioid receptor activation promotes mitochondrial fusion and enhances myocardial resistance to MI/R injury via STAT3-OPA1 pathway. Targeting the pathway regulated by κ-opioid receptor activation may be a potential therapeutic strategy for MI/R injury. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Apoptosis; Cells, Cultured; GTP Phosphohydrolases; Male; Mice, Inbred C57BL; Mitochondrial Dynamics; Myocardial Reperfusion Injury; Myocardium; Naltrexone; Narcotic Antagonists; Phosphorylation; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; STAT3 Transcription Factor | 2020 |
Delta and kappa opioid receptors on mouse sperm cells: Expression, localization and involvement on in vitro fertilization.
The endogenous opioid peptides have been reported to be involved in the regulation of reproductive physiology. Many of the studies conclude with sentences around the harmful effect of opioids in male fertility but, actually, there is only one study regarding the real fertility potential of spermatozoa that have been exposed to mu specific opioids. The aim of the present study was to see if the modulation of delta (OPRD1) and kappa (OPRK1) opioid receptors in mouse sperm during capacitation was able to vary the embryo production after in vitro fertilization (IVF). The presence of OPRD1 and OPRK1 in mouse mature spermatozoa was analyzed by RT-PCR and immunofluorescence. Incubating the sperm with, on one hand, the delta specific agonist DPDPE and/or antagonist naltrindole, and, on the other hand, the kappa specific agonist U-50488 and antagonist nor-binaltorphimine, we analyzed the involvement of OPRD1 and OPRK1 on IVF and preimplantational embryo development. We verified the presence of OPRD1 and OPRK1 in mouse mature spermatozoa, not only at the mRNA level but also at protein level. Moreover, the sperm incubation with DPDPE, before the IVF, had an effect on the fertilization rate of sperm and reduced the number of reached blastocysts, which was reverted by naltrindole. Instead, the use of the kappa agonist U-50488 and the antagonist nor-binaltophimine did not have any effect on the amount and the quality of the achieved blastocysts. Although nowadays the pure delta or kappa opioid ligands are not used for the clinic, clinical trials are being conducted to be used in the near future, so it would be interesting to know if the modulation of these receptors in sperm would generate any consequence in relation to fertilization capacity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Blastocyst; Embryo, Mammalian; Embryonic Development; Enkephalin, D-Penicillamine (2,5)-; Fertilization in Vitro; Male; Mice; Naltrexone; Narcotic Antagonists; Oocytes; Receptors, Opioid, delta; Receptors, Opioid, kappa; Sperm Capacitation; Spermatozoa | 2020 |
Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice.
Although previous research has demonstrated a role for kappa opioid receptor-mediated signaling in escalated alcohol consumption associated with dependence and stress exposure, involvement of the dynorphin/kappa opioid receptor (DYN/KOR) system in binge-like drinking has not been fully explored. Here we used pharmacological and chemogenetic approaches to examine the influence of DYN/KOR signaling on alcohol consumption in the drinking-in-the-dark (DID) model of binge-like drinking. Systemic administration of the KOR agonist U50,488 increased binge-like drinking (Experiment 1) while, conversely, systemic administration of the KOR antagonist nor-BNI reduced drinking in the DID model (Experiment 2). These effects of systemic KOR manipulation were selective for alcohol as neither drug influenced consumption of sucrose in the DID paradigm (Experiment 3). In Experiment 4, administration of the long-acting KOR antagonist nor-BNI into the central nucleus of the amygdala (CeA) decreased alcohol intake. Next, targeted "silencing" of DYN+ neurons in the CeA was accomplished using a chemogenetic strategy. Cre-dependent viral expression in DYN+ neurons was confirmed in CeA of Pdyn-IRES-Cre mice and functionality of an inhibitory (hM4Di) DREADD was validated (Experiment 5). Activating the inhibitory DREADD by CNO injection reduced binge-like alcohol drinking, but CNO injection did not alter alcohol intake in mice that were treated with control virus (Experiment 6). Collectively, these results demonstrate that DYN/KOR signaling in the CeA contributes to excessive alcohol consumption in a binge-drinking model. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Binge Drinking; Central Amygdaloid Nucleus; Disease Models, Animal; Dynorphins; Genetic Techniques; Male; Mice; Mice, Inbred C57BL; Naltrexone; Receptors, Opioid, kappa | 2019 |
κ-Opioid receptor stimulation reduces palmitate-induced apoptosis via Akt/eNOS signaling pathway.
This study was designed to test the hypothesis that κ-opioid receptor (κ-OR) stimulation reduces palmitate-induced HUVECs apoptosis and to investigate its mechanisms.. HUVECs were subjected to sodium palmitate, apoptosis and cell viability were determined, HUVECs were treated with specific inhibitors to PI3K, Akt, eNOS and siRNAs targeting κ-OR and Akt. Groups were divided as follows: the control group, the sodium palmitate group, the sodium palmitate+U50,488H (a selective κ-OR agonist) group and the sodium palmitate+U50,488H + nor-BNI (a selective κ-OR antagonist) group.. Treatment with sodium palmitate significantly reduced cell viability and increased apoptosis rate which were significantly alleviated by pretreatment with U50,488H, the effect of U50,488H was abolished by nor-BNI. Phosphorylation of Akt and eNOS, as well as NO production were attenuated and accompanied by an increased expression of caspase 3 when HUVECs were subjected to sodium palmitate, and all these changes were restored by pretreatment with U50,488H, the effects of U50,488H were abolished by nor-BNI, and specific inhibitors to PI3K, Akt, eNOS, respectively. SiRNAs targeting κ-OR or Akt abolished the effects of U50,488H on phosphorylation of Akt and eNOS as well as the expressions of caspase 3, Bax and Bcl-2. SiRNAs targeting Akt elicited no effect on the expression of κ-OR.. This study provides the evidence for the first time that κ-OR stimulation possesses anti-palmitate-induced apoptosis effect, which is mediated by PI3K/Akt/eNOS signaling pathway. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Cell Survival; Gene Expression Regulation; Human Umbilical Vein Endothelial Cells; Humans; Naltrexone; Narcotic Antagonists; Nitric Oxide Synthase Type III; Palmitic Acid; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Receptors, Opioid, kappa; RNA, Small Interfering; Signal Transduction | 2019 |
Suppression of Human Natural Killer Cells by Different Classes of Opioids.
The use of regional and other opioid-sparing forms of anesthesia has been associated with a decrease in the recurrence of certain malignancies. Direct suppression of human natural killer cells by opioids has been postulated to explain this observation. However, the effect of different classes of opioids on suppression of natural killer cell cytotoxicity has not been systematically characterized.. After confirming that freshly isolated natural killer cells from peripheral human blood express opioid receptors, cells were incubated with increasing concentrations of clinically used or receptor-specific opioid agonists. We also evaluated the effect of pretreatment with receptor-specific antagonists or naloxone. Treated natural killer cells were then coincubated with a carboxyfluorescein succinimidyl ester-labeled target tumor cell line, K562. Annexin V staining was used to compare the percent of tumor cell apoptosis in the presence of opioid-pretreated and untreated natural killer cells. Treated samples were compared to untreated samples using Kruskal-Wallis tests with a post hoc Dunn correction.. Morphine, methadone, buprenorphine, loperamide, [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, and U-50488 significantly decreased natural killer cell cytotoxicity. When natural killer cells were pretreated with naloxone, cyprodime, and nor-binaltorphimine before exposure to morphine, there was no difference in natural killer cytotoxicity, compared to the amount observed by untreated natural killer cells. Fentanyl, O-desmethyltramadol, and [D-Pen2,D-Pen5] enkephalin did not change natural killer cell cytotoxicity compare to untreated natural killer cells.. Incubation of isolated natural killer cells with certain opioids causes a decrease in activity that is not observed after naloxone pretreatment. Suppression of natural killer cell cytotoxicity was observed with μ- and κ-receptor agonists but not δ-receptor agonists. These data suggest that the effect is mediated by μ- and κ-receptor agonism and that suppression is similar with many clinically used opioids. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Anesthesia; Buprenorphine; Enkephalin, D-Penicillamine (2,5)-; Fentanyl; Fluoresceins; Humans; Immunosuppression Therapy; K562 Cells; Killer Cells, Natural; Loperamide; Methadone; Morphinans; Morphine; Naloxone; Naltrexone; Succinimides; Toll-Like Receptor 4; Tramadol | 2019 |
Effects of pharmacological manipulation of the kappa opioid receptors on the aversive effects of nicotine.
Nicotine, an addictive component of tobacco smoke, produces both rewarding and aversive effects. Increasing the aversive effects of nicotine may help in promoting smoking cessation. However, neural targets mediating the aversive effects of nicotine have not been fully identified. In this study, we evaluated the role of kappa opioid receptors (KORs) in the aversive effects of nicotine (0.4 mg/kg, base; s.c.) using the nicotine-induced conditioned taste aversion (CTA) model in Wistar rats. The KORs were activated using the selective KOR agonist (±)U-50,488H (0, 0.03, 0.15 & 0.3mg/kg; s.c.) and inhibited using the KOR antagonist nor-binaltorphimine (nor-BNI; 0, 15 & 30mg/kg; s.c.) in separate groups of rats using a between-subjects design. Pretreatment with the KOR agonist (±)U-50,488H (0.3mg/kg) significantly increased aversion for the nicotine-associated solution. Additionally, (±)U-50,488H (0.3mg/kg) on its own induced aversion to the flavored solution associated with it even in the absence of nicotine, suggesting that the KOR agonist induced increase in nicotine-induced aversion was an additive effect. Interestingly, administration of the KOR antagonist nor-BNI (30mg/kg) prior to conditioning with nicotine/saline, but not after conditioning with nicotine/saline, attenuated nicotine-induced aversive effects compared to saline controls. Taken together, these data suggest a role for KORs in the aversive effects of nicotine. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Avoidance Learning; Conditioning, Operant; Male; Naltrexone; Narcotic Antagonists; Nicotine; Rats; Rats, Wistar; Receptors, Opioid, kappa; Taste | 2018 |
κ-opioid receptor activation protects against myocardial ischemia-reperfusion injury via AMPK/Akt/eNOS signaling activation.
This study aims to investigate the effect of κ-opioid receptor activation on myocardial ischemia and reperfusion(I/R) injury and elucidate the underlying mechanisms. Myocardial I/R rat model and simulated I/R cardiomyocytes model were established. In vivo study showed that U50,488 H improved cardiac function, reduced myocardial infarct size and serum cTnT significantly. The effect of U50,488 H was abolished by nor-BNI(a κ-opioid receptor antagonist), Compound C(an AMPK inhibitor), Akt inhibitor and L-NAME(an eNOS inhibitor). AICAR, an AMPK activator, mimicked the effect of U50,488 H. U50,488 H up-regulated p-AMPK, p-Akt, and p-eNOS, which were abolished by nor-BNI. AICAR increased p-Akt and p-eNOS, which was abolished by Compound C. In vitro study showed that U50,488 H increased p-AMPK, p-Akt, and p-eNOS via κ-OR activation. The effect of U50,488 H on p-AMPK was abolished by compound C, but not Akt inhibitor and L-NAME. The effect of U50,488 H on p-Akt was abolished by compound C and Akt inhibitor, but not L-NAME. AICAR increased p-Akt and p-eNOS, which was abolished by Akt inhibitor, but not L-NAME. U50,488 H and AICAR also increased the viability of cardiomyocytes subjected to simulated I/R, the effects of U50,488 H and AICAR were blocked by nor-BNI, Compound C, Akt inhibitor, and L-NAME, respectively. In conclusion, κ-OR activation confers cardioprotection via AMPK/Akt/eNOS signaling. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Aminoimidazole Carboxamide; AMP-Activated Protein Kinases; Animals; Cell Line; Cell Survival; Male; Myocardial Reperfusion Injury; Myocytes, Cardiac; Naltrexone; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase Type III; Proto-Oncogene Proteins c-akt; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Ribonucleotides; Signal Transduction; Troponin T | 2018 |
The effects of kratom on restraint-stress-induced analgesia and its mechanisms of action.
Mitragyna speciosa and its extracts are called kratom (dried leaves, extract). They contain several alkaloids with an affinity for different opioid receptors. They are used in traditional medicine for the treatment of different diseases, as a substitute by opiate addicts, and to mitigate opioid withdrawal symptoms. Apart from their medical properties, they are used to enhance physical endurance and as a means of overcoming stress.. The aim of this study was to determine the mechanisms underlying the effects of kratom on restraint-stress-induced analgesia which occurs during or following exposure to a stressful or fearful stimulus.. To gain further insights into the action of kratom on stress, we conducted experiments using restraint stress as a test system and stress-induced analgesia as a test parameter. Using transgenic mu opioid-receptor (MOR) deficient mice, we studied the involvement of this receptor type. We used nor-binaltorphimine (BNT), an antagonist at kappa opioid receptors (KOR), to study functions of this type of receptor. Membrane potential assay was also employed to measure the intrinsic activity of kratom in comparison to U50,488, a highly selective kappa agonist.. Treatment with kratom diminished stress-induced analgesia in wildtype and MOR knockout animals. Pretreatment of MOR deficient mice with BNT resulted in similar effects. In comparison to U50,488, kratom exhibited negligible intrinsic activity at KOR alone.. The results suggest that the use of kratom as a pharmacological tool to mitigate withdrawal symptoms is related to its action on KOR. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Animals; Male; Mice; Mice, Transgenic; Mitragyna; Naltrexone; Plant Extracts; Plant Leaves; Receptors, Opioid, mu; Restraint, Physical; Stress, Physiological | 2017 |
The Protective Effects of Κ-Opioid Receptor Stimulation in Hypoxic Pulmonary Hypertension Involve Inhibition of Autophagy Through the AMPK-MTOR Pathway.
In a previous study, we showed that κ-opioid receptor stimulation with the selective agonist U50,488H ameliorated hypoxic pulmonary hypertension (HPH). However, the roles that pulmonary arterial smooth muscle cell (PASMC) proliferation, apoptosis, and autophagy play in κ-opioid receptor-mediated protection against HPH are still unknown. The goal of the present study was to investigate the role of autophagy in U50,488H-induced HPH protection and the underlying mechanisms.. Rats were exposed to 10% oxygen for three weeks to induce HPH. After hypoxia, the mean pulmonary arterial pressure (mPAP) and the right ventricular pressure (RVP) were measured. Cell viability was monitored using the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis was detected by flow cytometry and Western blot. Autophagy was assessed by means of the mRFP-GFP-LC3 adenovirus transfection assay and by Western blot.. Inhibition of autophagy by the administration of chloroquine prevented the development of HPH in the rat model, as evidenced by significantly reduced mPAP and RVP, as well as decreased autophagy. U50,488H mimicked the effects of chloroquine, and the effects of U50,488H were blocked by nor-BNI, a selective κ-opioid receptor antagonist. In vitro experiments showed that the inhibition of autophagy by chloroquine was associated with decreased proliferation and increased apoptosis of PASMCs. Under hypoxia, U50,488H also significantly inhibited autophagy, reduced proliferation and increased apoptosis of PASMCs. These effects of U50,488H were blocked by nor-BNI. Moreover, exposure to hypoxic conditions significantly increased AMPK phosphorylation and reduced mTOR phosphorylation, and these effects were abrogated by U50,488H. The effects of U50,488H on PASMC autophagy were inhibited by AICAR, a selective AMPK agonist, or by rapamycin, a selective mTOR inhibitor.. Our data provide evidence for the first time that κ-opioid receptor stimulation protects against HPH by inhibiting PASMCs autophagy via the AMPK-mTOR pathway. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; AMP-Activated Protein Kinases; Animals; Antihypertensive Agents; Apoptosis; Autophagy; Blood Pressure; Cell Proliferation; Cells, Cultured; Chloroquine; Disease Models, Animal; Hypertension, Pulmonary; Male; Myocytes, Smooth Muscle; Naltrexone; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; TOR Serine-Threonine Kinases | 2017 |
κ-Opioid Receptor Stimulation Improves Endothelial Function via Akt-stimulated NO Production in Hyperlipidemic Rats.
This study was designed to investigate the effect of U50,488H (a selective κ-opioid receptor agonist) on endothelial function impaired by hyperlipidemia and to determine the role of Akt-stimulated NO production in it. Hyperlipidemic model was established by feeding rats with a high-fat diet for 14 weeks. U50,488H and nor-BNI (a selective κ-opioid receptor antagonist) were administered intraperitoneally. In vitro, the involvement of the PI3K/Akt/eNOS pathway in the effect of U50,488H was studied using cultured endothelial cells subjected to artificial hyperlipidemia. Serum total cholesterol and low-density lipoprotein cholesterol concentrations dramatically increased after high-fat diet feeding. Administration of U50,488H significantly alleviated endothelial ultrastructural destruction and endothelium-dependent vasorelaxation impairment caused by hyperlipidemia. U50,488H also increased Akt/eNOS phosphorylation and serum/medium NO level both in vivo and in vitro. U50,488H increased eNOS activity and suppressed iNOS activity in vivo. The effects of U50,488H were abolished in vitro by siRNAs targeting κ-opioid receptor and Akt or PI3K/Akt/eNOS inhibitors. All effects of U50,488H were blocked by nor-BNI. These results demonstrate that κ-opioid receptor stimulation normalizes endothelial ultrastructure and function under hyperlipidemic condition. Its mechanism is related to the preservation of eNOS phosphorylation through activation of the PI3K/Akt signaling pathway and downregulation of iNOS expression/activity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Aorta; Blood Glucose; Diet, High-Fat; Endothelial Cells; Human Umbilical Vein Endothelial Cells; Humans; Hyperlipidemias; Liver; Male; Naltrexone; Nitric Oxide; Nitric Oxide Synthase; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction | 2016 |
Effects of the psychotomimetic benzomorphan N-allylnormetazocine (SKF 10,047) on prepulse inhibition of startle in mice.
N-allylnormetazocine (NANM; SKF 10,047) is a benzomorphan opioid that produces psychotomimetic effects. (+)-NANM is the prototypical agonist for the sigma-1 (σ1) receptor, and there is a widespread belief that the hallucinogenic effects of NANM and other benzomorphan derivatives are mediated by interactions with σ1 sites. However, NANM is also an agonist at the κ opioid receptor (KOR) and binds to the PCP site located within the channel pore of the NMDA receptor, interactions that could potentially contribute to the effects of NANM. NMDA receptor antagonists such as phencyclidine (PCP) and ketamine are known to disrupt prepulse inhibition (PPI) of acoustic startle, a measure of sensorimotor gating, in rodents. We recently found that racemic NANM disrupts PPI in rats, but it is not clear whether the effect is mediated by blockade of the NMDA receptor, or alternatively whether interactions with KOR and σ1 receptors are involved. The present studies examined whether NANM and its stereoisomers alter PPI in C57BL/6J mice, and tested whether the effects on PPI are mediated by KOR or σ1 receptors. Racemic NANM produced a dose-dependent disruption of PPI (3-30mg/kg SC). (+)-NANM also disrupted PPI, whereas (-)-NANM was ineffective. Pretreatment with the selective KOR antagonist nor-binaltorphimine (10mg/kg SC) or the selective σ1 antagonist NE-100 (1mg/kg IP) failed to attenuate the reduction in PPI produced by racemic NANM. We also found that the selective KOR agonist (-)-U-50,488H (10-40mg/kg SC) had no effect on PPI. These findings confirm that NANM reduces sensorimotor gating in rodents, and indicate that the effect is mediated by interactions with the PCP receptor and not by activation of KOR or σ1 receptors. This observation is consistent with evidence indicating that the σ1 receptor is not linked to hallucinogenic or psychotomimetic effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anisoles; Dose-Response Relationship, Drug; Hallucinogens; Male; Mice; Mice, Inbred C57BL; Naltrexone; Phenazocine; Prepulse Inhibition; Propylamines; Receptors, Opioid, kappa; Receptors, Phencyclidine; Receptors, sigma; Reflex, Startle; Sigma-1 Receptor; Stereoisomerism | 2016 |
Activation of κ-opioid receptor exerts the glucose-homeostatic effect in streptozotocin-induced diabetic mice.
Opioid and its receptors play important roles in glucose homeostasis. However, few reports were available for the study of κ-opioid receptor in glucose regulation. In our study, we found that the blood glucose of diabetic mice dropped significantly following the treatment with U50,488H (a selective κ-opioid receptor agonist). This phenomenon was time-dependent and associated with the coincident alteration of Glut4 translocation in the skeleton muscles. U50,488H increased the serum adiponectin, but not serum insulin in diabetic mice. U50,488H increased the AdipoR1 expression at both mRNA and protein levels. It also promoted AMPK phosphorylation and Glut4 translocation. All these effects were abolished by nor-BNI (a selective κ-opioid receptor antagonist). These findings suggest that activation of κ-opioid receptor reduces hyperglycemia in streptozotocin-induced diabetic mice. This effect is associated with the translocation of Glut4 and might be relevant to increased adiponectin, AdipoR1, and AMPK phosphorylation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adiponectin; AMP-Activated Protein Kinases; Analgesics, Non-Narcotic; Animals; Blood Glucose; Blotting, Western; Diabetes Mellitus, Experimental; Gene Expression; Glucose Transporter Type 4; Homeostasis; Hyperglycemia; Insulin; Male; Mice, Inbred BALB C; Naltrexone; Narcotic Antagonists; Phosphorylation; Protein Transport; Receptors, Adiponectin; Receptors, Opioid, kappa; Reverse Transcriptase Polymerase Chain Reaction | 2015 |
Investigation of the role of βarrestin2 in kappa opioid receptor modulation in a mouse model of pruritus.
The kappa opioid receptor (KOR) is involved in mediating pruritus; agonists targeting this receptor have been used to treat chronic intractable itch. Conversely, antagonists induce an itch response at the site of injection. As a G protein-coupled receptor (GPCR), the KOR has potential for signaling via G proteins and βarrestins, however, it is not clear which of these pathways are involved in the KOR modulation of itch. In this study asked whether the actions of KOR in pruritus involve βarrestins by using βarrestin2 knockout (βarr2-KO) mice as well as a recently described biased KOR agonist that biases receptor signaling toward G protein pathways over βarrestin2 recruitment. We find that the KOR antagonists nor-binaltorphimine (NorBNI) and 5'-guanidinonaltrindole (5'GNTI) induce acute pruritus in C57BL/6J mice, with reduced effects in KOR-KO mice. βArr2-KO mice display less of a response to KOR antagonist-induced itch compared to wild types, however no genotype differences are observed from chloroquine phosphate (CP)-induced itch, suggesting that the antagonists may utilize a KOR-βarrestin2 dependent mechanism. The KOR agonist U50,488H was equally effective in both WT and βarr2-KO mice in suppressing CP-induced itch. Furthermore, the G protein biased agonist, Isoquinolinone 2.1 was as effective as U50,488H in suppressing the itch response induced by KOR antagonist NorBNI or CP in C57BL/6J mice. Together these data suggest that the antipruritic effects of KOR agonists may not require βarrestins. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Arrestins; beta-Arrestins; Chloroquine; Disease Models, Animal; Dose-Response Relationship, Drug; Guanidines; Isoquinolines; Male; Mice, Inbred C57BL; Mice, Knockout; Morphinans; Motor Activity; Naltrexone; Pruritus; Receptors, Opioid, kappa | 2015 |
Dynorphins regulate the strength of social memory.
Emotionally arousing events like encounter with an unfamiliar con-species produce strong and vivid memories, whereby the hippocampus and amygdala play a crucial role. It is less understood, however, which neurotransmitter systems regulate the strength of social memories, which have a strong emotional component. It was shown previously that dynorphin signalling is involved in the formation and extinction of fear memories, therefore we asked if it influences social memories as well. Mice with a genetic deletion of the prodynorphin gene Pdyn (Pdyn(-/-)) showed a superior partner recognition ability, whereas their performance in the object recognition test was identical as in wild-type mice. Pharmacological blockade of kappa opioid receptors (KORs) led to an enhanced social memory in wild-type animals, whereas activation of KORs reduced the recognition ability of Pdyn(-/-) mice. Partner recognition test situation induced higher elevation in dynorphin A levels in the central and basolateral amygdala as well as in the hippocampus, and also higher dynorphin B levels in the hippocampus than the object recognition test situation. Our result suggests that dynorphin system activity is increased in emotionally arousing situation and it decreases the formation of social memories. Thus, dynorphin signalling is involved in the formation of social memories by diminishing the emotional component of the experience. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amygdala; Animals; Enkephalins; Hippocampus; Memory; Mice; Mice, Knockout; Naltrexone; Narcotic Antagonists; Protein Precursors; Receptors, Opioid, kappa; Recognition, Psychology; Social Behavior | 2014 |
Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats.
The correlation between stress and smoking is well established. The mechanisms that underlie this relationship are, however, unclear. Recent data suggest that the kappa-opioid system is involved in the mediation of negative affective states associated with stress thereby promoting drug addiction and relapse. Pharmacological treatments targeting the kappa-opioid system and this mechanism may prove to be useful therapeutics for nicotine addiction in the future.. We sought to determine whether there was a stress-specific role of the kappa-opioid system in nicotine seeking behavior.. Groups of male Long Evans rats were trained to self-administer nicotine intravenously; their operant responding for nicotine was extinguished prior to tests of reinstatement. Pretreatment with systemic injections of the kappa-opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI) was given prior to tests of stress (systemic injections of yohimbine (YOH)) or cue-induced reinstatement of nicotine seeking. Systemic injections of the KOR agonist U50,488 were also given in a test for reinstatement of nicotine seeking.. Nor-BNI pretreatment at 1h and 24h prior to testing was able to block YOH-induced, but not cue-induced reinstatement of nicotine seeking. U50,488 reinstated nicotine seeking behavior in a dose-dependent manner.. These findings support the hypothesis that the kappa-opioid system is involved in relapse to nicotine seeking induced by stress, but not by conditioned cues. KOR antagonists such as nor-BNI may therefore be useful novel therapeutic agents for decreasing the risk of stress-induced drug relapse. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic alpha-2 Receptor Antagonists; Analgesics, Non-Narcotic; Animals; Conditioning, Operant; Drug Administration Schedule; Drug Interactions; Extinction, Psychological; Male; Naltrexone; Nicotine; Nicotinic Agonists; Rats; Rats, Long-Evans; Receptors, Opioid, kappa; Self Administration; Stress, Psychological; Tobacco Use Disorder; Yohimbine | 2014 |
The role of kappa opioid receptors in stress-induced reinstatement of alcohol seeking in rats.
Stress is related to heavy alcohol use and relapse in alcoholics. Using the reinstatement model, we have shown that corticotropin-releasing factor (CRF) underlies stress-induced relapse to alcohol seeking in laboratory rodents. Little is known about how other neurotransmitters interact with CRF in these effects. Dynorphin and its receptor (kappa opioid receptor, KOR) are involved in stress responses and in alcohol seeking. KOR and CRF receptors (CRF R) may interact in the production of stress-related behaviors but it is not known whether this interaction is involved in reinstatement of alcohol seeking.. Male Long Evans rats were trained to self-administer alcohol (12% w/v). After extinction of responding, we determined the effects of the KOR agonist, U50,488 (2.5, 5 mg/kg) on reinstatement of alcohol seeking, and their sensitivity to the selective KOR antagonist nor-binaltorphimine dihydrochloride (nor-BNI) (10 mg/kg) administered at different times before U50,488. We then examined the effects of nor-BNI on reinstatement induced by the stressor yohimbine (1.25 mg/kg) and on reinstatement induced by exposure to alcohol-associated cues. Finally, we determined whether CRF R1 blockade with antalarmin (10, 20 mg/kg) attenuates alcohol seeking induced by U50,488.. U50,488 reinstated alcohol seeking. Prior treatment with nor-BNI 2, but not 24 h before administration of U50,488 or yohimbine blocked reinstatement induced by these drugs. Cue-induced reinstatement was blocked by nor-BNI administered 2 h prior to testing. Finally, U50,488-induced reinstatement was blocked by antalarmin.. These data further support a role for KOR in reinstatement of alcohol seeking under nonstress and stressful conditions and that KOR and CRF R interact in these effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Behavior, Addictive; Behavior, Animal; Cues; Drug-Seeking Behavior; Ethanol; Male; Naltrexone; Narcotic Antagonists; Pyrimidines; Pyrroles; Rats; Rats, Long-Evans; Receptors, Corticotropin-Releasing Hormone; Receptors, Opioid, kappa; Self Administration; Stress, Physiological; Yohimbine | 2014 |
[κ-opioid receptor agonist U50, 488H attenuates myocardial ischemia-reperfusionvia modulating Toll-like receptor 4/nuclear factor-κB signaling in rat].
To observe the effects of κ-opioid receptor agonist U50, 488H on myocardial ischemia and reperfusion injury and related mechanism.. Rats were randomly divided into sham operation, myocardial ischemia and reperfusion(I/R, 30 min ischemia followed by 120 min reperfusion), and MI/R+U50, 488H (1.5 mg/kg) and I/R+U50, 488H+ selective κ-opioid receptor antagonist Nor-BNI (2 mg/kg, n = 8 each). The infarction size and the incidence of ventricular arrhythmias were observed.Real-time PCR and DAB staining were used to define the myocardium Toll-like receptor 4(TLR4) expression. Myeloperoxidase level, TNF-α induction and the expression of NF-κB were also examined in rats.. After I/R, the expressions of myocardial TLR4 and NF-κB increased significantly both in ischemia area and area at risk. Compared with I/R, κ-opioid receptor stimulation with U50, 488H significantly attenuated the expressions of TLR4 and NF-κB and reduced myeloperoxidase (MPO) levels, myocardial TNF-α production, myocardial infarct sizes and the incidence of ventricular arrhythmias and arrhythmia score (2.9 ± 0.7 vs. 4.4 ± 0.9, P < 0.05) , above effects of U50, 488H were partly abolished by co-treatment with Nor-BNI.. These data provide evidence for the first time that κ-opioid receptor stimulation could attenuate myocardial I/R injury via downregulating TLR4/NF-κB signaling in rats. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Arrhythmias, Cardiac; Brugada Syndrome; Cardiac Conduction System Disease; Coronary Artery Disease; Down-Regulation; Heart Conduction System; Myocardial Infarction; Myocardial Ischemia; Myocardium; Naltrexone; NF-kappa B; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reperfusion Injury; Signal Transduction; Toll-Like Receptor 4; Tumor Necrosis Factor-alpha | 2014 |
Dissociable effects of kappa-opioid receptor activation on impulsive phenotypes in wistar rats.
The kappa-opioid receptor (KOR) is the primary target for the endogenous opioid peptide dynorphin (DYN), and KORs reside within brain circuitry underlying the complex integration of information related to different behavioral domains such as motivation, negative affect, and decision-making. Alterations in extended amygdala DYNs and KOR function following chronic alcohol exposure have been shown to mediate escalated alcohol self-administration during acute withdrawal. In addition to excessive alcohol consumption and increased negative affect, other symptoms of alcohol dependence include compromised impulse control. Given that DYN and KOR expressions are dysregulated within prefrontal brain circuitry associated with decision-making and impulse control in alcohol-dependent humans and rodents, and have been shown to modify multiple neurotransmitter systems associated with impulse-control disorders, we hypothesized that KOR activation could contribute to impulsive phenotypes. To test this hypothesis, separate cohorts of male Wistar rats were trained in one of the two animal models of impulsivity: delay-discounting (DD) or stop-signal reaction time (SSRT) tasks, and once stable responding was observed, received intracerebroventricular (ICV) infusions of the KOR agonist U50,488 (0-50 μg) according to a within-subject dosing regimen. The results demonstrated a dissociable effect of U50,488 on impulsive phenotypes related to intolerance to delay or response inhibition, with selective effects in the SSRT. Furthermore, the pro-impulsive effects of KOR activation were rescued by pretreatment with the KOR antagonist nor-binaltorphimine (nor-BNI). Therefore, KOR activation was shown to induce an impulsive phenotype that was nor-BNI-sensitive. Dysregulation of impulsive behavior by increased DYN/KOR activity could serve to increase vulnerability for the initiation, or perpetuate existing patterns of excessive alcohol abuse and can enhance the probability of relapse in dependent individuals. Furthermore, KOR-mediated impulsivity has implications for numerous neuropsychiatric disorders. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Conditioning, Operant; Dose-Response Relationship, Drug; Impulsive Behavior; Infusions, Intraventricular; Male; Naltrexone; Narcotic Antagonists; Phenotype; Rats; Receptors, Opioid, kappa | 2013 |
Protracted withdrawal from ethanol and enhanced responsiveness stress: regulation via the dynorphin/kappa opioid receptor system.
Although recent work suggests that the dynorphin/kappa opioid receptor (DYN/KOR) system may be a key mediator in the stress-related effects of alcohol, the regulation of long-term changes associated with protracted withdrawal from ethanol via the DYN/KOR system has yet to be explored. The objective of the present study was to determine the role of the DYN/KOR system in the regulation of anxiety-related behaviors during an extended period of abstinence from ethanol in animals with a history of ethanol dependence. Male Wistar rats (n = 94) were fed an ethanol or control liquid diet for 25-30 days. Six weeks after its removal, rats were exposed to 20 min of immobilization, and the ability of the KOR antagonist nor-binaltorphimine (nor-BNI) (0-20 mg/kg, intraperitoneal [i.p.]) to attenuate the enhanced responsiveness to stress observed in rats chronically exposed to ethanol was investigated using the elevated plus maze. In addition, the ability of U50,488 (0-10 mg/kg, i.p.) to prime anxiety-like behavior during protracted withdrawal was also examined. Rats with a history of ethanol dependence showed a significant decrease in open-arm exploration after exposure to restraint, indicating an anxiety-like state, compared to similarly treated controls, an effect that was blocked by nor-BNI. nor-BNI also selectively decreased center time and open-arm approaches in ethanol-exposed rats. The highest dose of U50,488 decreased open-arm exploration and the total number of arm entries in ethanol-exposed and control rats. Although lower doses of U50,488 did not affect open-arm exploration in either group, the 0.1 mg/kg dose selectively decreased motor activity in the ethanol-exposed rats when compared to similarly pretreated controls. These findings further support the hypothesis that behaviors associated with withdrawal from ethanol are in part regulated by the DYN/KOR system, and suggest that these effects may be long lasting in nature. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcoholism; Analgesics, Non-Narcotic; Animals; Anxiety; Dose-Response Relationship, Drug; Dynorphins; Ethanol; Male; Maze Learning; Motor Activity; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, kappa; Stress, Psychological; Substance Withdrawal Syndrome | 2013 |
Locus coeruleus kappa-opioid receptors modulate reinstatement of cocaine place preference through a noradrenergic mechanism.
Activation of kappa-opioid receptors (KORs) in monoamine circuits results in dysphoria-like behaviors and stress-induced reinstatement of drug seeking in both conditioned place preference (CPP) and self-administration models. Noradrenergic (NA) receptor systems have also been implicated in similar behaviors. Dynorphinergic projections terminate within the locus coeruleus (LC), a primary source of norepinephrine in the forebrain, suggesting a possible link between the NA and dynorphin/kappa opioid systems, yet the implications of these putative interactions have not been investigated. We isolated the necessity of KORs in the LC in kappa opioid agonist (U50,488)-induced reinstatement of cocaine CPP by blocking KORs in the LC with NorBNI (KOR antagonist). KOR-induced reinstatement was significantly attenuated in mice injected with NorBNI in the LC. To determine the sufficiency of KORs in the LC on U50,488-induced reinstatement of cocaine CPP, we virally re-expressed KORs in the LC of KOR knockout mice. We found that KORs expression in the LC alone was sufficient to partially rescue KOR-induced reinstatement. Next we assessed the role of NA signaling in KOR-induced reinstatement of cocaine CPP in the presence and absence of a α2-agonist (clonidine), β-adrenergic receptor antagonist (propranolol), and β(1)- and β(2)-antagonist (betaxolol and ICI-118,551 HCl). Both the blockade of postsynaptic β(1)-adrenergic receptors and the activation of presynaptic inhibitory adrenergic autoreceptors selectively potentiated the magnitude of KOR-induced reinstatement of cocaine CPP but not cocaine-primed CPP reinstatement. Finally, viral restoration of KORs in the LC together with β-adrenergic receptor blockade did not potentiate KOR-induced reinstatement to cocaine CPP, suggesting that adrenergic receptor interactions occur at KOR-expressing regions external to the LC. These results identify a previously unknown interaction between KORs and NA systems and suggest a NA regulation of KOR-dependent reinstatement of cocaine CPP. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic alpha-2 Receptor Agonists; Adrenergic beta-1 Receptor Antagonists; Adrenergic beta-Antagonists; Animals; Betaxolol; Clonidine; Cocaine; Conditioning, Psychological; Drug-Seeking Behavior; Locus Coeruleus; Male; Mice; Mice, Inbred C57BL; Naltrexone; Propanolamines; Propranolol; Receptors, Adrenergic, alpha; Receptors, Adrenergic, beta; Receptors, Opioid, kappa | 2013 |
The effects of κ-opioid receptor on stretch-induced electrophysiological changes in infarcted rat hearts.
Kappa-opioid receptors (κ-OR) and mechanoelectric feedback seem to have common pathways that influence electrophysiological changes resulting from acute myocardial infarction (MI). This study aims to determine the effects of the κ-OR on stretch-induced electrophysiological changes after acute MI.. Male Sprague-Dawley rats were randomly divided into 4 groups: sham operated, MI, U-50488H (a selective κ-OR agonist) -treated MI (MI+U-50488H) and nor-BNI (a selective κ-OR antagonist) -treated MI (MI+nor-BNI). After Langendorff perfusion to maintain stabilization, a transient stretch (5 seconds) was delivered early in diastole. Electrophysiological changes were recorded for 1 minute before and after stretch. Similarly, the 20%, 50% and 90% monophasic action potential duration (MAPD20, MAPD50 and MAPD90, respectively) and stretch-induced arrhythmias were recorded.. MAPD90 significantly increased in all 4 groups. MAPD90 in the MI and MI+nor-BNI groups increased significantly before stretch (P < 0.05) and after stretch (P < 0.01) but was reversed in the MI+U-50488H group (P > 0.05). MAPD90 in the MI group was increased compared with that of the MI+U-50488H group but decreased compared with that of the MI+ nor-BNI group after stretch (P < 0.01). The arrhythmia score in the MI and MI+nor-BNI groups was higher than that of the sham-operated group (P < 0.01), and the arrhythmia score in the MI+nor-BNI group was higher than that in MI group after stretch (P < 0.01). The arrhythmia score of the MI+U-50488H group was lower than that of MI group after stretch (P < 0.01).. The κ-OR could influence the stretch-induced electrophysiological changes and play an antiarrhythmic role in stretch-induced arrhythmias after acute MI. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Action Potentials; Animals; Arrhythmias, Cardiac; Electrophysiological Phenomena; Male; Myocardial Infarction; Naltrexone; Pressoreceptors; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2013 |
Effects of κ- and μ-opioid agonists on cholinergic neurotransmission and contraction in isolated bovine trachealis.
The effects of the selective μ-opioid agonist DAMGO and the selective κ-opioid agonist U-50488H on tritiated acetylcholine release ([(3)H]-ACh) and contractile responses to electrical stimulation (ES) were simultaneously determined in isolated bovine trachealis. The inhibitory effect of DAMGO 10(-5)M on [(3)H]-ACh release was not significantly different from the effect of the non-selective muscarinic agonist pilocarpine 10(-5)M, whereas the effect of U-50488H 10(-5)M was significantly greater. The effects of both opioids were not significantly different when muscles were pre- or co-incubated with the unselective muscarinic antagonist atropine 10(-7)M. Both DAMGO and U-50488H attenuated ES-induced contraction and this effect was significantly correlated with the inhibition of [(3)H]ACh-release (r(2)=0.8552). These data suggest that (1) opioids are important modulators of airway smooth muscle tone, (2) their effect is not altered by the activity of muscarinic autoregulation, and (3) their inhibitory effect of airway smooth muscle contraction can be almost totally explained by inhibition of ACh release. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Atropine; Cattle; Drug Interactions; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; In Vitro Techniques; Muscarinic Agonists; Muscarinic Antagonists; Muscle Contraction; Naltrexone; Narcotic Antagonists; Pilocarpine; Receptors, Opioid, kappa; Receptors, Opioid, mu; Trachea; Tritium | 2013 |
Vasculoprotective effect of U50,488H in rats exposed to chronic hypoxia: role of Akt-stimulated NO production.
Impairment of pulmonary endothelium function in the pulmonary artery is a direct result of chronic hypoxia. This study is to investigate the vasculoprotective effects of U50,488H (a selective κ-opioid receptor agonist) and its underlying mechanism in hypoxia-induced pulmonary artery endothelial functional injury. Chronic hypoxia was simulated by exposing the rats to 10% oxygen for 2 wk. After hypoxia, right ventricular pressure (RVP) and right ventricular hypertrophy index (RVHI) were measured. The pulmonary vascular dysfunction, effect of nitric oxide synthase inhibitor (l-NAME) on the relaxation of U50,488H, and level of nitric oxide (NO) were determined. In vitro, the signaling pathway involved in the anti-apoptotic effect of U50,488H was investigated. Cultured endothelial cells were subjected to simulated hypoxia, and cell apoptosis was determined by TUNEL staining. U50,488H (1.25 mg/kg) significantly reduced RVP and RVHI in hypoxia. U50,488H markedly improved both pulmonary endothelial function (maximal vasorelaxation in response to ACh: 74.9 ± 1.8%, n = 6, P <0.01 vs. hypoxia for 2 wk group) and increased total NO production (1.65 fold). U50,488H relaxed the pulmonary artery rings of the hypoxic rats. This effect was partly abolished by l-NAME. In cells, U50,488H both increased NO production and reduced hypoxia-induced apoptosis. Moreover, pretreatment with nor-binaltorphimine (nor-BNI, a selective κ-opioid receptor antagonist), PI3K inhibitor, Akt inhibitor or l-NAME almost abolished anti-apoptotic effect exerted by U50,488H. U50,488H resulted in increases in Akt and eNOS phosphorylation. These results demonstrate that pretreatment with U50,488H attenuates hypoxia-induced pulmonary vascular endothelial dysfunction in an Akt-dependent and NO-mediated fashion. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Apoptosis; Cells, Cultured; Endothelium, Vascular; Hypoxia; In Vitro Techniques; Male; Models, Animal; Naltrexone; Nitric Oxide; Nitric Oxide Synthase Type III; Phosphorylation; Proto-Oncogene Proteins c-akt; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2013 |
Local kappa opioid receptor activation decreases temporomandibular joint inflammation.
In an attempt to decrease central side effects associated with the use of opioids, some strategies have been developed by targeting peripheral opioid receptors. In this context, kappa receptors are of major interest, since, in contrast to other opioid receptors, their activation is not associated with potent peripheral side effects. We have recently demonstrated that local activation of kappa opioid receptors significantly decreases formalin-induced temporomandibular joint nociception; however, whether it also decreases temporomandibular joint inflammation is not known. To address this issue, we evaluated if a specific kappa opioid receptor agonist, U50,488 (trans-(1S,2S)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] benzeneacetamide hydrochloride hydrate), administered into the temporomandibular joint decreases formalin-induced plasma extravasation and neutrophil migration. Ipsilateral, but not contralateral, administration of U50,488 into the temporomandibular joint blocked formalin-induced plasma extravasation and neutrophil migration in a dose-dependent manner. This anti-inflammatory effect was reversed by the ipsilateral, but not contralateral, administration of the kappa opioid receptor antagonist nor-BNI (nor-binaltorphimine dihydrochloride). This study demonstrates that local activation of kappa opioid receptors decreases two important parameters of temporomandibular joint inflammation, that is, plasma extravasation and neutrophil migration, in a dose-dependent and antagonist-reversible manner. This anti-inflammatory effect taken together with the potent antinociceptive effect, suggests that drugs targeting peripheral kappa opioid receptors are promising for the treatment of inflammatory temporomandibular joint pain and probably, other articular pain conditions with an inflammatory basis. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anti-Inflammatory Agents, Non-Steroidal; Cell Movement; Dose-Response Relationship, Drug; Formaldehyde; Inflammation; Male; Naltrexone; Neutrophil Infiltration; Neutrophils; Rats; Rats, Wistar; Receptors, Opioid, kappa; Temporomandibular Joint | 2012 |
Opioidergic modulation of ethanol self-administration in the ventral pallidum.
Striatopallidal medium spiny neurons have been viewed as a final common path for drug reward and the ventral pallidum as an essential convergent point for hedonic and motivational signaling in the brain. The medium spiny neurons are GABAergic, but they colocalize enkephalin. Purpose of this study was to investigate the role of the opioidergic mechanisms of the ventral pallidum in ethanol self-administration behavior.. Effects of bilateral microinjections of μ-, δ-, and κ-opioid receptor agonists and antagonists into the ventral pallidum on voluntary ethanol consumption were monitored in alcohol-preferring Alko Alcohol (AA) rats using the 90-minute limited access paradigm.. Stimulation of μ-opioid receptors with DAMGO (0.01 to 0.1 μg) or morphine (1 to 10 μg) in the ventral pallidum decreased ethanol intake dose-dependently. Conversely, blocking μ-receptors with CTOP (0.3 to 3 μg) increased ethanol intake significantly. Unlike CTOP, DAMGO also increased locomotor activity. Consumption of ethanol was not modified significantly by a broad-spectrum opioid receptor antagonist naltrexone, by δ-opioid receptor agonist DPDPE or antagonist naltrindole, or by a κ-opioid receptor agonist U50,488H or antagonist nor-BNI.. The study provides evidence for μ- but not δ- or κ-opioid receptors in the ventral pallidum playing a role in the regulation of voluntary ethanol consumption. Furthermore, present findings give support to earlier work, suggesting an essential role of pallidal opioidergic transmission in drug reward. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcohol Drinking; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Globus Pallidus; Male; Microinjections; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Self Administration; Somatostatin | 2012 |
Effect of κ-opioid receptor agonist on the growth of non-small cell lung cancer (NSCLC) cells.
It is becoming increasingly recognised that opioids are responsible for tumour growth. However, the effects of opioids on tumour growth have been controversial.. The effects of κ-opioid receptor (KOR) agonist on the growth of non-small cell lung cancer (NSCLC) cells were assessed by a cell proliferation assay. Western blotting was performed to ascertain the mechanism by which treatment with KOR agonist suppresses tumour growth.. Addition of the selective KOR agonist U50,488H to gefitinib-sensitive (HCC827) and gefitinib-resistant (H1975) NSCLC cells produced a concentration-dependent decrease in their growth. These effects were abolished by co-treatment with the selective KOR antagonist nor-BNI. Furthermore, the growth-inhibitory effect of gefitinib in HCC827 cells was further enhanced by co-treatment with U50,488H. With regard to the inhibition of tumour growth, the addition of U50, 488H to H1975 cells produced a concentration-dependent decrease in phosphorylated-glycogen synthase kinase 3β (p-GSK3β).. The present results showed that stimulation of KOR reduces the growth of gefitinib-resistant NSCLC cells through the activation of GSK3β. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Cell Survival; Drug Resistance, Neoplasm; ErbB Receptors; Gefitinib; Gene Expression; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Humans; Mutation, Missense; Naltrexone; Phosphorylation; Proto-Oncogene Proteins c-akt; Quinazolines; Receptors, Opioid, kappa; Signal Transduction; STAT3 Transcription Factor | 2012 |
κ opioid regulation of anxiety-like behavior during acute ethanol withdrawal.
Withdrawal is one of the defining characteristics of alcohol dependence, and is often characterized by impaired physiological function and enhanced negative affect. Recent evidence suggests that the dynorphin (DYN)/kappa opioid receptor (KOR) system may be a key mediator in the negative affect often associated with drugs of abuse. The objective of the present experiments was to determine the role of the DYN/KOR system in the regulation of anxiety-related behavior during acute withdrawal from ethanol. Rats were fed an ethanol liquid diet and following removal, the ability of the KOR antagonist nor-BNI to attenuate the increased anxiogenic-like response characteristic of ethanol withdrawal was investigated using the elevated plus maze. A comparison study was also conducted examining anxiety-related behavior following direct activation of KORs via injections of the KOR agonist U50,488. Rats experiencing ethanol withdrawal showed a significant decrease in open arm exploration compared to controls, an effect that was blocked by nor-BNI. Similar decreases in open arm exploration were observed following injections with the KOR agonist, U50,488, an effect also reversed by pretreatment with nor-BNI. These results suggest that similar mechanisms are involved in the regulation of ethanol withdrawal- and KOR agonist-induced changes in behavior. Given the potential role of enhanced negative affect in persistent ethanol drinking, understanding the role of the DYN/KOR system in regulating anxiety associated with withdrawal may be critical in understanding the factors associated with the nature of alcohol dependence. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcoholism; Animals; Anxiety; Behavior, Animal; Ethanol; Male; Naltrexone; Rats; Rats, Wistar; Receptors, Opioid, kappa; Substance Withdrawal Syndrome | 2012 |
Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner.
Mechanisms that mediate age differences during nicotine withdrawal are unclear.. This study compared kappa-opioid receptor (KOR) activation in naïve and nicotine-treated adolescent and adult rats using behavioral and neurochemical approaches to study withdrawal.. The behavioral models used to assess withdrawal included conditioned place and elevated plus maze procedures. Deficits in dopamine transmission in the nucleus accumbens (NAcc) were examined using microdialysis procedures. Lastly, the effects of KOR stimulation and blockade on physical signs produced upon removal of nicotine were examined in adults.. Nicotine-treated adults displayed a robust aversion to an environment paired with a KOR agonist versus naïve adults. Neither of the adolescent groups displayed a place aversion. KOR activation produced an increase in anxiety-like behavior that was highest in nicotine-treated adults versus all other groups. KOR activation produced a decrease in NAcc dopamine that was largest in nicotine-treated adults versus all other groups. Lastly, KOR activation facilitated physical signs of withdrawal upon removal of nicotine and KOR blockade reduced this effect.. Chronic nicotine enhanced the affective, anxiogenic, and neurochemical effects produced by KOR activation in adult rats. Our data suggest that chronic nicotine elicits an increase in KOR function, and this may contribute to nicotine withdrawal since KOR activation facilitated and KOR blockade prevented withdrawal signs upon removal of nicotine. Given that chronic nicotine facilitated the neurochemical effects of KOR agonists in adults but not in adolescents, it is suggested that KOR regulation of mesolimbic dopamine may contribute to age differences in nicotine withdrawal. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Aging; Animals; Behavior, Animal; Dopamine; Dose-Response Relationship, Drug; Male; Naltrexone; Nicotine; Nucleus Accumbens; Rats; Rats, Wistar; Receptors, Opioid, kappa; Substance Withdrawal Syndrome; Tobacco Use Disorder | 2012 |
GPR54-dependent stimulation of luteinizing hormone secretion by neurokinin B in prepubertal rats.
Kisspeptin, neurokinin B (NKB) and dynorphin A (Dyn) are coexpressed within KNDy neurons that project from the hypothalamic arcuate nucleus (ARC) to GnRH neurons and numerous other hypothalamic targets. Each of the KNDy neuropeptides has been implicated in regulating pulsatile GnRH/LH secretion. In isolation, kisspeptin is generally known to stimulate, and Dyn to inhibit LH secretion. However, the NKB analog, senktide, has variously been reported to inhibit, stimulate or have no effect on LH secretion. In prepubertal mice, rats and monkeys, senktide stimulates LH secretion. Furthermore, in the monkey this effect is dependent on kisspeptin signaling through its receptor, GPR54. The present study tested the hypotheses that the stimulatory effects of NKB on LH secretion in intact rats are mediated by kisspeptin/GPR54 signaling and are independent of a Dyn tone. To test this, ovarian-intact prepubertal rats were subjected to frequent automated blood sampling before and after intracerebroventricular injections of KNDy neuropeptide analogs. Senktide robustly induced single LH pulses, while neither the GPR54 antagonist, Kp-234, nor the Dyn agonist and antagonist (U50488 and nor-BNI, respectively) had an effect on basal LH levels. However, Kp-234 potently blocked the senktide-induced LH pulses. Modulation of the Dyn tone by U50488 or nor-BNI did not affect the senktide-induced LH pulses. These data demonstrate that the stimulatory effect of NKB on LH secretion in intact female rats is dependent upon kisspeptin/GPR54 signaling, but not on Dyn signaling. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antihypertensive Agents; Bodily Secretions; Female; Kisspeptins; Luteinizing Hormone; Male; Naltrexone; Narcotic Antagonists; Neurokinin B; Peptide Fragments; Radioimmunoassay; Rats; Receptors, G-Protein-Coupled; Receptors, Kisspeptin-1; Receptors, Tachykinin; Substance P | 2012 |
U50,488H postconditioning reduces apoptosis after myocardial ischemia and reperfusion.
Evidence has indicated U50,488H, a selective κ-opioid receptor (κ-OR) agonist, administered before ischemia attenuates apoptosis and infarction during ischemia and reperfusion (I/R). However, it remains unclear whether U50,488H postconditioning reduces apoptosis during I/R. This study was designed, therefore, to test the hypothesis that U50,488H administered at the onset of reperfusion inhibits cardiomyocyte apoptosis and to investigate the underlying mechanisms.. Male Sprague-Dawley rats were subjected to myocardial ischemia and reperfusion(MI/R) and were randomized to receive either vehicle, U50,488H, U50,488H plus Nor-BNI, a selective κ-OR antagonist, U50,488H plus wortmannin, a specific inhibitor of phosphoinositide 3'-kinase (PI3K), or U50,488H plus L-NAME, a nitric oxide synthase inhibitor (NOS inhibitor), immediately prior to reperfusion. In vitro study was performed on cultured neonatal cardiomyocytes subjected to simulated ischemia/reperfusion.. Treatment with U50,488H resulted in increases in Akt and endothelial nitric oxide synthase (eNOS) phosphorylation with secondary NO production both in vivo and in vitro and these effect were completely blocked by wortmannin and specific Akt inhibitor(AI). L-NAME treatment had no effect on Akt and eNOS phosphorylation; but, significantly reduced NO production. Moreover, treatment with U50,488H markedly reduced myocardial apoptotic death. Treatment with wortmannin and specific Akt inhibitor abolished the anti-apoptotic effect of U50,488H. L-NAME also significantly attenuated the anti-apoptotic effect of U50,488H.. These results demonstrate that U50,488H administered immediately prior to reperfusion increases Akt phosphorylation through a PI3-kinase-dependent mechanism and reduces postischemic myocardial apoptosis. Phosphorylation of eNOS with secondary NO production contribute significantly to the anti-apoptotic effect of U50,488H postconditioning. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Androstadienes; Animals; Apoptosis; Cardiotonic Agents; Male; Myocardial Ischemia; Myocardial Reperfusion Injury; Naltrexone; Narcotic Antagonists; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Phosphoinositide-3 Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Wortmannin | 2011 |
Sex difference in κ-opioid receptor (KOPR)-mediated behaviors, brain region KOPR level and KOPR-mediated guanosine 5'-O-(3-[35S]thiotriphosphate) binding in the guinea pig.
We examined whether sex differences in κ-opioid receptor (KOPR) pharmacology exist in guinea pigs, which are more similar to humans in the expression level and distribution of KOPR in the brain than rats and mice. The KOPR agonist trans-(±)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)benzeneacetamide methanesulfonate (U50,488H) produced a dose-dependent increase in abnormal postures and immobility with more effects in males than females. Males also showed more U50,488H-induced antinociception in the paw pressure test than females. Pretreatment with the KOPR antagonist norbinaltorphimine blocked U50,488H-induced abnormal body postures and antinociception. In contrast, inhibition of cocaine-induced hyperambulation by U50,488H was more effective in females than males. Thus, sex differences in the effects of U50,488H are endpoint-dependent. We then examined whether sex differences in KOPR levels and KOPR-mediated G protein activation in brain regions may contribute to the observed differences using quantitative in vitro autoradiography of [(3)H](5a,7a,8b)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)1-oxaspiro(4,5)dec-8-yl)benzeacetamide ([(3)H]U69,593) binding to the KOPR and U50,488H-stimulated guanosine 5'-O-(3-[(35)S]thiotriphosphate ([(35)S]GTPγS) binding. Compared with females, males exhibited more [(3)H]U69,593 binding in the deep layers of somatosensory and insular cortices, claustrum, endopiriform nucleus, periaqueductal gray, and substantial nigra. Concomitantly, U50,488H-stimulated [(35)S]GTPγS binding was greater in males than females in the superficial and deep layers of somatosensory and insular cortices, caudate putamen, claustrum, medial geniculate nucleus, and cerebellum. In contrast, compared with males, females showed more U50,488H-stimulated [(35)S]GTPγS binding in the dentate gyrus and a trend of higher [(35)S]GTPγS binding in the hypothalamus. These data demonstrate that males and females differ in KOPR expression and KOPR-mediated G protein activation in distinct brain regions, which may contribute to the observed sex differences in KOPR-mediated pharmacology. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Animals; Brain; Cocaine; Dopamine Uptake Inhibitors; Female; Guanosine 5'-O-(3-Thiotriphosphate); Guinea Pigs; Male; Mice; Motor Activity; Movement; Naltrexone; Narcotic Antagonists; Posture; Rats; Receptors, Opioid, kappa; Sex Characteristics | 2011 |
Involvement of the kappa-opioid receptor in nitrous oxide-induced analgesia in mice.
Nitrous oxide (N(2)O)-induced analgesia is thought to be mediated by endogenous opioids. We previously showed that the mu-opioid receptor is not required for the analgesic action of N(2)O in mice using a gene knockout approach. In this study, we examined the effect of kappa- (KOP)- or delta-opioid receptor (DOP)-selective antagonists on N(2)O-induced analgesia. The analgesic effect of N(2)O was evaluated using a writhing test. Male C57BL/6 mice aged 7-8 weeks were assigned to control, N(2)O, KOP agonist, and DOP agonist groups. According to the group assignment, mice were pretreated with a KOP antagonist, nor-binaltorphimine (nor-BNI), a DOP antagonist, naltrindole hydrochloride (NTI), a KOP agonist U50488, and a DOP agonist SNC80. Mice in the control, KOP agonist, and DOP agonist groups were exposed to 25% oxygen/75% nitrogen for 30 min, and mice in the N(2)O group were exposed to 25% oxygen/75% N(2)O for 30 min. Nor-BNI [10 mg kg(-1), subcutaneously (s.c.)] significantly suppressed the analgesic effect of N(2)O and U50488. In contrast, NTI (10 mg kg(-1) s.c.) did not significantly affect the analgesic action of N(2)O, but almost completely inhibited the analgesic effect of SNC80. These results suggest that KOP plays an important role in the analgesic effect of N(2)O in mice. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics, Non-Narcotic; Animals; Benzamides; Male; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Nitrous Oxide; Pain; Piperazines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Treatment Outcome | 2010 |
The effects of kappa-opioid receptor ligands on prepulse inhibition and CRF-induced prepulse inhibition deficits in the rat.
Kappa-opioid receptor (KOR) agonists produce dysphoria and psychotomimesis in humans. KORs are enriched in the prefrontal cortex and other brain regions that regulate mood and cognitive function. Dysregulation of the dynorphin/KOR system has been implicated in the pathogenesis of schizophrenia, depression, and bipolar disorder. Prepulse inhibition of the acoustic startle reflex (PPI), a sensorimotor gating process, is disrupted in many psychiatric disorders.. The present study determined whether KOR ligands alter PPI in rats.. Utilizing a range of doses of the synthetic KOR agonists (+/-) U50,488, (-) U50,488, and U69,593 and the naturally occurring KOR agonist, Salvinorin A, we demonstrate that KOR activation does not alter PPI or startle reactivity in rats. Similarly, selective KOR blockade using the long-acting antagonist nor-binaltorphimine (nor-BNI) was without effect. In contrast to KOR ligands, MK-801 and quinpirole produced deficits in PPI. Stress and corticotropin-releasing factor (CRF) decrease PPI levels. The dynorphin/KOR system has been suggested to be a key mediator of various behavioral effects produced by stress and CRF. We therefore examined the contribution of KORs to CRF-induced alterations in PPI. Intracerebroventricular infusion of CRF decreased PPI. Administration of nor-BNI failed to affect the CRF-evoked disruption in PPI.. Together, these results provide no evidence of a link between the dynorphin/KOR system and deficits in sensory gating processes. Additional studies, however, examining whether dysregulation of this opioid system contributes to cognitive deficits and other behavioral abnormalities associated with psychiatric disorders are warranted. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzeneacetamides; Corticotropin-Releasing Hormone; Diterpenes, Clerodane; Dose-Response Relationship, Drug; Ligands; Male; Naltrexone; Neural Inhibition; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reflex, Startle | 2010 |
Pretreatment time with norbinaltorphimine.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Injections, Intraventricular; Injections, Spinal; Ischemic Preconditioning, Myocardial; Morphine; Naltrexone; Narcotic Antagonists; Rats; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2010 |
Effectiveness of analogs of the kappa opioid receptor antagonist (3R)-7-hydroxy-N-((1S)-1-{[(3R,4R)-4-(3-hydroxyphenyl)-3,4-dimethyl-1-piperidinyl]methyl}-2-methylpropyl)-1,2,3,4-tetrahydro-3-isoquinolinecarboxamide (JDTic) to reduce U50,488-induced diure
The kappa opioid receptor (KOR) antagonist, JDTic, was reported to prevent stress-induced reinstatement of cocaine-maintained responding and to have antidepressant-like effects.. Our objectives were to determine whether analogs of JDTic retained KOR antagonist activity and whether an orally effective analog prevented footshock-induced cocaine reinstatement.. RTI-194 (i.g. 1-30 mg/kg, s.c. 0.3-10 mg/kg, and i.p. 30 mg/kg), RTI-212 (s.c. 0.3-10 mg/kg and i.p. 30 mg/kg), and RTI-230 (i.g. 3-30 mg/kg and i.p. 1-30 mg/kg) were evaluated for their ability to block diuresis induced by 10-mg/kg U50,488 in rats. RTI-194 was additionally evaluated i.g. (3-100 mg/kg) for its ability to prevent footshock-induced reinstatement of responding previously reinforced with 0.5-mg/kg/inf cocaine.. RTI-194 significantly (p < 0.05) attenuated U50,488-induced diuresis when given i.g., s.c., and i.p. RTI-194s effectiveness increased 1 week following administration. RTI-212 was ineffective. RTI-230 was ineffective when given i.g., but blocked diuresis at 24 h and 8 days (1, 10, and 30 mg/kg), 15 days (10 and 30 mg/kg), 22 and 29 days (30 mg/kg) following i.p. administration. Footshock reinstated responding in vehicle-but not RTI-194 (30 and 100 mg/kg)-treated rats.. RTI-194 and RTI-230 are effective KOR antagonists, and RTI-194 is now included with JDTic as the only reported compounds capable of antagonizing the KOR following oral administration. The failure of stress to reinstate cocaine seeking in rats treated with RTI-194 is consistent with results reported with JDTic, although it had less efficacy in lowering response levels than JDTic, suggesting a diminished overall effectiveness relative to it. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cocaine-Related Disorders; Diuresis; Dose-Response Relationship, Drug; Male; Naltrexone; Pain; Piperidines; Rats; Rats, Long-Evans; Receptors, Opioid, kappa; Self Administration; Tetrahydroisoquinolines | 2010 |
Endogenous kappa-opioid mediation of stress-induced potentiation of ethanol-conditioned place preference and self-administration.
Exposure to inescapable stressors increases both the rewarding properties and self-administration of cocaine through the signaling of the kappa-opioid receptor (KOR), but the effect of this signaling on other reinforcing agents remains unclear.. The objective of this study is to test the hypothesis that signaling of the KOR mediates the forced swim stress (FSS)-induced potentiation of ethanol reward and self-administration.. Male C57Bl/6J mice were tested in a biased ethanol-conditioned place preference (CPP) procedure, and both C57Bl/6J and prodynorphin gene-disrupted (Dyn -/-) mice were used in two-bottle free choice (TBC) assays, with or without exposure to FSS. To determine the role of the KOR in the resulting behaviors, the KOR agonist U50,488 (10 mg/kg) and antagonist nor-binaltorphimine (nor-BNI, 10 mg/kg) were administered prior to parallel testing.. C57Bl/6J mice exposed to repeated FSS 5 min prior to daily place conditioning with ethanol (0.8 g/kg) demonstrated a 4.4-fold potentiation of ethanol-CPP compared to unstressed mice that was prevented by nor-BNI pretreatment. Likewise, pretreatment with U50,488 90 min prior to daily ethanol place conditioning resulted in a 2.8-fold potentiation of ethanol-CPP. In the TBC assay, exposure to FSS significantly increased the consumption of 10% (v/v) ethanol by 19.3% in a nor-BNI-sensitive manner. Notably, Dyn -/- mice consumed a similar volume of ethanol as wild-type littermates and C57Bl/6J mice, but did not demonstrate significant stress-induced increases in consumption.. These data demonstrated a stress-induced potentiation of the rewarding effects and self-administration of ethanol mediated by KOR signaling. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Conditioning, Psychological; Enkephalins; Ethanol; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Protein Precursors; Receptors, Opioid, kappa; Reward; Self Administration; Signal Transduction; Stress, Physiological | 2010 |
Behavioral stress may increase the rewarding valence of cocaine-associated cues through a dynorphin/kappa-opioid receptor-mediated mechanism without affecting associative learning or memory retrieval mechanisms.
Stress exposure increases the risk of addictive drug use in human and animal models of drug addiction by mechanisms that are not completely understood. Mice subjected to repeated forced swim stress (FSS) before cocaine develop significantly greater conditioned place preference (CPP) for the drug-paired chamber than unstressed mice. Analysis of the dose dependency showed that FSS increased both the maximal CPP response and sensitivity to cocaine. To determine whether FSS potentiated CPP by enhancing associative learning mechanisms, mice were conditioned with cocaine in the absence of stress, then challenged after association was complete with the kappa-opioid receptor (KOR) agonist U50,488 or repeated FSS, before preference testing. Mice challenged with U50,488 60 min before CPP preference testing expressed significantly greater cocaine-CPP than saline-challenged mice. Potentiation by U50,488 was dose and time dependent and blocked by the KOR antagonist norbinaltorphimine (norBNI). Similarly, mice subjected to repeated FSS before the final preference test expressed significantly greater cocaine-CPP than unstressed controls, and FSS-induced potentiation was blocked by norBNI. Novel object recognition (NOR) performance was not affected by U50,488 given 60 min before assay, but was impaired when given 15 min before NOR assay, suggesting that KOR activation did not potentiate CPP by facilitating memory retrieval or expression. The results from this study show that the potentiation of cocaine-CPP by KOR activation does not result from an enhancement of associative learning mechanisms and that stress may instead enhance the rewarding valence of cocaine-associated cues by a dynorphin-dependent mechanism. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analysis of Variance; Anesthetics, Local; Animals; Association Learning; Behavior, Animal; Cocaine; Conditioning, Operant; Cues; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Drug Interactions; Dynorphins; Exploratory Behavior; Male; Mental Recall; Mice; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Receptors, Opioid, kappa; Reward; Stress, Psychological; Swimming | 2010 |
Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia.
This investigation determined whether the activation of the kappa opioid receptor (KOR) in the spinal cord produces estrogen-dependent, sex-specific modulation of acute and inflammation-induced persistent nociception. We demonstrate for the first time that KOR antinociception and gene expression are enhanced by exogenous or endogenous estrogen in the female. The lack of KOR antinociception and KOR gene expression are not altered by the hormonal status (testosterone or estrogen) in males. Cannulae were implanted intrathecally in male, gonadectomized male (GDX), intact and ovariectomized female (OVX) Sprague-Dawley rats. Estradiol was injected subcutaneously, 48h before testing (GDX+E and OVX+E). Intrathecal injection of U50,488H, a selective KOR agonist, dose dependently increased heat-evoked tail flick latencies (TFLs) in proestrous and OVX+E groups, but not in male, GDX, GDX+E, OVX, and diestrous groups. Further, estrogen dose-dependently enhanced the effect of U50,488H in OVX rats. KOR selective antagonist, nor-binaltorphimine (Nor-BNI), blocked the antinociceptive effect of U50,488H. U50,488H reversed the carrageenan-induced thermal hyperalgesia in OVX+E rats, but not in male or OVX rats. However, U50,488H treatment did not alter mechanical thresholds in any group, with or without inflammation. KOR gene expression was enhanced in proestrous and OVX+E groups as compared to any other group. We conclude that selective activation of KOR in the spinal cord produces sex-specific, stimulus- and estrogen-dependent attenuation of acute and inflammatory pain in the rat via estrogen-induced upregulation of the KOR gene expression in the spinal cord. These findings may further implicate estrogen dependence of KOR effects in learning, epilepsy, stress response, addiction etc. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Area Under Curve; Dose-Response Relationship, Drug; Estradiol; Estrous Cycle; Female; Inflammation; Injections, Spinal; Lumbosacral Region; Male; Naltrexone; Orchiectomy; Ovariectomy; Pain; Pain Measurement; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reverse Transcriptase Polymerase Chain Reaction; Sex Characteristics; Spinal Cord; Testosterone | 2010 |
[The study of effects and mechanism of U50, 488H on electrical coupling during ischemia in the perfused isolated rat heart].
To determine the effect of activation of lambda-opioid receptor with U50, 488H, a selective kappa-opioid receptor agonist, on the changes in electrical coupling during prolonged ischemia and to explore the possible mechanism.. The isolated rat heart was perfused in a Langendorff apparatus. The effect of U50, 488H on electrical coupling parameters including onset of uncoupling, plateau time, slope and fold increase in r(t) was observed in isolated perfused rat heart subjected to global no-flow ischemia. The effect of U50, 488H on connexin 43 (Cx43) expression of ventricular muscle during ischemia was determined by immunohistochemistry.. In the prolonged ischemia model, U50, 488H concentration dependently delayed the onset of uncoupling, increased time to plateau, and decreased the maximal rate of uncoupling during ischemia. The effect of U50, 488H on electrical uncoupling parameters during ischemia was abolished by a selective kappa-opioid receptor antagonist nor-BNI or a PKC inhibitor chelerythrine. The amount of Cx43 immunoreactive signal in ventricular muscle was greatly reduced after ischemia. U50, 488H markedly increased Cx43 expression during ischemia and its effect was also attenuated by nor-BNI or chelerythrine.. These results demonstrated that U50, 488H delayed the onset of uncoupling and plateau time, decreased the maximal rate of uncoupling and increased Cx43 expression of ventricular muscle during ischemia, and these effects of U50, 488H were mediated by kappa-opioid receptor, in which activation of PKC was involved. The effect of U50, 488H on electrical coupling during ischemia was probably correlated with preservation of Cx43 in cardiac muscle. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzophenanthridines; Connexin 43; Female; Heart; In Vitro Techniques; Myocardial Ischemia; Myocardium; Naltrexone; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction | 2010 |
Prodynorphin-derived peptides are critical modulators of anxiety and regulate neurochemistry and corticosterone.
Stress and anxiety are mainly regulated by amygdala and hypothalamic circuitries involving several neurotransmitter systems and providing physiological responses to peripheral organs via the hypothalamic-pituitary-adrenal axis and other pathways. The role of endogenous opioid peptides in this process is largely unknown. Here we show for the first time that anxiolytic parameters of explorative behavior in mice lacking prodynorphin were increased 2-4-fold in the open field, the elevated plus maze and the light-dark test. Consistent with this, treatment of wild-type mice with selective kappa-opioid receptor antagonists GNTI or norbinaltorphimine showed the same effects. Furthermore, treatment of prodynorphin knockout animals with U-50488H, a selective kappa-opioid receptor agonist, fully reversed their anxiolytic phenotype. These behavioral data are supported by an approximal 30% reduction in corticotropin-releasing hormone (CRH) mRNA expression in the hypothalamic paraventricular nucleus and central amygdala and an accompanying 30-40% decrease in corticosterone serum levels in prodynorphin knockout mice. Although stress-induced increases in corticosterone levels were attenuated in prodynorphin knockout mice, they were associated with minor increases in depression-like behavior in the tail suspension and forced swim tests. Taken together, our data suggest a pronounced impact of endogenous prodynorphin-derived peptides on anxiety, but not stress coping ability and that these effects are mediated via kappa-opioid receptors. The delay in the behavioral response to kappa-opioid receptor agonists and antagonist treatment suggests an indirect control level for the action of dynorphin, probably by modulating the expression of CRH or neuropeptide Y, and subsequently influencing behavior. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amygdala; Animals; Anxiety; Brain Stem; Corticosterone; Corticotropin-Releasing Hormone; Dynorphins; Enkephalins; Exploratory Behavior; Female; Guanidines; Hypothalamus; Male; Maze Learning; Mesencephalon; Mice; Mice, Inbred C57BL; Mice, Knockout; Morphinans; Naltrexone; Neuropeptide Y; Neuropeptides; Protein Precursors; Raphe Nuclei; Receptors, Opioid, kappa; Stress, Psychological | 2009 |
Kappa-opioid system regulates the long-lasting behavioral adaptations induced by early-life exposure to methylphenidate.
Methylphenidate (MPH) is commonly prescribed in childhood and adolescence for the treatment of attention-deficit/hyperactivity disorders. In rodents, MPH exposure during preadolescence (postnatal days (PD) 20-35) causes decreased sensitivity to drug and natural rewards, while enhancing a negative emotional state characterized by increased sensitivity to aversive situations later in adulthood. It has been proposed that this behavioral profile may be mediated, at least in part, by changes in the expression of dynorphin, the endogenous ligand for kappa-opioid receptors (KORs). Because increases in dynorphin activity and activation of KOR induce aversive states, we examined the possibility that these behavioral deficits may be mediated by changes in KOR function, and that MPH-exposed rats would demonstrate increased sensitivity to the kappa-agonist U-50488. Sprague-Dawley male rats were treated with MPH (2 mg/kg) or its saline vehicle (VEH) during PD20-35. When adults (PD90+), these rats were divided into groups receiving saline, U-50488 (5 mg/kg), or nor-binaltorphimine (20 mg/kg), a kappa-antagonist, and their behavioral reactivity to various emotion-eliciting stimuli was assessed. Results show that MPH exposure decreases cocaine place conditioning and sucrose preference, while increasing vulnerability to anxiety (elevated plus maze)- and stress (forced swimming)-eliciting situations, and that these behavioral deficits can be intensified by U-50488, while being normalized by nor-binaltorphimine treatment. These results are consistent with the notion that dysregulated dynorphin/kappa-opioid systems may mediate deficits in behavioral responding after developmental MPH exposure. Moreover, these findings further support the idea of kappa-antagonists as potential pharmacotherapy for the treatment of anxiety- and depression-related disorders. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anxiety; Behavior, Animal; Central Nervous System Stimulants; Cocaine; Conditioning, Psychological; Food Preferences; Male; Methylphenidate; Motor Activity; Naltrexone; Psychotropic Drugs; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Stress, Psychological | 2009 |
Endogenous kappa opioid activation mediates stress-induced deficits in learning and memory.
We hypothesized that mice subjected to prolonged stress would demonstrate decreased performance in a learning and memory task attributable to the endogenous activation of the kappa opioid receptor (KOR). C57BL/6J mice were tested using the novel object recognition (NOR) assay at various time points after exposure to repeated forced swim stress (FSS). Unstressed mice demonstrated recognition of the novel object at the end of a procedure using three 10-min object interaction phases, with a recognition index (RI) for the novel object of 71.7+/-3.4%. However, 1 h after exposure to FSS, vehicle-pretreated mice displayed a significant deficit in performance (RI=58.2+/-4.1%) compared with unstressed animals. NOR was still significantly reduced 4 but not 24 h after FSS. Treatment with the KOR-selective antagonist norbinaltorphimine (10 mg/kg, i.p.) prevented the decline in learning and memory performance. Moreover, direct activation of the KOR induced performance deficits in NOR, as exogenous administration of the KOR agonist U50,488 [(+/-)-trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide] (0.3 mg/kg, i.p.) suppressed NOR (RI=56.0+/-3.9%). The effect of FSS on NOR performance was further examined in mice lacking the gene for the endogenous KOR agonist dynorphin (Dyn). Dyn gene-disrupted mice exposed to FSS did not show the subsequent learning and memory deficits (RI=66.8+/-3.8%) demonstrated by their wild-type littermates (RI=49.7+/-2.9%). Overall, these results suggest that stress-induced activation of the KOR may be both necessary and sufficient to produce subsequent deficits in novel object recognition. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Behavior, Animal; Enkephalins; Gene Expression Regulation; Immobility Response, Tonic; Learning Disabilities; Male; Memory Disorders; Mice; Mice, Inbred C57BL; Mice, Knockout; Motor Activity; Naltrexone; Narcotic Antagonists; Protein Precursors; Receptors, Opioid, kappa; Recognition, Psychology; Stress, Psychological; Swimming; Time Factors | 2009 |
Prodynorphin gene deficiency potentiates nalbuphine-induced behavioral sensitization and withdrawal syndrome in mice.
Dynorphin is the presumed endogenous ligand for the kappa-opioid receptor. The dynorphin gene may play a role in psychotropic agent-mediated behavioral changes via dopaminergic modulation. Therefore, in this study, possible involvement of the dynorphin gene in nalbuphine-mediated behavioral responses was examined using prodynorphin (Pdyn) gene knock-out (-/-) mice. Pdyn gene deficiency potentiates nalbuphine-induced behavioral sensitization of locomotor activity and accumbal c-Fos expression. Administration of nalbuphine induced a significant increase in the dialysate dopamine level in the nucleus accumbens. This increase was more pronounced in the Pdyn (-/-) mice than in the wild-type (WT) mice. In addition, Pdyn (-/-) mice were more vulnerable to the naloxone-precipitated withdrawal syndrome (i.e., teeth chattering, wet dog shakes, forepaw tremors, jumping, weight loss, and global withdrawal score) after repeated treatment with nalbuphine than the WT mice. Consistently, nor-binaltorphimine, a kappa-opioid receptor antagonist, significantly potentiated nalbuphine-induced behavioral effects in WT mice, whereas U-50488H, a kappa-opioid receptor agonist, significantly attenuated these changes in Pdyn (-/-) mice in a dose-dependent manner. Our data suggest that the kappa-opioid receptor/dynorphin system is specifically modulated in response to behavioral sensitization and withdrawal signs induced by nalbuphine. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Area Under Curve; Blotting, Western; Dopamine; Enkephalins; Gene Expression; Genes, fos; Mice; Mice, Knockout; Microdialysis; Motor Activity; Nalbuphine; Naloxone; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Protein Precursors; Receptors, Opioid, kappa; Reverse Transcriptase Polymerase Chain Reaction; Substance Withdrawal Syndrome | 2009 |
Myocardial apoptosis and infarction after ischemia/reperfusion are attenuated by kappa-opioid receptor agonist.
It remains unclear whether U50488H (a selective kappa-opioid receptor agonist) produces anti-apoptotic effect during ischemia and reperfusion (I/R). Therefore, the effect of U50488H on myocardial apoptosis was investigated in the present study.. Rats were subjected to 45min coronary artery occlusion and 180min of reperfusion. U50488H (1.5mg/kg IV) was given prior to occlusion. Nor-Binaltorphimine (nor-BNI) (2mg/kg IV), a selective kappa-opioid receptor antagonist, was given 10min prior to U50488H. Cardiac apoptosis was evaluated by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay and in situ identification of nuclear DNA fragmentation.. The ultrastructure injury of myocardium, myocardial infarct size, and plasma CK and LDH were reduced significantly with administration of U50488H before I/R, whereas the effects of U50488H were abolished by nor-BNI. DNA fragments were visualized by agarose electrophoresis, and clear DNA ladder formation was observed in myocardial tissue from hearts subjected to I/R. Administration of U50488H before ischemia exerted a significant anti-apoptotic effect as evidenced by markedly weaker DNA ladder formation. TUNEL staining showed U50488H treatment before I/R significantly reduced the percentage of apoptotic cells, which was blocked by 5-HD, a mitochondrial k(ATP) channel blocker. In accordance, U50488H treatment significantly inhibited I/R-induced elevated activities of caspase-3 and caspase-9. U50488H also produced an increase in Bcl-2 and a decrease in Bax protein expression in the I/R heart, and the anti-apoptotic effects of U50488H were all blocked by nor-BNI.. U50488H reduces myocardial necrosis and apoptosis after I/R and activation of kappa-opioid receptor may mediate a role in U50488H-induced myocardial protection. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antihypertensive Agents; Apoptosis; bcl-2-Associated X Protein; Caspase 3; Caspase 9; DNA Fragmentation; Male; Microscopy, Electron, Transmission; Myocardial Infarction; Myocardium; Naltrexone; Narcotic Antagonists; Proto-Oncogene Proteins c-bcl-2; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reperfusion Injury | 2009 |
Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking.
Although stress has profound effects on motivated behavior, the underlying mechanisms responsible are incompletely understood. In this study we elucidate a functional pathway in mouse brain that encodes the aversive effects of stress and mediates stress-induced reinstatement of cocaine place preference (CPP). Activation of the dynorphin/kappa opioid receptor (KOR) system by either repeated stress or agonist produces conditioned place aversion (CPA). Because KOR inhibition of dopamine release in the mesolimbic pathway has been proposed to mediate the dysphoria underlying this response, we tested dopamine-deficient mice in this study and found that KOR agonist in these mice still produced CPA. However, inactivation of serotonergic KORs by injection of the KOR antagonist norBNI into the dorsal raphe nucleus (DRN), blocked aversive responses to the KOR agonist U50,488 and blocked stress-induced reinstatement of CPP. KOR knockout (KO) mice did not develop CPA to U50,488; however, lentiviral re-expression of KOR in the DRN of KOR KO mice restored place aversion. In contrast, lentiviral expression in DRN of a mutated form of KOR that fails to activate p38 MAPK required for KOR-dependent aversion, did not restore place aversion. DRN serotonergic neurons project broadly throughout the brain, but the inactivation of KOR in the nucleus accumbens (NAc) coupled with viral re-expression in the DRN of KOR KO mice demonstrated that aversion was encoded by a DRN to NAc projection. These results suggest that the adverse effects of stress may converge on the serotonergic system and offers an approach to controlling stress-induced dysphoria and relapse. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Cocaine; Enzyme-Linked Immunosorbent Assay; Immunohistochemistry; Lentivirus; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Raphe Nuclei; Receptors, Opioid, kappa; Stress, Physiological; Ventral Tegmental Area | 2009 |
Activation of kappa opioid receptors decreases synaptic transmission and inhibits long-term potentiation in the basolateral amygdala of the mouse.
The amygdala plays an important role in the processing of chronic pain and pain memory formation. Particularly, it is involved in the emotional and affective components of the pain circuitry. The role of kappa opioid receptors in these pain conditions is only partly known. The present study investigates the effect of kappa receptor activation on synaptic transmission and synaptic plasticity in the amygdala.. Electrophysiological in vitro experiments were carried out in brain slices of male C57BL/6JOlaHsd mice. The effect of the kappa opioid receptor agonist U50,488H (5 microM) and the selective kappa opioid receptor antagonist nor-BNI (3 microM) on field potential (FP) amplitude and the induction of long-term potentiation (LTP) in the basolateral amygdala (BLA) was examined.. High frequency stimulation (HFS) of afferents in the lateral amygdala with two trains of 100 pulses at 50 Hz increased the FP amplitudes to 119+/-2% (mean+/-SEM; n=6) in the BLA. U50,488H decreased synaptic transmission (baseline: 100+/-0.5%; U50,488H: 86.3+/-2.4%; n=6) and blocked the induction of LTP (U50,488H: 100+/-4.1%; HFS: 102.6+/-7%; n=6). The effect on synaptic transmission and on LTP was completely reversed or prevented by application of nor-BNI, which itself had no effect on synaptic transmission or the induction of LTP.. Kappa opioid receptor activation decreases synaptic transmission and inhibits the induction of LTP in the BLA of the mouse. These findings may be associated with the effects of kappa opioid agonists in chronic pain and pain memory formation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amygdala; Analgesics, Non-Narcotic; Animals; Chronic Disease; Electric Stimulation; Electrophysiology; Emotions; Extinction, Psychological; Long-Term Potentiation; Male; Mice; Mice, Inbred C57BL; Naltrexone; Pain; Receptors, Opioid, kappa; Synaptic Transmission | 2009 |
Crucial role of peripheral kappa-opioid receptors in a model of periodontal disease in rats.
Periodontal disease is a chronic inflammatory condition of the tooth supporting tissues, the periodontium. Opioids have been shown to account for the relief of various chronic and acute inflammatory conditions. The aim of the present study was to investigate the participation of peripheral opioid receptors in development of periodontal disease.. Morphine and selective agonists and antagonists of opioid receptors were used in an experimental model of ligature-induced periodontal disease in rats. To evaluate the development of disease, the loss of fiber attachment, alveolar bone and number of cells in periodontal tissues were assessed. Measurements of these indicators were obtained by morphometric analysis of histological sections of periodontal-diseased tissues stained with hematoxylin and eosin.. Local administration of either morphine or a selective kappa-opioid agonist for three consecutive days from the onset of periodontal disease reduced the loss of periodontal tissues, without changing the number of leukocytes in inflamed periodontium. Nor-binaltorphimine, a selective kappa-antagonist, reversed the beneficial effects of both morphine and the compound U-50,488 in this model. The use of either an agonist or an antagonist of delta-opioid receptors, however, did not affect disease progression.. Our results showed that the beneficial effect of opioids in periodontal disease depended mainly on the activation of specific kappa-opioid receptors located in the periphery. Activation of such receptors could be considered in the management of periodontal disease, since it would not present the classical central side-effects associated with opioid use. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Chronic Periodontitis; Disease Models, Animal; Male; Morphine; Naltrexone; Narcotic Antagonists; Peripheral Nervous System; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa | 2008 |
kappa-Opioid receptor stimulation inhibits augmentation of Ca(2+) transient and hypertrophy induced by isoprenaline in neonatal rat ventricular myocytes - Role of CaMKIIdelta(B).
We aimed to further define the pathway mediating the inhibitory effects of kappa-opioid receptor stimulation on Ca(2+) transients and hypertrophic responses to beta(1)-adrenoceptor stimulation. We determined the effects of trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamid methanesulfonate salt (U50,488H), a selective kappa-opioid receptor agonist, on the enhancement of spontaneous Ca(2+) transients and the induction of hypertrophy by isoprenaline, a beta-adrenoceptor agonist, in cultured neonatal ventricular myocytes. The results were compared with those found with KN93, a selective Ca(2+)/calmodulin-dependent kinase (CaMKII) inhibitor, propranolol, a beta-adrenoceptor antagonist, and verapamil, a L-type Ca(2+) channel antagonist. Hypertrophy of cardiomyocytes was characterized by increases in (i) total protein content; (ii) cell size; and (iii) [(3)H]leucine incorporation. 10 micromol/l isoprenaline increased all three parameters. We also determined the expression of nuclear CaMKIIdelta in response to U50,488H in the presence or absence of isoprenaline. To determine whether the effects of U50,488H were receptor-mediated, its effects were also measured following blockade of the kappa-opioid receptor with nor-binaltorphimine. kappa-Opioid receptor stimulation suppressed the stimulatory effect of isoprenaline on Ca(2+) transients and cardiac hypertrophy, as did KN93, propranalol and verapamil. U50,488H also suppressed the expression of nuclear CaMKIIdelta(B) in the presence, but not in the absence of isoprenaline. These results suggest that the inhibitory effect of kappa-opioid receptor stimulation on beta(1)-adrenoceptor stimulation may also involve CaMKIIdelta. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic beta-Agonists; Adrenergic beta-Antagonists; Animals; Animals, Newborn; Benzylamines; Calcium Channel Blockers; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cell Nucleus; Cell Size; Cells, Cultured; Hypertrophy; Isoproterenol; Myocytes, Cardiac; Naltrexone; Narcotic Antagonists; Propranolol; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, beta-1; Receptors, Opioid, kappa; Sulfonamides; Verapamil | 2008 |
The dysphoric component of stress is encoded by activation of the dynorphin kappa-opioid system.
Stress is a complex human experience having both positive and negative motivational properties. When chronic and uncontrollable, the adverse effects of stress on human health are considerable and yet poorly understood. Here, we report that the dysphoric properties of chronic stress are encoded by the endogenous opioid peptide dynorphin acting on specific stress-related neuronal circuits. Using different forms of stress presumed to evoke dysphoria in mice, we found that repeated forced swim and inescapable footshock both produced aversive behaviors that were blocked by a kappa-opioid receptor (KOR) antagonist and absent in mice lacking dynorphin. Injection of corticotropin-releasing factor (CRF) or urocortin III, key mediators of the stress response, produced place aversion that was also blocked by dynorphin gene deletion or KOR antagonism. CRF-induced place aversion was blocked by the CRF2 receptor antagonist antisauvigine-30, but not by the CRF1 receptor antagonist antalarmin. In contrast, place aversion induced by the KOR agonist U50,488 was not blocked by antisauvigine-30. These results suggest that the aversive effects of stress were mediated by CRF2 receptor stimulation of dynorphin release and subsequent KOR activation. Using a phospho-selective antibody directed against the activated KOR to image sites of dynorphin action in the brain, we found that stress and CRF each caused dynorphin-dependent KOR activation in the basolateral amygdala, nucleus accumbens, dorsal raphe, and hippocampus. The convergence of stress-induced aversive inputs on the dynorphin system was unexpected, implicates dynorphin as a key mediator of dysphoria, and emphasizes kappa-receptor antagonists as promising therapeutics. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Behavior, Animal; Conditioning, Operant; Corticotropin-Releasing Hormone; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalins; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Narcotic Antagonists; Odorants; Phosphorylation; Protein Precursors; Receptors, Opioid, kappa; Stress, Physiological; Swimming; Urocortins | 2008 |
The comparison of effects of processed Aconiti tuber, U50488H and MK-801 on the antinociceptive tolerance to morphine.
In the previous studies, we demonstrated that an oriental herbal medicine, processed Aconiti tuber (PAT), at subanalgesic doses could inhibit or reverse the antinociceptive tolerance to morphine. In the present study, we compared the effect of PAT, trans-(+/-)-3,4-dichloro-N-methyl-N-(2-(1-pyrrolidin)cyclohexyl)-benzeneacetamide methane sulfonate hydrate (U50488H), a selective kappa opioid receptor (KOR) agonist, and (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine-maleate (MK-801), a N-methyl-D-aspartate (NMDA) receptor antagonist, on the antinociceptive tolerance to morphine in the same experimental condition. Mice received subcutaneous morphine (10 mg/kg), and oral PAT at a subanalgesic dose (0.3 g/kg for mechanical or 1.0 g/kg for thermal test), or intraperitoneal U50488H at a subanalgesic dose (3 mg/kg), or MK-801 at a subanalgesic dose (0.1 mg/kg) once daily for 14 days. The mechanical nociceptive threshold was measured before, and at 60 min by tail pressure testing, and thermal nociceptive latency was measured before, and at 30 min by hot plate testing, after daily morphine injections. PAT and U50488H could not only inhibit the development of morphine tolerance but also reverse the already-developed morphine tolerance, while MK-801 could only inhibit the development of morphine tolerance but not reverse the already-developed morphine tolerance, in both mechanical and thermal nociceptive tests. These data suggested that PAT, an indirect-acting KOR agonist, share the common pharmacological property of KOR agonists on morphine tolerance, and that PAT may be superior to some NMDA receptor antagonists which do not reverse already-developed morphine tolerance. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Aconitum; Analgesics, Opioid; Animals; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Tolerance; Male; Mice; Morphine; Naltrexone; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, kappa | 2008 |
Sciatic nerve ligation-induced proliferation of spinal cord astrocytes is mediated by kappa opioid activation of p38 mitogen-activated protein kinase.
Partial sciatic nerve ligation (pSNL) markedly increased glial fibrillary acidic protein immunoreactivity (GFAP-IR) 1 week after lesion in the L4-L5 spinal dorsal horn of wild-type, but not in dynorphin knock-out, mice lacking kappa opioid receptors (KOR-/-) or in wild-type mice pretreated with the KOR antagonist nor-binaltorphimine (norBNI). A direct effect of KOR on glial cell proliferation was suggested by the findings that primary cultures of type II GFAP-immunoreactive astrocytes isolated from mouse spinal cord express KOR. Sustained treatment with the kappa agonist U50,488 (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolytinil)-cyclohexyl]-benzeneacetamide methane sulfonate) significantly increased the proliferation rate of GFAP-immunoreactive astrocytes isolated from wild-type mice, and this effect was blocked by norBNI pretreatment. Proliferation of cultured type II astrocytes may have been stimulated by mitogen-activated protein kinase (MAPK) activation by KOR because (1) U50,488 treatment increased phospho-p38 MAPK-immunoreactivity 247 +/- 44% over untreated cells, (2) the increase in phospho-p38 induced by U50,488 was blocked by norBNI and not evident in KOR-/- cultures, and (3) GFAP-immunoreactive astrocyte proliferation induced by U50,488 was blocked by the p38 MAPK inhibitor SB 203580 [4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-1H-imidazole]. Similar mechanisms of astrocyte activation may also be responsible in vivo because intrathecal injection of SB 203580 blocked the increased GFAP-IR in lumbar spinal cord induced by pSNL. Although the relationship between kappa-stimulated astrocyte proliferation and neuropathic pain mechanisms was not directly established in these studies, the results support the hypothesis that KOR activation induces spinal astrocyte proliferation, which may contribute to cellular reorganization after sciatic nerve damage. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Astrocytes; Cell Proliferation; Cells, Cultured; Enzyme Activation; Enzyme Inhibitors; Glial Fibrillary Acidic Protein; Hyperalgesia; Hyperesthesia; Imidazoles; In Vitro Techniques; Ligation; Lumbar Vertebrae; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Narcotic Antagonists; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyridines; Receptors, Opioid, kappa; Sciatic Nerve; Spinal Cord | 2007 |
Transient activation of the CA3 Kappa opioid system in the dorsal hippocampus modulates complex memory processing in mice.
The hippocampus plays a central role in various forms of complex learning and memory. Opioid peptides and receptors are abundant in the hippocampus. These peptides are co-released with glutamate from mossy fiber- and lateral perforant path-synapses. In this study, we evaluated the functional relevance of the CA3 Kappa opioid receptors (KOR) by transient pharmacological activation or inactivation using single bilateral intrahippocampal microinjections of a selective agonist (U50,488H, 1 or 2.5 nmol), a selective antagonist (nor-binaltorphimine, norBNI 5 nmol) or a mixture of both. C57Bl/6J mice were tested in a fear conditioning paradigm (FC) or in a modified version of the water maze task thought to reveal how flexibly animals can learn and manipulate spatial information (WM). In FC, the agonist (2.5 nmol) decreased context-induced (but not tone-induced) freezing whereas norBNI had no effect. The impairment caused by the agonist U50,488H was blocked by the injection of norBNI, suggesting that overstimulation of CA3-KOR impairs the acquisition and consolidation of contextual fear-related memory. In the WM task, mice were trained repeatedly each day to find a hidden platform. After having reached this goal, the platform position was changed the next day for a new task. U50,488H injection before the last task abolished the previously acquired ability to find rapidly a new platform location, whereas adding norBNI reversed this impairment. Thus, in the mouse, even partial and topographically restricted activation of CA3-KOR entails impairments in two different hippocampus-dependent tasks, indicating functional relevance of the kappa opioid system. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Avoidance Learning; Conditioning, Classical; Dose-Response Relationship, Drug; Fear; Hippocampus; Male; Maze Learning; Memory; Mice; Mice, Inbred C57BL; Microinjections; Naltrexone; Receptors, Opioid, kappa; Spatial Behavior | 2007 |
Selectivity of delta- and kappa-opioid ligands depends on the route of central administration in mice.
The existence of heterodimeric opioid receptors has introduced greater complexity to the in vivo characterization of pharmacological selectivity of agonists by antagonists. Because of the possibility of cooperativity between receptors organized as heterodimers, it is conceivable that selective antagonists may antagonize an agonist bound to a neighboring, allosterically coupled receptor. As a consequence, the in vivo selectivity of an opioid antagonist may depend on the organizational state of receptors that mediate analgesia. In this regard, phenotypic delta- and kappa-opioid receptors have been proposed to arise from different organizational states that include oligomeric delta-kappa heterodimers and homomeric delta and kappa receptors. In view of the evidence for analgesia mediated by delta-kappa heterodimers in the spinal cord, but not the brain, we have investigated the selectivity of pharmacologically selective delta and kappa antagonists in mice by both i.t. and i.c.v. routes of administration to evaluate changes in selectivity. Using pharmacologically selective delta (benzylidenenaltrexone, naltrindole, and naltriben) and kappa (norbinaltorphimine) antagonists versus delta ([D-Pen(2),D-Pen(5)]-enkephalin and deltorphin II) and kappa [3,4-dichloro-N-methyl-N-[(1R,2R)-2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide (U50488) and bremazocine] agonists, the delta-1/delta-2 selectivity ratios were found to be dependent on the route of administration (i.t. versus i.c.v.). The data from different routes of administration suggest that differences in molecular recognition between spinal delta-kappa heterodimers and supraspinal homomeric delta and kappa receptors may contribute to the divergent selectivity ratios of selective antagonists. In view of the observed tissue-dependent selectivity, we suggest that multiple opioid antagonists be employed routinely in establishing agonist selectivity in vivo. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzylidene Compounds; Enkephalin, D-Penicillamine (2,5)-; Injections, Intraventricular; Injections, Spinal; Ligands; Male; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, kappa | 2007 |
Ethanol alters the effect of kappa receptor ligands on dopamine release in the nucleus accumbens.
Repeated exposure to ethanol has previously been shown to induce alterations in both midbrain dopamine and dynorphin systems. The aim of this study was to investigate functional changes in the sensitivity of dynorphin/kappa-receptor systems following repeated ethanol administration, using dopamine as an indirect marker. The effects of kappa-opioid receptor ligands on dopamine release in the rat nucleus accumbens were investigated following repeated ethanol administration (2 g/kg body weight, twice daily for 7 days). The selective kappa-receptor agonist U50, 488H reduced dopamine levels in both ethanol- and saline-treated animals, although the decline had a later onset and lasted shorter in the ethanol-treated group. Nor-binaltorphimine, a kappa-antagonist, produced a significant increase of dopamine in ethanol-treated rats, but lacked effect in the saline-treated group. This change in responsiveness of dopamine neurons following repeated ethanol administration could be related to changes in the sensitivity of kappa-receptor systems and/or an increase in dynorphin tone in the nucleus accumbens. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Central Nervous System Stimulants; Dopamine; Drug Administration Schedule; Drug Interactions; Drug Tolerance; Dynorphins; Ethanol; Male; Naltrexone; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2007 |
Involvement of kappa opioid receptors in formalin-induced inhibition of analgesic tolerance to morphine in mice.
This study examined the role of kappa opioid receptors (KOR) in the mechanism underlying tolerance to the analgesic effects of morphine induced by chronic pain. The analgesic effect of morphine (10 mg kg(-1)), estimated by the tail-flick test in mice, gradually decreased during repeated daily morphine treatment. A significant decrease in the analgesic effect of morphine was seen on the fifth day of repeated morphine treatment compared with the first day. Chronic pain was induced by subcutaneous administration of 2% formalin into the dorsal part of the left hind paw, which significantly inhibited development of tolerance to morphine analgesia. The effect of formalin-induced pain on inhibition of morphine tolerance was reversed by the KOR antagonist nor-binaltorphimine. Furthermore, an antisense oligodeoxynucleotide, but not a missense oligodeoxynucleotide, against KOR completely suppressed the inhibitory effect of formalin-induced pain on morphine tolerance. Naltrindole, an antagonist of delta opioid receptor, did not affect chronic-pain-induced tolerance to morphine. Our findings show that the inhibitory effect of chronic pain on analgesic tolerance to morphine is mediated by KOR rather than delta opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Chronic Disease; Drug Tolerance; Formaldehyde; Male; Mice; Morphine; Naltrexone; Oligonucleotides, Antisense; Pain; Pain Measurement; Pain Threshold; Receptors, Opioid, delta; Receptors, Opioid, kappa; Tail | 2007 |
Activation of kappa-opioid receptor as a method for prevention of ischemic and reperfusion arrhythmias: role of protein kinase C and K(ATP) channels.
Intravenous pretreatment with kappa-opioid receptor antagonist (-)-U-50,488 (1 mg/kg) improved heart resistance to the arrhythmogenic effect of coronary occlusion and reperfusion. Selective kappa1-opioid receptor antagonist norbinaltorphimine and nonselective blocker of peripheral opioid receptors methylnaloxone abolished this antiarrhythmic effect. Preliminary blockade of protein kinase C with chelerythrine or inhibition of ATP-dependent K+ channels (K(ATP) channels) with glybenclamide abolished the antiarrhythmic effect of kappa-opioid receptor activation. Selective inhibitor of sarcolemmal K(ATP) channels did not modulate the kappa-opioid receptor-mediated increase in cardiac electrical stability. Our results suggest that protein kinase C and mitochondrial K(ATP) channels play an important role in the antiarrhythmic effect associated with activation of peripheral kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alkaloids; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Benzophenanthridines; Glyburide; Male; Myocardial Reperfusion Injury; Naltrexone; Oxymorphone; Potassium Channels; Protein Kinase C; Rats; Rats, Wistar; Receptors, Opioid, kappa | 2007 |
[Delayed electrical uncoupling is involved in kappa-opioid receptor activation -induced cardioprotective effect in the isolated rat heart].
To determine whether activation of kappa-opioid receptor with U50,488H, a selective kappa-opioid receptor agonist, produces any changes in electrical uncoupling during prolonged ischemia and whether these changes in electrical uncoupling is associated with the cardioprotection induced by kappa-opioid receptor activation, and to explore the possible mechanism.. (1) To observe the effect of U50,488H (10(-7), 10(-6), 3 x10(-6) and 10(-5) mol/L), a selective kappa-opioid receptor agonist, or with a selective kappa-opioid receptor antagonist nor-BNI (5 x 10(-6) mol/L), or with a mitochondrial K(ATP) channel inhibitor 5-HD on myocardium during ischemia/reperfusion in isolated perfused rat heart. Parameters of measurements include hemodynamic data, formazan content, heart rate, coronary flow, and lactate dehydrogenase (LDH). (2) To examine the effect of U50,488H of different concentration on electrical coupling parameters (including onset of uncoupling, plateau time, slope, and fold increase in r1) during 70 min myocardial ischemia in isolated perfused rat heart.. (1) Pretreatment with U50,488H concentration dependently increased formazan content and reduced LDH release induced by 30 min of ischemia and 120 min of reperfusion. (2) The onset of electrical uncoupling and plateau time during prolonged ischemia was delayed by kappa-opioid receptor activation with U50,488H. (3) Linear regression analysis shown that the increase in formazan content and decrease in LDH release produced by kappa-opioid receptor activation was associated with delayed electrical uncoupling during prolonged ischemia. (4) The effects of U50,488H on formazan content, LDH release and on electrical coupling were abolished by nor-BNI, or 5-HD.. This results demonstrate that the onset of electrical uncoupling during prolonged ischemia is delayed by kappa-opioid receptor activation with a selective kappa-opioid receptor agonist U50,488H, and that delayed electrical uncoupling is associated with the cardioprotection induced by kappa-opioid receptor activation with U50,488H. These effects of kappa-opioid receptor activation with U50,488H are mediated by mitochondrial K(ATP) channels. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antihypertensive Agents; Heart; In Vitro Techniques; Male; Myocardial Ischemia; Myocardium; Naltrexone; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2006 |
Vagotonic effects of enkephalin are not mediated by sympatholytic mechanisms.
This study examined the hypothesis that vagotonic and sympatholytic effects of cardiac enkephalins are independently mediated by different receptors. A dose-response was constructed by administering the delta-receptor opioid methionine-enkephalin-arginine-phenylalanine (MEAP) by microdialysis into the interstitium of the canine sinoatrial node during vagal and sympathetic stimulation. The right cardiac sympathetic nerves were stimulated as they exited the stellate ganglion at frequencies selected to increase heart rate approximately 35 bpm. The right cervical vagus was stimulated at frequencies selected to produce a two-step decline in heart rate of 25 and 50 bpm. A six-step dose-response was constructed by recording heart rates during nerve stimulation as the dose of MEAP was increased between 0.05 pmol/min and 1.5 nmol/min. Vagal transmission improved during MEAP at 0.5 pmol/min. However, sympathetically mediated tachycardia was unaltered with any dose of MEAP. In Study 2, a similar dose-response was constructed with the kappa-opioid receptor agonist trans(+/-)-3-4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide-HCl (U-50488H) to illustrate an independent sympatholytic effect and to verify its kappa-receptor character. U-50488H gradually suppressed the sympathetic tachycardia, with a significant effect obtained only at the highest dose (1.5 nmol/min). U-50488H had no effect on vagally mediated bradycardia. Surprisingly, the sympatholytic effect was not reversed by withdrawing U-50488H or by the subsequent addition of the kappa-antagonist 17,17'-(dichloropropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetroldi-hydrochloride (norBNI). Study 3 was conducted to determine whether the sympatholytic effect of U-50488H could be prevented by norBNI. NorBNI blocked the sympatholytic effect of the U50488H for 90 mins. When norBNI was discontinued afterward and U-50488H was continued alone, a sympatholytic effect emerged within 30 mins. Collectively these observations support the hypothesis that the vagotonic influence of MEAP is not dependent on a sympatholytic influence. Furthermore, the sympatholytic effect is mediated independently by kappa-receptors. The sympatholytic effect of sustained kappa-receptor stimulation appears to evolve gradually into a functional state not easily reversed. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Dogs; Enkephalin, Methionine; Female; Heart Rate; Male; Naltrexone; Receptors, Opioid, kappa; Sympatholytics; Vagus Nerve | 2006 |
Downstream regulatory element antagonistic modulator regulates islet prodynorphin expression.
Calcium-binding proteins regulate transcription and secretion of pancreatic islet hormones. Here, we demonstrate neuroendocrine expression of the calcium-binding downstream regulatory element antagonistic modulator (DREAM) and its role in glucose-dependent regulation of prodynorphin (PDN) expression. DREAM is distributed throughout beta- and alpha-cells in both the nucleus and cytoplasm. As DREAM regulates neuronal dynorphin expression, we determined whether this pathway is affected in DREAM(-/-) islets. Under low glucose conditions, with intracellular calcium concentrations of <100 nM, DREAM(-/-) islets had an 80% increase in PDN message compared with controls. Accordingly, DREAM interacts with the PDN promoter downstream regulatory element (DRE) under low calcium (<100 nM) conditions, inhibiting PDN transcription in beta-cells. Furthermore, beta-cells treated with high glucose (20 mM) show increased cytoplasmic calcium (approximately 200 nM), which eliminates DREAM's interaction with the DRE, causing increased PDN promoter activity. As PDN is cleaved into dynorphin peptides, which stimulate kappa-opioid receptors expressed predominantly in alpha-cells of the islet, we determined the role of dynorphin A-(1-17) in glucagon secretion from the alpha-cell. Stimulation with dynorphin A-(1-17) caused alpha-cell calcium fluctuations and a significant increase in glucagon release. DREAM(-/-) islets also show elevated glucagon secretion in low glucose compared with controls. These results demonstrate that PDN transcription is regulated by DREAM in a calcium-dependent manner and suggest a role for dynorphin regulation of alpha-cell glucagon secretion. The data provide a molecular basis for opiate stimulation of glucagon secretion first observed over 25 years ago. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Calcium; Cell Line; Cell Nucleus; DNA; Dynorphins; Electrophoretic Mobility Shift Assay; Enkephalins; Gene Expression Regulation; Glucagon; Glucagon-Secreting Cells; Glucose; Humans; Insulin-Secreting Cells; Islets of Langerhans; Kv Channel-Interacting Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Protein Binding; Protein Precursors; Receptors, Opioid, kappa; Repressor Proteins | 2006 |
Reduction of lipopolysaccharide-induced interleukin-6 production by the kappa opioid U50,488 in a mouse monocyte-like cell line.
Several studies demonstrate that opioids modulate the immune response via opioid receptors expressed directly on the immune cells themselves. Recently, it has been suggested that the kappa opioid system has a modulatory role in various inflammatory diseases including rheumatoid arthritis. This modulation may occur via changes in cytokine secretion by monocyte-derived cells. To further study this opioid-immune relationship, we stimulated P388D1 cells, a mouse monocyte-like cell line, with lipopolysaccharide (LPS) in the presence or absence of the kappa opioid-selective ligand, U50,488. Pretreatment with U50,488 significantly reduced LPS-stimulated interleukin-6 (IL-6) production as measured by ELISA. This effect was mediated by the kappa opioid receptor, because nor-binaltorphimine (nor-BNI), a kappa-selective antagonist, blocked this inhibition. It is likely that this reduction of IL-6 protein by U50,488 treatment is attributed to decreases in IL-6 mRNA. RT-PCR experiments demonstrated that U50,488 treatment significantly reduced the LPS-mediated increase in IL-6 mRNA and that this effect was also blocked by nor-BNI. Understanding the mechanism behind the reduction of proinflammatory cytokine production by opioids may lead to the development of more effective therapeutics for inflammatory diseases. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cell Line, Tumor; Cell Survival; Dactinomycin; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Gene Expression; Interleukin-6; Lipopolysaccharides; Mice; Monocytes; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, kappa; RNA Stability; Time Factors; Transcription, Genetic; Tumor Necrosis Factor-alpha | 2006 |
Kappa opioid receptor activation of p38 MAPK is GRK3- and arrestin-dependent in neurons and astrocytes.
AtT-20 cells expressing the wild-type kappa opioid receptor (KOR) increased phospho-p38 MAPK following treatment with the kappa agonist U50,488. The increase was blocked by the kappa antagonist norbinaltorphimine and not evident in untransfected cells. In contrast, U50,488 treatment of AtT-20 cells expressing KOR having alanine substituted for serine-369 (KSA) did not increase phospho-p38. Phosphorylation of serine 369 in the KOR carboxyl terminus by G-protein receptor kinase 3 (GRK3) was previously shown to be required for receptor desensitization, and the results suggest that p38 MAPK activation by KOR may require arrestin recruitment. This hypothesis was tested by transfecting arrestin3-(R170E), a dominant positive form of arrestin that does not require receptor phosphorylation for activation. AtT-20 cells expressing both KSA and arrestin3-(R170E) responded to U50,488 treatment with an increase in phospho-p38 consistent with the hypothesis. Primary cultured astrocytes (glial fibrillary acidic protein-positive) and neurons (gamma-aminobutyric acid-positive) isolated from mouse striata also responded to U50,488 by increasing phospho-p38 immunolabeling. p38 activation was not evident in either striatal astrocytes or neurons isolated from KOR knock-out mice or GRK3 knock-out mice. Astrocytes pretreated with small interfering RNA for arrestin3 were also unable to activate p38 in response to U50,488 treatment. Furthermore, in striatal neurons, the kappa-mediated phospho-p38 labeling was colocalized with arrestin3. These findings suggest that KOR may activate p38 MAPK in brain by a GRK3 and arrestin-dependent mechanism. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Arrestins; Astrocytes; beta-Adrenergic Receptor Kinases; Cells, Cultured; Corpus Striatum; G-Protein-Coupled Receptor Kinase 3; Mice; Mice, Inbred C57BL; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Naltrexone; Narcotic Antagonists; Neurons; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Rats; Receptors, Opioid, kappa; Signal Transduction | 2006 |
Schild (apparent pA2) analysis of a kappa-opioid antagonist in Planaria.
Previous investigators have provided radioimmunological and immunocytochemical evidence for an enkephalinergic (opioid) system in Planaria and described naloxone-sensitive qualitative behavioral responses to kappa-opioid receptor agonists. We report the application of Schild-analysis to the antagonism of a selective kappa agonist (U-50,488H) by a selective kappa antagonist (nor-BNI) in a quantitative in vivo endpoint. The results provide further evidence of a kappa-opioid-like receptor in planarians. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Algorithms; Analgesics, Non-Narcotic; Animals; Dose-Response Relationship, Drug; Locomotion; Naltrexone; Narcotic Antagonists; Planarians; Receptors, Opioid, kappa; Regression Analysis | 2006 |
Kappa-opioid receptor modulation of accumbal dopamine concentration during operant ethanol self-administration.
Our study examined ethanol self-administration and accumbal dopamine concentration during kappa-opioid receptor (KOPr) blockade. Long-Evans rats were trained to respond for 20 min of access to 10% ethanol (with sucrose) over 7 days. Rats were injected s.c. with the long-acting KOPr antagonist, nor-binaltorphimine (NOR-BNI; 0 or 20 mg/kg) 15-20 h prior to testing. Microdialysis revealed a transient elevation in dopamine concentration within 5 min of ethanol access in controls. NOR-BNI-treated rats did not exhibit this response, but showed a latent increase in dopamine concentration at the end of the access period. The rise in dopamine levels correlated positively with dialysate ethanol concentration but not in controls. NOR-BNI did not alter dopamine levels in rats self-administering 10% sucrose. The transient dopamine response during ethanol acquisition in controls is consistent with previous results that were attributed to ethanol stimulus cues. The altered dopamine response to NOR-BNI during ethanol drinking suggests that KOPr blockade temporarily uncovered a pharmacological stimulation of dopamine release by ethanol. Despite these neurochemical changes, NOR-BNI did not alter operant responding or ethanol intake, suggesting that the KOPr is not involved in ethanol-reinforced behavior under the limited conditions we studied. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Area Under Curve; Behavior, Animal; Central Nervous System Depressants; Conditioning, Operant; Dopamine; Dose-Response Relationship, Drug; Drinking Behavior; Drug Interactions; Ethanol; Male; Microdialysis; Naltrexone; Narcotic Antagonists; Nucleus Accumbens; Rats; Rats, Long-Evans; Receptors, Opioid, kappa; Self Administration | 2006 |
Anticonvulsive effects of kappa-opioid receptor modulation in an animal model of ethanol withdrawal.
Although the neurochemical mechanisms contributing to alcohol withdrawal seizures are poorly understood, withdrawal seizures probably reflect neuronal hyperexcitability resulting from adaptation to chronic alcohol. Altered kappa-Opioid receptor (KOP-R) signaling has been observed in multiple seizure types; however, a role for this system in ethanol withdrawal seizures has not been systematically characterized. We hypothesized that pharmacological manipulations of the KOP-R would alter withdrawal in mice selectively bred for differences in ethanol withdrawal severity. Withdrawal Seizure-Prone (WSP) and Withdrawal Seizure-Resistant (WSR) mice were made physically dependent using chronic ethanol vapor inhalation, and the effects of the KOP-R antagonist nor-binaltorphimine or agonist U-50,488H on withdrawal severity were examined. Pretreatment with nor-binaltorphimine significantly increased handling-induced convulsion (HIC) severity in withdrawing WSR mice, with no observable effects in withdrawing WSP mice. In contrast, U-50,488H significantly decreased HIC severity in WSP mice, with no effects in WSR mice. During extended withdrawal (i.e. hours 12+), a rebound hyperexcitability was observed in WSP mice given agonist. Thus, administration of a KOP-R antagonist increased withdrawal severity in mice normally resistant to withdrawal seizures, while a KOP-R agonist reduced convulsion severity in animals susceptible to withdrawal seizures. These observations are consistent with differences in the KOP-R system observed in these lines at the molecular level, and suggest the KOP-R system may be a promising therapeutic target for management of ethanol withdrawal seizures. Finally, these findings underscore the importance of determining the potential for rebound increases in withdrawal severity during later withdrawal episodes. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcohol-Induced Disorders, Nervous System; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Anticonvulsants; Brain; Central Nervous System Depressants; Disease Models, Animal; Drug Interactions; Drug Synergism; Ethanol; Male; Naltrexone; Receptors, Opioid, kappa; Seizures; Species Specificity; Substance Withdrawal Syndrome; Treatment Outcome | 2006 |
Expression and localization of delta-, kappa-, and mu-opioid receptors in human spermatozoa and implications for sperm motility.
Endogenous opioid peptides signal through delta-, kappa-, and mu-opioid receptors. Some of these peptides such as endorphins and enkephalins are present in the male reproductive tract, but the presence of the corresponding receptors in human sperm cells has not yet been reported.. Our objective was to study the expression and localization of delta-, kappa-, and mu-opioid receptors on human spermatozoa and the implication in sperm motility.. The expression of receptors was studied by RT-PCR, Western blot, and immunofluorescence techniques. We evaluated the effects of activation of each opioid receptor by specific agonist and antagonist.. Human spermatozoa express delta-, kappa-, and mu-opioid receptors. These receptors were located in different parts of the head, in the middle region, and in the tail of the sperm. Progressive motility of spermatozoa, an important parameter to evaluate male fertility, was found to be significantly reduced after incubation with the mu-receptor agonist morphine, whereas this effect was antagonized in the presence of the corresponding antagonist naloxone. The delta-receptor antagonist naltrindole significantly reduced progressive motility immediately after its addition. However, the delta-receptor agonist DPDPE had no significant effect. Finally, neither the kappa-receptor agonist U50488 nor its antagonist nor-binaltorphimine significantly affected the progressive motility of human spermatozoa.. We report for first time the presence of functional delta-, kappa-, and mu-opioid receptors in human sperm membranes. These findings are indicative of a role for the opioid system in the regulation of sperm physiology. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adult; Analgesics, Opioid; Humans; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sperm Motility; Spermatozoa; Tissue Distribution | 2006 |
[Role of kappa-opioid receptors in the regulation of cardiac resistance to arrhythmogenic effects of ischemia and reperfusion].
It was found that pretreatment of rats with selective agonist of kappa1-opioid receptors (OR) (-)--U--50.488 decreased the incidence of ischemic (10 min) and reperfusion (10 min) ventricular arrhythmias. The selective kappa2-OR agonist GR-89696 had no effect on the incidence of ventricular arrhythmias during a 10-min coronary artery occlusion and following reperfusion in anesthetized rats. The effect of (-)--U-50.488 was abolished by the selective kappa1-OR antagonist of non-binaltorphimine and the non-selective peripheral OR antagonist naloxone methiodide. Perfusion of isolated rat heart with (-)--U-50.488 did not affect arrhythmias during ischemia and reperfusion. The authors suggest that stimulation of kappa1-opioid receptors located outside the central nervous system increases heart resistance against arrhythmogenic action of ischemia/reperfusion, antiarrhythmic action of (-)--U-50.488 being mediated through extracardiac opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Myocardial Reperfusion Injury; Myocardium; Naloxone; Naltrexone; Piperazines; Pyrrolidines; Quaternary Ammonium Compounds; Rats; Rats, Wistar; Receptors, Opioid, kappa | 2006 |
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. Pretreatment i.t. with various doses of naloxonazine, a mu(1)-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID(50) values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than those of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2005 |
Involvement of mu-, delta- and kappa-opioid receptor subtypes in the discriminative-stimulus effects of delta-9-tetrahydrocannabinol (THC) in rats.
Many behavioral effects of delta-9-tetrahydrocannabinol (THC), including its discriminative-stimulus effects, are modulated by endogenous opioid systems.. To investigate opioid receptor subtypes involved in the discriminative effects of THC.. Rats trained to discriminate 3 mg/kg i.p. of THC from vehicle using a two-lever operant drug-discrimination procedure, were tested with compounds that bind preferentially or selectively to either mu-, delta- or kappa-opioid receptors.. The preferential mu-opioid receptor agonist heroin (0.3-1.0 mg/kg, i.p.), the selective delta-opioid receptor agonist SNC-80 (1-10 mg/kg, i.p.) and the selective kappa-opioid receptor agonist U50488 (1-10 mg/kg, i.p.) did not produce generalization to the discriminative effects of THC when given alone. However, heroin, but not SNC-80 or U50488, significantly shifted the dose-response curve for THC discrimination to the left. Also, the preferential mu-opioid receptor antagonist naltrexone (0.1-1 mg/kg, i.p.), the selective delta-opioid receptor antagonist, naltrindole (1-10 mg/kg, i.p.) and the kappa-opioid receptor antagonist nor-binaltorphimine (n-BNI, 5 mg/kg, s.c.), did not significantly reduce the discriminative effects of the training dose of THC. However, naltrexone, but not naltrindole or n-BNI, significantly shifted the dose-response curve for THC discrimination to the right. Finally, naltrexone, but not naltrindole or n-BNI, blocked the leftward shift in the dose-response curve for THC discrimination produced by heroin.. mu- but not delta- or kappa-opioid receptors are involved in the discriminative effects of THC. Given the role that mu-opioid receptors play in THC's rewarding effects, the present findings suggest that discriminative-stimulus effects and rewarding effects of THC involve similar neural mechanisms. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Benzamides; Conditioning, Operant; Discrimination Learning; Discrimination, Psychological; Dose-Response Relationship, Drug; Dronabinol; Food; Hallucinogens; Heroin; Male; Naltrexone; Narcotic Antagonists; Narcotics; Piperazines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reinforcement, Psychology | 2005 |
Characterisation of opioid receptors involved in modulating circular and longitudinal muscle contraction in the rat ileum.
1. The aim of the present investigation was to characterise the opioid receptor subtypes present in the rat ileum using a method that detects drug action on the enteric nerves innervating the circular and longitudinal muscles. 2. Neurogenic contractions were reversibly inhibited by morphine (circular muscle pEC50, 6.43+/-0.17, Emax 81.7+/-5.0%; longitudinal muscle pEC50, 6.65+/-0.27, Emax 59.7+/-7.8%), the mu-opioid receptor-selective agonist, DAMGO ([D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin acetate) (circular pEC50, 7.85+/-0.04, Emax 97.8+/-3.6%; longitudinal pEC50, 7.35+/-0.09, Emax 56.0+/-6.1%), the delta-selective agonist DADLE ([D-Ala2,D-Leu5]enkephalin acetate) (circular pEC50, 7.41+/-0.17, Emax, 93.3+/-8.4%; longitudinal pEC50, 6.31+/-0.07, Emax 66.5+/-5.2%) and the kappa-selective agonist U 50488H (trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide methanesulphonate) (circular pEC50, 5.91+/-0.41, Emax, 83.5+/-26.8%; longitudinal pEC50, 5.60+/-0.08, Emax 74.3+/-7.2%). Agonist potencies were generally within expected ranges for activity at the subtype for which they are selective, except for U 50488H, which was less potent than expected. 3. The mu and delta receptor-selective antagonists, CTAP (H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) and naltrindole, caused progressive, parallel rightward shifts in the DAMGO and DADLE curves, respectively. Analysis indicated conformity to theoretical simple competitive antagonist behaviour. U 50488H effects were insensitive to the kappa-selective antagonist, n-BNI. A high concentration (1 microM) of naltrexone caused apparent potentiation of U 50488H effects. 4. CTAP pK(B) estimates were consistent with previously reported values for mu receptor antagonism (circular 7.84+/-0.17, longitudinal 7.64+/-0.35). However, the naltrindole pK(B) estimates indicated lower antagonist potency than expected (circular 8.22+/-0.23, longitudinal 8.53+/-0.35). 5. It is concluded that mu and possibly atypical delta receptors (but not kappa receptors) mediate inhibition of contraction in this model. Nonopioid actions of U 50488H are probably responsible for the inhibitory effects seen with this compound. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enteric Nervous System; Female; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphine; Muscle Contraction; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu | 2005 |
Kappa opioid receptor activation disrupts prepulse inhibition of the acoustic startle in rats.
Compelling evidence indicates that kappa opioid receptor (KOR) agonists produce perceptual distortions in animals and humans, yet the mechanism of action and clinical relevance of such effects remain unclear. Since abnormalities in preattentional functions and informational processing are hypothesized to underlie psychotic disorders, the present study has been designed to assess the role of KOR on sensorimotor gating.. The effects of the selective KOR agonist U50488 were evaluated on the behavioral paradigm of prepulse inhibition (PPI) of the acoustic startle reflex (ASR).. U50488 (1.25, 2.5, and 5 mg/kg, subcutaneous [SC]) induced a dose-dependent reduction of PPI, which was efficiently prevented by the selective KOR antagonist norbinaltorphimine (nor-BNI, 10 mg/kg, SC), as well as by the atypical antipsychotic clozapine (5, 8 mg/kg, intraperitoneal [IP]) but not by the typical antipsychotic haloperidol (.1, .5 mg/kg, IP). Conversely, nor-BNI (10 mg/kg, SC) failed to reverse the PPI disruption mediated by both apomorphine (.25 mg/kg, SC) and dizocilpine (.1 mg/kg, SC).. Our results support a pivotal role of KOR in the regulation of preattentional functions and sensorimotor gating, pointing to these receptors as a possible neurobiological substrate especially relevant to the clusters of psychosis unresponsive to typical antipsychotics. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acoustic Stimulation; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Antipsychotic Agents; Apomorphine; Clozapine; Dizocilpine Maleate; Dopamine Agonists; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Excitatory Amino Acid Antagonists; Haloperidol; Inhibition, Psychological; Male; Naltrexone; Narcotic Antagonists; Rats; Receptors, Opioid, kappa; Reflex, Startle | 2005 |
The kappa-opioid receptor is involved in the stimulating effect of nicotine on adrenocortical activity but not in nicotine induced anxiety.
The kappa (kappa) opioid system appears to interact with nicotine in the modulation of locomotion and addiction related processes. In this study we have investigated the possible implication of the kappa-opioid system in the effects of nicotine on anxiety and adrenocortical activity. In two different experiments, we analysed the possible interaction between nicotine (0.5 mg/kg i.p.) and either the kappa-opioid receptor antagonist nor-binaltorphimine (5 mg/kg i.p.) or the kappa-opioid receptor agonist U50,488H (1 mg/kg s.c.). Behavioural and endocrine experiments were performed in different groups of animals. Animals were exposed to the holeboard immediately followed by the plus-maze. Serum corticosterone levels were determined by radioimmunoassay. Nicotine induced an anxiogenic-like effect in the plus-maze and a significant decrease of holeboard activity. The anxiogenic-like effect in the plus-maze was not modified by any of the kappa-opioid receptor ligands. Nicotine also induced a significant increase in the corticosterone levels, and the kappa antagonist, which did not exert any effect per se, antagonised this effect. The kappa-agonist U50,488H induced a significant increase in corticosterone concentration when administered alone. We provide the first evidence for the involvement of the kappa-opioid receptor in the stimulatory effect of nicotine on adrenocortical activity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Anxiety; Behavior, Animal; Corticosterone; Drug Interactions; Endocrine System; Male; Maze Learning; Naltrexone; Narcotic Antagonists; Nicotine; Nicotinic Agonists; Radioimmunoassay; Rats; Rats, Wistar; Receptors, Opioid, kappa | 2005 |
Coordinated and spatial upregulation of arc in striatonigral neurons correlates with L-dopa-induced behavioral sensitization in dyskinetic rats.
Although oral administration of L-Dopa remains the best therapy for Parkinson disease, its long-term administration causes the appearance of abnormal involuntary movements such as dyskinesia. Although persistent striatal induction of some genes has already been associated with such pathologic profiles in hemiparkinsonian rats, molecular and cellular mechanisms underlying such long-term adaptations remain to be elucidated. In this study, using a rat model of L-Dopa-induced dyskinesia, we report that activity regulated cytoskeletal (Arc)-associated protein is strongly upregulated in the lesioned striatum and that the extent of its induction further varies according to the occurrence or absence of locomotor sensitization. Moreover, Arc is preferentially induced, along with FosB, nur77, and homer-1a, in striatonigral neurons, which express mRNA encoding the precursor of dynorphin. Given the likely importance of Arc in the regulation of cytoskeleton during synaptic plasticity, its upregulation supports the hypothesis that a relationship exists between cytoskeletal modifications and the longlasting action of chronically administrated L-Dopa. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic Agents; AIDS-Related Complex; Amphetamine; Analgesics, Non-Narcotic; Animals; Antiparkinson Agents; Behavior, Animal; Carrier Proteins; Central Nervous System Stimulants; Corpus Striatum; Disease Models, Animal; Drug Interactions; Dynorphins; Dyskinesia, Drug-Induced; Functional Laterality; Homer Scaffolding Proteins; Immunohistochemistry; In Situ Hybridization; Levodopa; Male; Motor Activity; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oxidopamine; Protein Precursors; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar; Stereotyped Behavior; Substantia Nigra; Time Factors; Tyrosine 3-Monooxygenase; Up-Regulation | 2005 |
Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance.
Kappa opioid receptor (KOR) desensitization was previously shown to follow agonist-dependent phosphorylation of serine 369 by G-protein receptor kinase (GRK) and beta-arrestin binding in transfected cells. To study the in vivo effects induced by phosphorylation of KOR(S369), C57Bl/6 mice were administered single or repeated doses of the KOR agonist, U50,488, and isolated brain glycoprotein was probed with an antibody, KOR-P, that specifically recognized phosphoserine 369 KOR. Western blot analysis using KOR-P antibody showed that labeling intensity increased after either single or repeated treatment of mice with U50,488 by 59 +/- 22% and 101 +/- 29%, respectively. In contrast, there was no change in labeling intensity by nonphosphoselective KOR antibodies following acute or chronic in vivo treatment with kappa agonist. Moreover, mice lacking GRK3 showed no increase in KOR-P labeling and developed significantly less analgesic tolerance following treatment with kappa agonist. The result suggests that tolerance to kappa agonists includes phosphorylation of serine 369 within KOR by GRK3. Recovery of analgesic potency and reduction of elevated KOR-P labeling in wild-type mice both required 2 weeks to return to base line. Consistent with these results, in vitro phosphorylation by GRK3 of KOR isolated from tolerant mice resulted in 46 +/- 7% less (32)P incorporation than in KOR isolated from untreated mice. In addition, in vitro (32)P incorporation returned to base line levels only in KOR isolated from tolerant mice allowed to recover for 2 weeks. The coincident reversal of analgesic tolerance and slow return to a basal phosphorylation state matched the regeneration rate of functional kappa receptors following irreversible antagonism and suggested that receptor replacement rather than dephosphorylation was required to restore sensitivity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Cell Line; Drug Tolerance; G-Protein-Coupled Receptor Kinase 3; Humans; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Phosphorylation; Protein Serine-Threonine Kinases; Receptors, Opioid, kappa | 2004 |
Opioid-mediated modulation of calcium currents in striatal and pallidal neurons following reserpine treatment: focus on kappa response.
Previous work has shown that enkephalins target N-type calcium (Ca2+) channels in striatal and globus pallidus (GP) neurons, principally through activation of mu-like receptors. Here, we examined the effects of selective mu, delta, and kappa agonists on Ca2+ currents in striatal and GP neurons isolated from either control or reserpine-treated rats. In cells from control rats DAMGO and dynorphin (DYN) inhibited high-voltage-activated (HVA) Ca2+ currents preferentially in "medium-to-small" GP cells (likely to correspond to parvalbumin-negative cells). The kappa response was elicited by several agonists (DYN 17, DYN 13, BRL, U50-488-H), U50-488-H being the most effective (>30% maximal inhibition). U50-488-H affected both omega-CgTxGVIA-sensitive and nimodipine-sensitive Ca2+ conductances. The kappa-mediated effect (but not the mu response) was slow and blocked by chelerythrine, supporting the involvement of protein kinase C. In neurons from reserpinized rats we observed modest changes in the mu-inhibited fraction in small GP cells and a dramatic reduction of the kappa-sensitive fraction in principal striatal cells. These data imply that aminergic depletion alters opiate transmission differentially in the indirect and direct pathways. The suppression of the kappa response only in striatum reinforces the notion of an imbalance of endogenous opiates as relevant in extrapyramidal motor dysfunctions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic Uptake Inhibitors; Alkaloids; Analgesics, Non-Narcotic; Analgesics, Opioid; Analysis of Variance; Animals; Benzophenanthridines; Calcium Channel Blockers; Calcium Channels; Cell Size; Cells, Cultured; Corpus Striatum; Dose-Response Relationship, Drug; Drug Interactions; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enzyme Inhibitors; Male; Membrane Potentials; Naltrexone; Narcotic Antagonists; Neural Inhibition; Neurons; omega-Conotoxin GVIA; Patch-Clamp Techniques; Phenanthridines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reserpine | 2004 |
Region-dependent G-protein activation by kappa-opioid receptor agonists in the mouse brain.
The G-protein activations induced by kappa-opioid receptor agonists, (-)U50,488H, U69,593 and TRK-820 in the mouse lower midbrain, striatum and limbic forebrain were determined by monitoring guanosine-5'-o-(3-[35S]thio)triphosphate ([35S]GTP gamma S) binding. All kappa-opioid receptor agonists produced approximately 40, 20 and 10% increases of [35S]GTP gamma S binding over baseline in the lower midbrain, striatum and limbic forebrain, respectively. The increases of [35S]GTP gamma S binding induced by kappa-opioid receptor agonists were completely reversed by the selective kappa-opioid receptor antagonist, norbinaltorphimine (norBNI), in all brain regions. The intrinsic activities of kappa-opioid receptor agonists for G-protein activation in brain regions observed in the present study are not correlated with densities of kappa-opioid receptor binding sites from previous reports. The present results suggest that the catalytic efficiency of kappa-opioid receptor-G-protein coupling may be variable in different brain regions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzeneacetamides; Brain; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Male; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid, kappa; Spiro Compounds | 2004 |
Effects of the kappa opioid agonist U50,488 and the kappa opioid antagonist nor-binaltorphimine on choice between cocaine and food in rhesus monkeys.
Selective kappa opioid receptor agonists usually decrease cocaine self-administration in procedures that use rate-based measures of reinforcement; however, the rate-altering effects of kappa agonists complicate interpretation of these findings.. To evaluate the effects of the selective kappa agonist U50,488 and the selective kappa antagonist nor-binaltorphimine (nor-BNI) on concurrent choice between cocaine and food in rhesus monkeys. The concurrent-choice procedure provides a rate-independent measure of the relative reinforcing effects of cocaine in comparison with food.. Four rhesus monkeys were trained to respond under a concurrent-choice schedule for food (1-g pellets) or cocaine (0-0.1 mg/kg per injection). Saline and increasing doses of U50,488 (0.0032-0.1 mg/kg per h) were administered by pseudo-continuous i.v. infusion (one infusion every 20 min) during sequential 3-day blocks. In a separate experiment, monkeys were treated with nor-BNI (3.2 mg/kg, i.v.), and cocaine choice was re-determined during pseudo-continuous infusion with saline or U50,488 (0.1 mg/kg per h).. During saline treatment, cocaine maintained a dose-dependent and monotonic increase in cocaine choice. Monkeys responded primarily for food when low cocaine doses were available (0-0.01 mg/kg per injection) and primarily for cocaine when higher cocaine doses were available (0.032-0.1 mg/kg per injection). U50,488 produced a dose-dependent increase in cocaine choice, manifested as leftward shifts in the cocaine-choice, dose-effect curve. U50,488 also dose-dependently decreased overall response rates. Nor-BNI did not alter cocaine choice, but it attenuated the effects of U50,488.. These results suggest that continuous treatment with U50,488 produces a kappa receptor-mediated increase in the relative reinforcing effects of cocaine in comparison with food. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Addictive; Choice Behavior; Cocaine; Dose-Response Relationship, Drug; Eating; Macaca mulatta; Male; Naltrexone; Receptors, Opioid, kappa | 2004 |
Mu opioid modulation of oxytocin secretion in late pregnant and parturient rats. Involvement of noradrenergic neurotransmission.
We have investigated effects of micro- and kappa-opioid agonists and antagonists on plasma oxytocin levels and noradrenaline content in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) of 20-day pregnant rats. beta-Endorphin, oxytocin, estrogen and progesterone profiles in late pregnant and parturient rats were also sought. Stage of estrous cycle was monitored by vaginal smear, and pro-estrous animals were left overnight with male. In the first set of experiments, pregnant rats were monitored and decapitated on days 20 and 21 and after the delivery of second pup. In the second set, 20-day pregnant rats were intracerebroventricularly infused with morphine (50 microg/10 microl), U50,488H (kappa-agonist; 50 microg/10 microl), clocinnamox (micro-antagonist; 50 microg/10 microl) and norbinaltorphimine (kappa-antagonist; 50 microg/10 microl). Controls received saline alone. Serum estrogen and progesterone levels were measured by enzyme immunoassay, and plasma oxytocin and beta-endorphin by radioimmunoassay. Noradrenaline and its metabolite (3,4-dihydroxyphenylglycol) were determined in micropunched hypothalamic nuclei by HPLC-ECD. In parturient rats, oxytocin levels were increased (p < 0.05) and beta-endorphin decreased (p < 0.01) compared to 20-day pregnant animals. Serum progesterone concentrations progressively declined towards parturition (p < 0.001). Clocinnamox raised oxytocin levels (p < 0.01) while U50,488H caused decreases (p < 0.05). Noradrenaline content was elevated by clocinnamox in the SON (p < 0.01) and PVN (p < 0.05) compared to control values. Other agonists and antagonists had no significant effect on the noradrenergic neurotransmission or oxytocin secretion. We suggest that noradrenaline may mediate the inhibitory effects of micro-opioids on oxytocin release. Our findings have also shown that kappa-opioid receptors are not involved in modulation of oxytocin neurons in late pregnant rats. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Cinnamates; Enzyme-Linked Immunosorbent Assay; Estrogens; Female; Methoxyhydroxyphenylglycol; Morphine Derivatives; Naltrexone; Narcotic Antagonists; Narcotics; Norepinephrine; Oxytocin; Paraventricular Hypothalamic Nucleus; Pregnancy; Progesterone; Rats; Rats, Wistar; Receptors, Opioid, kappa; Receptors, Opioid, mu; Supraoptic Nucleus | 2004 |
Sexual dimorphism in the antinociception mediated by kappa opioid receptors in the rat temporomandibular joint.
This study assessed the effect of the kappa opioid receptor agonist U50,488 administered into the rat temporomandibular joint (TMJ) on nociceptive behavioral responses evoked by formalin injected into the same site. Groups consisted of females, stratified into proestrus and diestrus phases of the estrous cycle, and males. Intra-TMJ formalin induced significantly different dose-dependent responses among the three groups, with diestrus females showing greater responses than males or proestrus females; therefore, equi-nociceptive formalin doses were chosen to test the effects of U50,488. U50,488 significantly reduced formalin-induced nociceptive behavior in all groups, but the reduction was significantly greater in females, especially those in diestrus. Pre-injection of the selective kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) into the same site significantly attenuated the effect of U50488; U50,488 injection into the contralateral TMJ failed to reduce nociceptive behavior. These findings support a role for kappa opioid receptors local to the site of inflammation to modulate inflammatory pain. Furthermore, since plasma levels of ovarian hormones are low during diestrus, these findings are consistent with the suggestion that sex hormones may play an antagonistic role in these peripheral kappa-mediated effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Dose-Response Relationship, Drug; Estrous Cycle; Female; Formaldehyde; Male; Naltrexone; Pain Measurement; Rats; Rats, Wistar; Receptors, Opioid, kappa; Sex Characteristics; Temporomandibular Joint | 2004 |
U50,488 inhibits HIV-1 Tat-induced monocyte chemoattractant protein-1 (CCL2) production by human astrocytes.
Kappa-opioid receptor (KOR) ligands have been reported to alter many cell functions and to exert an immunomodulatory role in the CNS. Astrocytes, the predominant brain cell type, have been implicated in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1). HIV-1 nuclear protein Tat has been reported to induce production of the chemokine monocyte chemoattractant protein-1 (MCP-1 or CCL2) and to activate nuclear factor kappaB (NF-kappaB) in human astrocytes. In the present study, we investigated whether the synthetic KOR ligand trans-3,4-dichloro-N-methyl-N[2-(1-pyrolidinyl)cyclohexyl]benzeneacetamide methanesulfonate (U50,488) would down-regulate MCP-1 production in primary human astrocytes stimulated by Tat. Treatment of astrocytes with U50,488 inhibited Tat-induced MCP-1 production in a concentration-dependent manner. The KOR-selective antagonist nor-binaltrophimine (nor-BNI) completely blocked the inhibitory effect of U50,488, indicating involvement of KOR. While U50,488 alone had a partial inhibitory effect on constituent NF-kappaB activation, it potently suppressed Tat-induced NF-kappaB activation. These findings suggest that KOR ligands could have an anti-inflammatory effect in the CNS and thereby be beneficial in the treatment of HIV-1-associated brain disease. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Astrocytes; Cells, Cultured; Chemokine CCL2; Drug Interactions; Gene Products, tat; HIV-1; Humans; Naltrexone; Narcotic Antagonists; NF-kappa B; tat Gene Products, Human Immunodeficiency Virus | 2003 |
Blockade of mu-opioid receptor-mediated G-protein activation and antinociception by TRK-820 in mice.
The effects of kappa-opioid receptor agonists trans-3,4-dichloro-N-(2-(1-pyrollidinyl)-cyclohexyl) benzeneacetamide ((-)-U50,488H) and 17-cyclopropylmethyl-3,14beta-dihydroxy-4,5alpha-epoxy-6beta-[N-methyl-trans-3-(3-furyl)acrylamido]morphinan hydrochloride (TRK-820) on the G-protein activation and antinociception induced by the selective mu-opioid receptor agonist, [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO), were determined in mice. G-protein activation was measured by monitoring the guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding in the mouse pons/medulla. DAMGO (10 microM) produced a marked increase of [35S]GTPgammaS binding to the mouse pons/medulla membrane. On the other hand, both TRK-820 and (-)-U50,488H produced small but significant increases of [35S]GTPgammaS binding to the mouse pons/medulla membrane. These increases by both TRK-820 and (-)-U50,488H were completely reversed by the selective kappa-opioid receptor antagonist, norbinaltorphimine. Under these same conditions, the DAMGO-induced increase of [35S]GTPgammaS binding was significantly attenuated by TRK-820 in a concentration-dependent manner, but not by (-)-U50,488H. In the tail-flick test, DAMGO (16 ng) given intracerebroventricularly (i.c.v.), produced a marked antinociception. The antinociception induced by DAMGO was dose-dependently blocked by co-treatment with TRK-820, but not (-)-U50,488H, in mice pretreated with norbinaltorphimine (5 microg, i.c.v.). The present results provide direct evidence for the antagonistic property of TRK-820 for mu-opioid receptors, in addition to the full agonistic property for kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; GTP-Binding Proteins; In Vitro Techniques; Injections, Intraventricular; Medulla Oblongata; Mice; Morphinans; Naltrexone; Narcotic Antagonists; Pain Measurement; Pons; Radioligand Assay; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spiro Compounds | 2003 |
Activation of kappa-opioid receptors inhibits pruritus evoked by subcutaneous or intrathecal administration of morphine in monkeys.
Pruritus (itch sensation) is the most common side effect associated with spinal administration of morphine given to humans for analgesia. A variety of agents have been proposed as antipruritics with poorly understood mechanisms and they are effective with variable success. kappa-Opioid agonists possess several actions that are opposite to micro -opioid agonists. We proposed to investigate the role of kappa-opioid receptors (KORs) in morphine-induced scratching and antinociception in monkeys. Scratching responses were counted by observers blinded to treatment. Antinociception was measured by a warm water (50 degrees C) tail-withdrawal assay. Pretreatment with low doses of trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide (U-50488H) (0.032-0.18 mg/kg s.c.), a selective KOR agonist, dose dependently suppressed the s.c. morphine dose-effect curve for scratching and potentiated s.c. morphine-induced antinociception. In addition, s.c. U-50488H attenuated i.t. morphine (10 and 32 micro g)-induced scratching while maintaining or enhancing i.t. morphine-induced antinociception. The combination of s.c. or i.t. morphine with low doses of U-50488H did not cause sedation. More importantly, pretreatment with 3.2 mg/kg nor-binaltorphimine, a selective KOR antagonist, blocked the effects of s.c. U-50488H on both s.c. and i.t. morphine-induced scratching. These results indicate that activation of KOR attenuates morphine-induced scratching without interfering with antinociception in monkeys. This mechanism-based finding provides functional evidence in support of the clinical potential of KOR agonists as antipruritics in the presence of MOR agonist-induced pruritus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Disease Models, Animal; Drug Interactions; Female; Injections, Spinal; Injections, Subcutaneous; Macaca mulatta; Male; Morphine; Naltrexone; Narcotic Antagonists; Pruritus; Receptors, Opioid, kappa | 2003 |
Effects of U50,488H on transient outward and ultra-rapid delayed rectifier K+ currents in young human atrial myocytes.
The effects of trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide methanesulfonate salt (U50,488H), a selective kappa-opioid receptor agonist, on transient outward K+ current (Ito1) and ultra-rapid delayed rectifier K+ current (IKur) in young human atrial myocytes were evaluated with a whole-cell patch-clamp technique. At +10 mV, U50,488H decreased Ito1 in a concentration-dependent manner (IC50=12.4+/-3.5 microM), while at +50 mV, U50,488H produced biphasic effects on Ito1-increasing and decreasing the current at 1-3 and 10-30 microM, respectively. U50,488H at 10 microM shifted the midpoint (V0.5) of Ito1 activation in a depolarizing direction by approximately 5 mV, accelerated the inactivation, and slowed the recovery from inactivation of Ito1. In addition, U50,488H inhibited IKur in a concentration-dependent manner (IC50=3.3+/-0.6 microM). The effects of U50,488H on the two types of K+ currents were not antagonized by either 5 microM nor-binaltorphimine or 300 nM naloxone. These results indicate that U50,488H affects both Ito1 and IKur in young human atrial myocytes in an opioid receptor-independent manner. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adolescent; Child; Child, Preschool; Delayed Rectifier Potassium Channels; Female; Heart Atria; Humans; Infant; Male; Myocytes, Cardiac; Naloxone; Naltrexone; Narcotic Antagonists; Patch-Clamp Techniques; Potassium Channels; Potassium Channels, Tandem Pore Domain; Potassium Channels, Voltage-Gated; Receptors, Opioid, kappa | 2003 |
Ultra-long antagonism of kappa opioid agonist-induced diuresis by intracisternal nor-binaltorphimine in monkeys.
Kappa opioid receptor (KOR) agonists such as U-50488H and bremazocine are analgesics and diuretics. In monkeys, the selective KOR antagonist, nor-binaltorphimine (nor-BNI), produces a long-lasting antagonism of the antinociceptive effects of U-50488H but not those of bremazocine, suggesting that KOR-mediated antinociception may occur through two distinct KORs. The aim of this study was to characterize the antagonist effect of nor-BNI against the diuretic effects of U-50488H and bremazocine in monkeys. Urine outputs were collected over 3 h subsequent to i.m. administration of KOR agonists. Both U-50488H (0.032-1 mg/kg) and bremazocine (0.00032-0.01 mg/kg) dose-dependently increased urine output and the diuretic effect reached a plateau at higher doses. The maximum effect of either U-50488H or bremazocine was approximately 15 ml/kg/3 h of urine. Pretreatment with intracisternal nor-BNI 0.32 mg significantly blocked both U-50488H (0.18 mg/kg)- and bremazocine (0.0032 mg/kg)-induced diuresis for 20 weeks. However, the same dose of nor-BNI 0.32 mg given subcutaneously was not effective. These results demonstrate that central KOR mediate KOR agonist-induced diuresis in monkeys. More important, this study provides functional evidence for a homogenous population of KOR underlying KOR-mediated diuresis and illustrates a unique pharmacological profile of nor-BNI-induced ultra-long KOR antagonism in vivo. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzomorphans; Diuresis; Female; Injections, Intraventricular; Macaca mulatta; Male; Naltrexone; Narcotic Antagonists; Receptors, Opioid, kappa | 2003 |
kappa-Opioid withdrawal in Planaria.
Many drug-abusers engage in poly-drug abuse, but there has been relatively little quantification of withdrawal from poly-drug use. Planarians are an advantageous model for these studies due to mammalian-relevant neurotransmitter systems (e.g. dopamine, opioid, and 5-HT). We recently developed a metric that quantified an acute cocaine withdrawal phenomenon in planarians. However, despite much indirect evidence, we lacked direct evidence of a receptor- or carrier-mediated effect. We now report dose-related, naloxone- and nor-binaltorphine-sensitive acute abstinence-induced withdrawal and naloxone-precipitated withdrawal from the kappa-opioid agonist U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)-benzeneacetamide). The less active enantiomer [1R,2R]U-50,488 produced significantly less withdrawal and U-50,488H withdrawal was not due to pH or osmolarity. These data provide pharmacologic evidence of a kappa-opioid receptor-mediated withdrawal phenomenon and neuroadaptation to a pharmacologic stimulus (adaptations in transduction mechanisms) in this model. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adaptation, Physiological; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Hydrogen-Ion Concentration; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Opioid-Related Disorders; Osmolar Concentration; Planarians; Reaction Time; Receptors, Opioid, kappa; Substance Withdrawal Syndrome | 2003 |
Roles of KATP channels in delayed cardioprotection and intracellular Ca(2+) in the rat heart as revealed by kappa-opioid receptor stimulation with U50488H.
The effect of preconditioning with U50488 H (UP), a selective kappa-opioid receptor (kappa-OR) agonist, on infarct size and intracellular Ca2+ ([Ca2+]i) in the heart subjected to ischaemic insults were studied and evaluated. U50488 H administered intravenously reduced the infarct size 18-48 h after administration in isolated hearts subjected to regional ischaemia/reperfusion (I/R). The effect was dose dependent. A peak effect was reached at 10 mg x kg-1 U50488 H and at 24 h after administration. The effect of 10 mg x kg-1 U50488 H at 24 h after administration was abolished by nor-binaltorphimine (nor-BNI), a selective kappa-OR antagonist, indicating the effect was kappa-OR mediated. The infarct reducing effect of U50488 H was attenuated when a selective blocker of mitochondrial (5-hydroxydecanoic acid, 5-HD) or sarcolemmal (HRM-1098) ATP-sensitive potassium channel (KATP) was coadministered with U50488 H 24 h before ischaemia or when 5-HD was administered just before ischaemia. U50488 H also attenuated the elevation in [Ca2+]i and reduction in electrically induced [Ca2+]i transient in cardiomyocytes subjected to ischaemic insults. The effects were reversed by blockade of KATP channel, which abolished the protective effect of preconditioning with U50488 H. The results indicated that mitochondrial KATP channel serves as both a trigger and a mediator, while sarcolemmal KATP channel as a trigger only, of delayed cardioprotection of kappa-OR stimulation. The effects of these channels may result from prevention/attenuation of [Ca2+]i overload induced by ischaemic insults. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Calcium; Calcium Signaling; Coronary Circulation; Coronary Vessels; Dose-Response Relationship, Drug; Heart; Heart Rate; Injections, Intravenous; Ischemic Preconditioning, Myocardial; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Naltrexone; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Time Factors | 2003 |
Nonopioid receptor-mediated effects of U-50,488H on [Ca(2+)]i and extracellular dopamine in PC12 cells.
The present studies were carried out to determine the effects of a kappa-opioid receptor agonist on cytosolic Ca(2+) concentration, [Ca(2+)](i), and extracellular dopamine in undifferentiated PC12 cells. The kappa-opioid receptor agonist U-50,488H caused concentration-dependent increases in [Ca(2+)](i) and extracellular dopamine. Neither effect was blocked by the selective kappa-opioid receptor antagonist nor-binaltorphimine. Increases in extracellular dopamine content and [Ca(2+)](i) caused by U-50,488H were correlated positively in the presence of extracellular Ca(2+); however, reduction of extracellular Ca(2+) abolished the increase in [Ca(2+)](i), but not that in dopamine. The latter observation suggests that stimulation of exocytotic release is not the primary mechanism involved in the increase in extracellular dopamine caused by U-50,488H. Effects on dopamine synthesis or catabolism also seem unlikely because the enhancement of extracellular dopamine occurred rapidly, and the amount of a major metabolite of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), was not affected. In any event, neither the increase in [Ca(2+)](i) nor the increase in extracellular dopamine caused by U-50,488H is mediated by the kappa-opioid receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; 3,4-Dihydroxyphenylacetic Acid; Analgesics, Non-Narcotic; Analysis of Variance; Animals; Calcium; Dopamine; Dose-Response Relationship, Drug; Intracellular Fluid; Naltrexone; Narcotic Antagonists; PC12 Cells; Rats; Receptors, Opioid, kappa | 2003 |
Expression of functional kappa-opioid receptors on murine dendritic cells.
Endogenous and exogenous opioids are known to exert direct effects on the immune system and the expression of functional opioid receptors has been reported for several immune cell types. Since dendritic cells are important inducers and regulators of immune responses, we investigated whether murine dendritic cells express functional kappa-opioid receptors. FACScan analysis and radioligand binding studies revealed the expression of kappa-opioid receptors by murine dendritic cells, which by RT-PCR were also shown to express kappa-opioid mRNA. In a primary allogenic mixed-lymphocyte reaction the kappa-agonists dynorphin A and U50488H suppressed the capacity of dendritic cells to induce T-cell proliferation in a concentration-dependent manner. Preincubation with the kappa-specific antagonist nor-binaltrophimine abolished the observed effect, indicating specificity. In contrast, antigen uptake by dendritic cells as well as phenotypic maturation of dendritic cells were not influenced by the kappa-agonists dynorphin A and U50488H. In summary our data demonstrate that dendritic cells express functional kappa-opioid receptors and that specific agonists exert a direct effect on these cells. Therefore, dendritic cells might be involved in the interaction of the neuroendocrine hormones and the immune system. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antigen Presentation; Dendritic Cells; Dynorphins; Gene Expression; Histocompatibility Antigens Class II; In Vitro Techniques; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Naltrexone; Narcotic Antagonists; Neuroimmunomodulation; Phenotype; Receptors, Opioid, kappa; RNA, Messenger | 2002 |
Effect of prodynorphin-derived opioid peptides on the ovulatory luteinizing hormone surge in the proestrous rat.
The objective of this study was to determine whether prodynorphin-derived opioid peptides could block the spontaneous luteinizing hormone (LH) surge and ovulation, and if so, whether this inhibitory action was mediated through kappa-opioid receptors. Various doses of dynorphin peptides (dynorphin A(1-17), dynorphin A(1-8), dynorphin B, alpha- and beta-neoendorphin) were infused into the brain through third-ventricle cannulae in rats between 1330-1800 h on proestrus. Each dynorphin peptide blocked the LH surge and ovulation in a dose-dependent manner. Dynorphin A(1-17) and A(1-8) were equally effective in producing these actions, and more potent than either dynorphin B or alpha- or beta-neoendorphin. U50,488H, a specific kappa-opioid receptor agonist, also blocked the LH surge and ovulation. When a mixture of five dynorphin peptides was infused intraventricularly, each at a dose that inhibited the LH surge, both the surge and ovulation were blocked. However, when norbinaltorphimine, a specific kappa-opioid receptor antagonist, was coinfused with the mixture of dynorphin peptides, the LH surge and ovulation were fully restored. These results demonstrate that prodynorphin-derived opioid peptides, acting through kappa-opioid receptors, can block the LH surge and ovulation. Dynorphin A(1-17) and A(1-8) are the most potent in this regard. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Brain; Dynorphins; Enkephalins; Female; Luteinizing Hormone; Naltrexone; Ovulation; Peptide Fragments; Proestrus; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2002 |
Lack of the nociceptin receptor does not affect acute or chronic nociception in mice.
The peptide nociceptin/orphanin FQ (N/OFQ) and its receptor ORL-1, also designated opioid receptor 4 (OP(4)) are involved in the modulation of nociception. Using OP(4)-knockout mice, we have studied their response following opioid receptor stimulation and under neuropathic conditions.In vas deferens from wild-type and OP(4)-knockout mice, DAMGO (mu/OP(3) agonist), deltorphine II (delta/OP(1) agonist) and (-)-U-50488 (kappa/OP(2) agonist) induced similar concentration-dependent inhibition of electrically-evoked contractions. Naloxone and naltrindole (delta/OP(1) antagonists) shifted the curves of DAMGO (pA(2)=8.6) and deltorphine II (pA(2)=10.2) to the right, in each group. In the hot-plate assay, N/OFQ (10 nmol per mouse, i.t.) increased baseline latencies two-fold in wild-type mice while morphine (10mg/kg, s.c.), deltorphine II (10 nmol per mouse, i.c.v.) and dynorphin A (20 nmol per mouse, i.c.v.) increased hot-plate latencies by about four- to five-fold with no difference observed between wild-type and knockout mice. Furthermore, no change was evident in the development of the neuropathic condition due to chronic constriction injury (CCI) of the sciatic nerve, after both thermal and mechanical stimulation. Altogether these results suggest that the presence of OP(4) receptor is not crucial for (1) the development of either acute or neuropathic nociceptive responses, and for (2) the regulation of full receptor-mediated responses to opioid agonists, even though compensatory mechanisms could not be excluded. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Male; Mice; Mice, Knockout; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Oligopeptides; Opioid Peptides; Pain; Receptors, Opioid; Time Factors; Vas Deferens | 2002 |
Pharmacology of opioid inhibition to noxious uterine cervical distension.
Reflex abdominal muscle contraction elicited by colorectal distension in male rats is inhibited by mu- and kappa-opioid receptor agonists and sites of action and receptor subtypes have been probed. The authors examined the pharmacology of opioid agonist inhibition in visceral pain related to the uterine cervix, the source of labor pain.. Ovariectomized female rats were anesthetized with halothane, and metal rods inserted in the uterine cervix through a small midline laparotomy. After a period of stabilization the cervix was distended by manual separation of the rods, using stimuli of 25-100 g, and reflex rectus abdominis electromyographic activity was recorded. After determining the stimulus response relationship, we tested inhibition of reflex activity by -U50,488 and morphine and their reversal with norbinaltorphimine, or with naltrexone and methyl-naltrexone, respectively.. Cervical distension produced a stimulus-dependent increase in electromyographic activity, with a threshold of 25 g. Morphine and -U50,488 produced dose-dependent inhibition of the reflex activity. Log linear regression analysis demonstrated an ID50 of 0.03 for morphine, and of 0.05 mg/kg for -U50,488. These effects were reversed by naltrexone, but not by methylnaltrexone or norbinaltorphimine.. These data suggest that mu- and kappa-opioid receptor agonists effectively inhibit responses to acute uterine cervical stimulation. Lack of reversal by norbinaltorphimine further supports evidence of a novel kappa-opioid receptor by visceral afferents. Lack of morphine reversal by methylnaltrexone suggests central (spinal or supraspinal) sites of action for inhibition of this visceral noxious stimulus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Cervix Uteri; Dose-Response Relationship, Drug; Electromyography; Female; Hemodynamics; Morphine; Naltrexone; Narcotic Antagonists; Ovariectomy; Pain Threshold; Physical Stimulation; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Uterus | 2002 |
Kappa opioid antagonist effects of the novel kappa antagonist 5'-guanidinonaltrindole (GNTI) in an assay of schedule-controlled behavior in rhesus monkeys.
Opioid receptors are divided into three types: kappa, mu, and delta receptors. Receptor-selective antagonists are useful experimental tools for evaluation of opioid receptor-mediated processes. 5'-Guanidinonaltrindole (GNTI) was recently developed as a novel kappa-selective antagonist.. To evaluate the potency, time course, and selectivity of GNTI's opioid antagonist effects in rhesus monkeys in an assay of schedule-controlled responding.. Five rhesus monkeys were trained to respond under a fixed ratio 30 schedule of food reinforcement. The rate-decreasing effects of the kappa agonists U50,488 and U69,593, the mu agonist morphine, and the delta agonist SNC80 were examined alone and after pretreatment with GNTI (0.1 and 1.0 mg/kg i.m.; 1 h to 14 days).. U50,488, U69,593, morphine, and SNC80 dose-dependently decreased response rates in this procedure. GNTI produced a dose- and time-dependent antagonism of the rate-decreasing effects of U50,488. The kappa antagonist effects of GNTI had a slow onset and a long duration of action, and peak antagonist effects were observed after 24 h. A higher dose of 3.2 mg/kg GNTI eliminated responding in one monkey and was not studied further. The antagonist effects of GNTI were kappa selective, because 1.0 mg/kg GNTI also antagonized the effects of U69,593, but not those of morphine or SNC80.. These results suggest that GNTI is a potent and selective kappa antagonist with a slow onset and long duration of action in rhesus monkeys. Relative to the prototype kappa antagonist nor-binaltorphimine, GNTI may have some advantages as a tool for the study of kappa receptor-mediated processes. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Animals; Benzamides; Benzeneacetamides; Conditioning, Operant; Dose-Response Relationship, Drug; Drug Interactions; Female; Guanidines; Macaca mulatta; Male; Morphinans; Morphine; Naltrexone; Narcotic Antagonists; Narcotics; Piperazines; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Reinforcement Schedule; Time Factors | 2002 |
Intraventricular insulin decreases kappa opioid-mediated sucrose intake in rats.
The hormone insulin acts in the central nervous system (CNS) as a regulator of body adiposity and food intake. Recent work from our laboratory has provided evidence that one way by which insulin may decrease food intake is by decreasing the rewarding properties of food. Evidence from others suggests that endogenous opioids may mediate the palatable properties of foods, and insulin may decrease nonfood-related reward via interaction with some CNS kappa opioid systems. In the present study we examined the ability of insulin to interact with exogenous or endogenous kappa opioids to modulate feeding of palatable sucrose pellets by nondeprived rats. Insulin (5 mU intracerebroventricular (i.c.v.), t=-3h) completely reversed the ability of the exogenous kappa agonist U50,488 (26 microg, i.c.v., t=-15 min) to stimulate 90-min sucrose feeding (211+/-32% reduced to 125+/-23% of 90-min baseline intake). Further, i.c.v. insulin (5 mU, t=-3h) interacted with a subthreshold dose of the kappa receptor antagonist norbinaltorphimine (5 microg, i.c.v., t=-15 min) to decrease the 90-min sucrose intake baseline (77+/-11% versus 109+/-10% of 90 min baseline intake, insulin/norbinaltorphimine versus norbinaltorphimine). Together these studies provide new evidence that insulin in the CNS may decrease the action of CNS kappa opioid system(s) that mediate palatable feeding. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Feeding Behavior; Injections, Intraventricular; Insulin; Male; Naltrexone; Narcotic Antagonists; Narcotics; Rats; Receptors, Opioid, kappa; Sucrose | 2002 |
Inhibition of urinary bladder motility by a spinal action of U-50488H in rats.
We examined the effect of a kappa agonist, U-50488H, upon the bladder motility of anaesthetized rats. The frequency of distension-induced rhythmic bladder contractions was reduced by the intravenous (10 mg kg(-1)) or intrathecal (10-100 microg) administration of U-50488H. The effect of intravenous U-50488H was inhibited by pre-treatment with nor-binaltorphimine (10 mg kg(-1), s.c.). The inhibition of bladder contractions by intrathecal U-50488H (30 microg) was eliminated with the concomitant use of nor-binaltorphimine (10 mg kg(-1), s.c.), and diminished by reserpine (4 mg kg(-1), i.p.), yohimbine (10 microg, i.t.) or methysergide (20 microg, i.t.). The amplitude of bladder contractions induced by an electrical stimulation of the pontine micturition centre was not inhibited by intrathecal U-50488H (30 and 100 microg). These results suggested that a kappa agonist could inhibit micturition reflex as well as other opioids, and at least part of the inhibition was due to the diminishment of bladder sensation based on the activation of the descending monoaminergic systems through the spinal kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic alpha-Antagonists; Adrenergic Uptake Inhibitors; Animals; Area Under Curve; Dose-Response Relationship, Drug; Electric Stimulation; Injections, Intravenous; Injections, Spinal; Male; Methysergide; Muscle Contraction; Muscle, Smooth; Naltrexone; Pons; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reserpine; Serotonin Antagonists; Stress, Mechanical; Urinary Bladder; Urination; Yohimbine | 2002 |
Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms.
A master neuronal pacemaker located within the suprachiasmatic nucleus in the ventral hypothalamus generates circadian activity rhythms in hamsters. The circadian pacemaker receives afferent input from many brain regions, one of which is the intergeniculate leaflet of the thalamus. This thalamic input to the suprachiasmatic nucleus in hamsters contains enkephalins, neuropeptide Y, neurotensin, and GABA. The role of enkephalins in modulating light-induced phase shifts of hamster activity rhythms has not been reported. Therefore, in this study, we examined the ability of enkephalin-mimetic and other opioid compounds to modulate light-induced phase advances in hamster circadian activity rhythms. The delta opioid agonists SNC 80 and BW373U86 both inhibited light-induced phase advances of hamster circadian activity rhythms. Neither the mu opioid agonist morphine, nor the kappa opioid agonist U50488H had any effect on light-induced phase shifts. The antagonists naltrindole, naltrexone, and nor-binaltorphimine, selective for delta, mu, and kappa opioids respectively, were also without effect on light-induced phase advances. Therefore, we found that only delta opioid agonists modulate light-induced phase advances in hamster circadian activity rhythms. These results imply that enkephalins released from the intergeniculate leaflet onto components of the suprachiasmatic pacemaker may be capable of inhibiting the responsiveness of the pacemaker to photic input arriving from the retina. The inability of antagonists to modulate light-induced phase advances suggests that endogenous opiate systems are not tonically active in generating circadian activity rhythms, but rather that enkephalins are probably used by the circadian system to modulate responses only under certain conditions or time of day. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzamides; Biological Clocks; Circadian Rhythm; Cricetinae; Enkephalins; Light; Male; Mesocricetus; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Nerve Tissue Proteins; Opioid Peptides; Piperazines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Suprachiasmatic Nucleus | 2002 |
The selective kappa-opioid receptor agonist U50,488H attenuates voluntary ethanol intake in the rat.
Non-selective opioid receptor antagonists are increasingly used in the treatment of alcohol dependence. The clinical effects are significant but the effect size is rather small and unpleasant side effects may limit the benefits of the compounds. Ligands acting at mu- and/or delta- receptors can alter the voluntary intake of ethanol in various animal models. Therefore, the attenuating effects of selective opioid receptor ligands on ethanol intake may be of clinical interest in the treatment of alcoholism. The objective of this study was to examine the effects of a selective kappa-receptor agonist, U50,488H on voluntary ethanol intake in the rat. We used a restricted access model with a free choice between an ethanol solution (10% v/v) and water. During the 3-days baseline period, the rats received a daily saline injection (1 ml/kg, i.p.) 15 min before the 2 h access to ethanol. The animals had free access to water at all times. The control group received a daily saline injection during the 4-days treatment-period, whereas the treatment groups received a daily dose of U50,488H (2.5, 5.0 or 10 mg/kg per day). Animals treated with U50,488H dose-dependently decreased their ethanol intake. The effect of the highest dose of U50,488H was reduced by pre-treatment with the selective kappa-antagonist nor-binaltorphimine (nor-BNI). These results demonstrate that activation of kappa-opioid receptors can attenuate voluntary ethanol intake in the rat, and the data suggest that the brain dynorphin/kappa-receptor systems may represent a novel target for pharmacotherapy in the treatment of alcohol dependence. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Alcohol Drinking; Animals; Central Nervous System Depressants; Depression, Chemical; Drinking; Ethanol; Male; Naltrexone; Narcotic Antagonists; Rats; Rats, Inbred Lew; Receptors, Opioid, kappa | 2001 |
Ultrasonic vocalizations of preweanling rats: involvement of both alpha(2)-adrenoceptor and kappa-opioid receptor systems.
Stimulation of alpha(2)-adrenoceptors and kappa-opioid receptors increases the ultrasonic vocalizations of preweanling rats. The purpose of the present study was to determine whether alpha(2)-adrenoceptors and kappa-opioid receptors modulate ultrasonic vocalization production via a common mechanism. To that end, 11-day-old rats were injected with the alpha(2)-adrenoceptor antagonist yohimbine (0, 0.5, or 1.0 mg/kg, i.p.) or the kappa-opioid receptor antagonist nor-binaltorphimine (0, 5, or 10 mg/kg, i.p.). After 15 min, the same rats were injected with saline, the alpha(2)-adrenoceptor agonist clonidine (0.25 mg/kg, i.p.), or the kappa-opioid receptor agonist trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide methanesulfonate (U-50,488; 2.5 mg/kg, i.p.). Results showed that both clonidine and U-50,488 increased the ultrasonic vocalizations of preweanling rats. Not surprisingly, clonidine-induced ultrasonic vocalizations were blocked by yohimbine, while U-50,488-induced vocalizations were blocked by nor-binaltorphimine. Importantly, yohimbine also attenuated the vocalizations produced by U-50,488, whereas nor-binaltorphimine did not alter clonidine-induced ultrasonic vocalizations. Thus, it appears that alpha(2)-adrenoceptor and kappa-opioid receptor stimulation increases ultrasonic vocalization production via a common mechanism. It is likely that the kappa-opioid receptors responsible for modulating ultrasonic vocalizations are located "upstream" from the alpha(2)-adrenoceptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic alpha-Agonists; Adrenergic alpha-Antagonists; Analgesics, Non-Narcotic; Animals; Animals, Newborn; Animals, Suckling; Clonidine; Female; Male; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-2; Receptors, Opioid, kappa; Vocalization, Animal; Yohimbine | 2001 |
TRK-820, a selective kappa-opioid agonist, produces potent antinociception in cynomolgus monkeys.
TRK-820 ((-)-17-cyclopropylmethyl-3,14b-dihydroxy-4,5a-epoxy-6b-[N-methyl-trans-3-(3-furyl)acrylamide]morphinan hydrochloride) has been shown to be a potent opioid kappa-receptor agonist with pharmacological properties different from those produced by kappa1-opioid receptor agonists in rodents. To ascertain whether or not these properties of TRK-820 would be extended to primates, the antinociceptive effect of TRK-820 was evaluated in cynomolgus monkeys by the hot-water tail-withdrawal procedure. TRK-820 given intramuscularly (i.m.) produced a potent antinociceptive effect that was 295- and 495-fold more potent than morphine with the 50 degrees C and 55 degrees C hot-water tests, respectively, and 40-fold more potent than U-50,488H and 1,000-fold more potent than pentazocine in the 50 degrees C hot-water test. The duration of antinociceptive effects of TRK-820 treatment (0.01 and 0.03 mg/kg, i.m.) lasted more than 6 h, which was much longer than those of U-50,488H. The antinociception produced by the higher dose (0.03 mg/kg, i.m.) of TRK-820 was not inhibited by nor-binaltorphimine (3.2 and 10 mg/kg, s.c.) or by naloxone (0.1 mg/kg, s.c.), although the antinociception induced by a lower dose of TRK-820 (0.01 mg/kg, i.m.) was inhibited by nor-binaltorphimine (10 mg/kg, s.c.). The same doses of nor-binaltorphimine and naloxone effectively inhibited the antinociception induced by the higher doses of U-50,488H (1.0 mg/kg, i.m.) and morphine (10 mg/kg, i.m.), respectively. These results indicate that the antinociception induced by TRK-820 is less sensitive to nor-binaltorphimine and suggest that it is mediated by the stimulation of a subtype of kappa-opioid receptor different from the kappa-opioid receptor in cynomolgus monkeys. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Behavior, Animal; Macaca fascicularis; Morphinans; Morphine; Naloxone; Naltrexone; Pain Measurement; Pentazocine; Pentobarbital; Receptors, Opioid, kappa; Spiro Compounds | 2001 |
Norbinaltorphimine, a selective kappa-opioid receptor antagonist, induces an itch-associated response in mice.
We examined the possibility that scratching induced by norbinaltorphimine, a selective kappa-opioid receptor antagonist, is due to an itch sensation, using compound 48/80 as control pruritogenic agent. When norbinaltorphimine was injected s.c. into the rostral back, mice scratched the skin around the injection site with their hind paws. Although the intensity of the scratching could not be compared because the dose and injection route were different, the character and time course of the scratching behavior induced by compound 48/80 injected i.d. were similar to those with norbinaltorphimine. The scratching behavior induced by norbinaltorphimine was dose-dependently and significantly inhibited by pretreatment with chlorpheniramine. Compound 48/80-induced scratching was also dose-dependently and significantly inhibited by p.o. pretreatment with chlorpheniramine. The scratching behavior induced by norbinaltorphimine was dose-dependently and significantly inhibited by pretreatment with U-50,488H (trans-(+/-)-2-(3,4-dichlorophenyl)-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl] acetamide methansulfonate), a kappa-opioid receptor agonist. Unexpectedly, the scratching behavior induced by compound 48/80 was also dose-dependently and significantly reduced by pretreatment with U-50,488H. These results suggest that the injection of norbinaltorphimine into the rostral back of the mouse elicited scratching, which may be an itch-associated response. Furthermore, the scratching behavior produced by norbinaltorphimine may be due in part to the release of histamine followed by antagonism of kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antipruritics; Behavior, Animal; Chlorpheniramine; Dose-Response Relationship, Drug; Histamine H1 Antagonists; Injections, Subcutaneous; Mice; Mice, Inbred ICR; Naltrexone; p-Methoxy-N-methylphenethylamine; Pruritus; Receptors, Opioid, kappa | 2001 |
Inducible HSP70 mediates delayed cardioprotection via U-50488H pretreatment in rat ventricular myocytes.
To test the hypothesis that heat-shock proteins (HSPs) mediate delayed cardioprotection of prior kappa-opioid receptor (kappa-OR) stimulation, we first correlated cellular injury and viability with the expression of HSP70s in isolated rat ventricular myocytes subjected to prior kappa-OR stimulation with the selective agonist trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U-50488H) and delayed lethal simulated ischemia (LSI). Cell injury and viability were indicated by lactate dehydrogenase release and trypan blue exclusion, respectively. The reduced injury and increased viability after pretreatment with U-50488H were concentration dependent and correlated directly with the expression of both stress-inducible (HSP70) and constitutive (HSC70) proteins. The effects mimic those with metabolic inhibition preconditioning (MIP). The cardioprotection against LSI by pretreatment with U-50488H and MIP was abolished and antagonized, respectively, via blockade of the kappa-OR by its selective antagonist, nor-binaltorphimine. We also found that blockade of the production of HSP70 but not HSC70 blocked the inhibitory effect of pretreatment with U-50488H on injury and viability. These observations provide evidence that stress-inducible HSP70 mediates delayed cardioprotection of prior kappa-OR stimulation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Heart; Heart Ventricles; HSP70 Heat-Shock Proteins; Ischemic Preconditioning, Myocardial; L-Lactate Dehydrogenase; Male; Myocardial Ischemia; Myocardium; Naltrexone; Narcotic Antagonists; Oligonucleotides, Antisense; Protective Agents; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2001 |
Kappa-opioid receptors on lymphocytes of a human lymphocytic cell line: morphine-induced up-regulation as evidenced by competitive RT-PCR and indirect immunofluorescence.
We have previously shown that classical brain-like kappa opioid receptors (KOR) are constitutively expressed in lymphocytic cells. including human CEM x174 T-B hybrid cells, Jurkat -T4 cells, human peripheral blood mononuclear cells (PBMC), human CD4+ cells and monkey PBMC (Biochem. Biophys. Res. Commun. 209 (1995) 1003). The present study further demonstrates that the KOR of lymphocytes are activated in the presence of extracellular morphine or U50,488H, a KOR selective agonist, and the activation causes an increase in the expression of KOR mRNA, as determined by a quantitative competitive Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) procedure. The observed agonist-induced KOR up-regulation was blocked by treating the cells with either naloxone (a KOR-partially selective antagonist) or nor-binaltorphimine (a KOR-selective antagonist). Up-regulation of lymphocytic KOR by morphine was also evidenced by flow cytometric analysis of phycoerythrin (PE) amplification of fluorescein isothiocyanate-conjugated arylacetamide labeling of the KOR. Although morphine binds primarily to mu-opioid receptors, together with the previously reported phenomenon that morphine modulation of immune functions also exists in mu-opioid receptor knockout mice, the present study confirms that opioids such as morphine may exert their effects through multiple opioid receptor types and that the effects of morphine or endogenous opioids on immune cells could not be simply adduced from the anticipated effects of a synthetic, selective opioid receptor ligand. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Cell Line; Fluorescent Antibody Technique, Indirect; Humans; Lymphocytes; Morphine; Naltrexone; Narcotic Antagonists; Receptors, Opioid, kappa; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Up-Regulation | 2001 |
Administration of mu-, kappa- or delta2-receptor agonists via osmotic minipumps suppresses murine splenic antibody responses.
Previously, our laboratory has shown that morphine given by implantation of a 75-mg slow-release pellet for 48 h suppresses murine splenic antibody responses to sheep red blood cells (SRBCs) in a plaque-forming cell (PFC) assay. However, the use of slow-release pellets for such studies is limited, as these pellets are only available in fixed doses and similar pellets for kappa and delta agonists have not been developed. In the present study, we investigated the feasibility of administering opioids via Alzet osmotic minipumps to assess their immunomodulatory effects. Groups of mice received minipumps dispensing morphine sulfate, which has primary activity at the mu opioid receptor; U50,488H, which is a kappa-selective agonist; deltorphin II, which is a delta2-selective agonist; or DPDPE, which has greater selectivity for delta1 than delta, receptors. Morphine, U50,488H and deltorphin II were all immunosuppressive, with biphasic dose-response curves exhibiting maximal (approximately 50%) suppression of the PFC response at doses of 0.5 to 2 mg/kg/day 48 h after pump implantation. Further, immunosuppression by morphine sulfate, U50,488H or deltorphin II was blocked by simultaneous implantation of a minipump administering the opioid receptor-selective antagonists CTAP (1 mg/kg/day), nor-binaltorphimine (5 mg/kg/day), or naltriben (3 mg/kg/day), respectively. DPDPE was inactive at doses lower than 10 mg/kg/day. We conclude that osmotic minipumps are a practical and useful way of administering opioids to study their effects on the immune system, and give further evidence that immunosuppression induced in vivo by opioid agonists is mediated not only via mu, but also via kappa and delta2 opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Antibody Formation; Depression, Chemical; Dose-Response Relationship, Drug; Female; Immunosuppressive Agents; Infusion Pumps; Mice; Mice, Inbred C3H; Morphine; Naltrexone; Neuroimmunomodulation; Oligopeptides; Osmosis; Peptide Fragments; Peptides; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin; Spleen | 2001 |
kappa-Opioid receptors in the substantia nigra pars reticulata mediate the U-50,488-induced locomotor activity of preweanling rats.
The purpose of the present study was to determine the neuroanatomical location where kappa-opioid receptor stimulation induces locomotor activity in the preweanling rat. To confirm that the U-50,488-induced locomotor activity of preweanling rats is mediated by kappa-opioid receptors, 18-day-old rats were initially injected with vehicle or the kappa-opioid receptor agonist U-50,488 (5 mg/kg, s.c.) followed, 15 min later, by an injection of the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI; 0, 2, 4, 8, or 12 mg/kg, s.c.). In subsequent experiments, 18-day-old rats were injected with vehicle or U-50,488 (5 mg/kg, s.c.) 15 min prior to bilateral administration (0.25 or 0.5 microl per side) of nor-BNI (0, 5, 10, or 20 microg) into the substantia nigra pars reticulata (SNR) or medial dorsal striatum (MDS). In the final experiment, 18-day-old rats received bilateral administration (0.25 microl per side) of vehicle or U-50,488 (0.0, 0.8, 1.6, or 3.2 microg) into the SNR. Results showed that systemically administered nor-BNI (0-12 mg/kg, s.c.) produced a dose-dependent reduction in the U-50, 488-induced locomotor activity of preweanling rats. The site of action for U-50,488's locomotor-activating effects appeared to be the SNR, because (a) bilateral administration of nor-BNI (5, 10, or 20 microg) into the SNR caused a complete attenuation of U-50, 488-induced locomotion, and (b) bilateral administration of U-50,488 into the SNR caused a dose-dependent increase in the locomotor activity of preweanling rats. Striatal injections of nor-BNI did not affect U-50,488-induced locomotor activity. When these findings are considered together it is apparent that stimulation of kappa-opioid receptors in the SNR is both necessary and sufficient for the occurrence of U-50,488-induced locomotor activity in the preweanling rat. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Animals, Newborn; Behavior, Animal; Dose-Response Relationship, Drug; Female; Male; Microinjections; Motor Activity; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Opioid, kappa; Substantia Nigra | 2000 |
U50,488 protection against HIV-1-related neurotoxicity: involvement of quinolinic acid suppression.
The pathogenesis of human immunodeficiency virus type 1 (HIV-1) encephalopathy has been associated with multiple factors including the neurotoxin quinolinate (an endogenous N-methyl-D-aspartate [NMDA] receptor ligand) and viral proteins. The kappa opioid receptor (KOR) agonist U50,488 recently has been shown to inhibit HIV-1 p24 antigen production in acutely infected microglial cell cultures. Using primary human brain cell cultures in the present study, we found that U50,488 also suppressed in a dose-dependent manner the neurotoxicity mediated by supernatants derived from HIV-1-infected microglia. This neuroprotective effect of U50,488 was blocked by the KOR selective antagonist nor-binaltorphimine. The neurotoxic activity of the supernatants from HIV-1-infected microglia was blocked by the NMDA receptor antagonists 2-amino-5-phosphonovalerate and MK-801. HIV-1 infection of microglial cell cultures induced the release of quinolinate, and U50,488 dose-dependently suppressed quinolinate release by infected microglial cell cultures with a corresponding inhibition of HIV-1 p24 antigen levels. These findings suggest that the kappa opioid ligand U50,488 may have therapeutic potential in HIV-1 encephalopathy by attenuating microglial cell production of the neurotoxin quinolinate and viral proteins. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; AIDS Dementia Complex; Brain; Cells, Cultured; Cerebral Cortex; Fetus; HIV Core Protein p24; HIV-1; Humans; Microglia; Naltrexone; Narcotic Antagonists; Neuroprotective Agents; Quinolinic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, kappa | 2000 |
Kappa-opioid receptor stimulation increases the expression of Na+-H+ exchange gene in the heart.
Kappa-opioid receptor (OR) stimulation increases intracellular pH (pHi) via activating the Na+-H+ exchange (NHE). In the present study, we determined the expression of the gene of NHE1, the predominant NHE isoform in the heart, and intracellular pH (pHi) upon kappa-OR stimulation in the rat heart. We found that 1 microM U50,488H (trans-3,4-dichloro-N-methyl-N-(2-(1 pyrrolidinyl)cyclohexyl)benzeneacetamide), a selective kappa-OR agonist, increased the expression of the NHE1 gene. We also found that U50,488H dose-dependently increased pHi in the heart. The effects were abolished by 1 microM nor-binaltorphimine (nor-BNI), a selective kappa-OR antagonist, indicating that the events were kappa-OR mediated. The effects on both NHE1 gene expression and pHi were also abolished by 5 microM chelerythrine and 5 microM BSM (bisyndolylmaleimide), protein kinase C (PKC) inhibitors, indicating that PKC mediated the actions. In addition, the effect of U50,488H on pHi was blocked by 10 microM EIPA (ethylisopropyl amiloride), a NHE1 inhibitor, indicating that NHE1 also mediated the action of U50,488H. The present study provides evidence for the first time that kappa-OR stimulation increased the NHE1 gene expression in the heart via a PKC dependent pathway. Kappa-OR stimulation also increases pHi via PKC and NHE in the heart. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Gene Expression Regulation; Hydrogen-Ion Concentration; Male; Myocardium; Naltrexone; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Sodium-Hydrogen Exchangers | 2000 |
Changes in analgesia-producing mechanism of repeated cold stress loading in mice.
Functional changes in opioid receptors involved in analgesia of repeated cold stress (RCS)-loaded mice were investigated. The antinociceptive potency of morphine (4 mg/kg, PO) was not affected in normal mice by norbinaltorphimine (10 mg/kg, SC), but treatment with this agent resulted in a lower level of morphine-induced antinociception in RCS-loaded animals. The antinociceptive activity of U-50488H (3 mg/kg, SC) was increased in RCS-loaded mice. In contrast to hypersensitivity to U-50488H (1 and 10 microg, IT) noted in RCS-loaded mice, the antinociception induced by DAMGO (0.1 and 1 microg, ICV) was reduced compared to that of normal animals. Diazepam (1 mg/kg/day SC) was given during RCS loading, and this agent prevented the development of hyperalgesia and the decrease in the antinociceptive activity of DAMGO (1 microg, ICV) in RCS-loaded mice, but there was no effect on the enhancement of the antinociceptive potency of U-50488H (10 microg, IT). These results indicate that the RCS-loaded mice were hyposensitive to supraspinal mu-opioid receptor-mediated antinociception, whereas their antinociceptive activities through kappa-opioid receptor in the spinal cord were increased. Hypofunction of the supraspinal mu-opioid receptor due to anxiety may explain the mechanism involved in the lowering of the nociceptive threshold in RCS-loaded animals. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Anti-Anxiety Agents; Anxiety; Cold Temperature; Diazepam; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; Morphine; Naltrexone; Narcotic Antagonists; Pain Threshold; Receptors, Opioid, kappa; Receptors, Opioid, mu; Stress, Physiological | 2000 |
Mechanical activation of dorsal root ganglion cells in vitro: comparison with capsaicin and modulation by kappa-opioids.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca(2+)](i)) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by kappa-opioids. [Ca(2+)](i) responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca(2+)](i) increases which were abolished in Ca(2+)-free solution, but unaffected by lanthanum (25 microM) or tetrodotoxin (10(-6) M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd(3+); 250 microM) and amiloride (100 microM) abolished the [Ca(2+)](i) transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca(2+)](i) transients. The kappa-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca(2+)](i) transients but had little effect on capsaicin-induced [Ca(2+)](i) transients. The inhibitory effect of U50,488 was abolished by the kappa-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30-100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca(2+)](i) transients in small diameter DRG somas are mediated by influx of Ca(2+) through a Gd(3+)- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca(2+) transients are sensitive to kappa-opioid agonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amiloride; Animals; Benzyl Compounds; Calcium; Capsaicin; Cells, Cultured; Gadolinium; Ganglia, Spinal; In Vitro Techniques; Kinetics; Male; Naltrexone; Neurons; Physical Stimulation; Propylamines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 2000 |
Activation of c-fos expression in hypothalamic nuclei by mu- and kappa-receptor agonists: correlation with catecholaminergic activity in the hypothalamic paraventricular nucleus.
Administration of the preferential mu-opioid receptor agonist, morphine, and selective K-opioid receptor agonists elicits activation of the hypothalamus-pituitary-adrenocortical axis, although the site or the molecular mechanisms for these effects have not been determined. The expression ofFos, the protein product of the c-fos protooncogene, has been widely used as an anatomical marker of monitoring neuronal activity. In the present study we evaluated 1) the effects of the mu-opioid receptor agonist, morphine, and those of the selective K-opioid receptor agonist, trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl-]benzeneacet amide methane sulfonate (U-50,488H), administration on the expression of Fos in hypothalamic nuclei; and 2) the possible modification of the activity of noradrenergic neurons known to send afferent projections to the paraventricular nucleus (PVN), the site of CRF neurons involved in initiating ACTH secretion. Using immunohistochemical staining of Fos, the present results indicate that acute treatment with either morphine or U-50,488H induces marked Fos immunoreactivity within the hypothalamus, including the medial parvicellular PVN and supraoptic and suprachiasmatic nuclei. Pretreatment with naloxone attenuated the effect of morphine, whereas nor-binaltorphimine, a selective kappa-opioid receptor antagonist, abolished the effect of U-50,488H on Fos induction. Correspondingly, morphine and U-50,488H injection increased the production of the cerebral noradrenaline metabolite 3-methoxy-4-hydroxyphenylethylene glycol as well as noradrenaline turnover in the PVN. These effects were antagonized by naloxone and nor-bin-altorphimine, respectively. All of these findings are discussed in terms of specific events that couple opioid-induced activation of the hypothalamus-pituitary-adrenocortical axis and noradrenergic activity with changes in gene expression in selective hypothalamic nuclei. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Male; Methoxyhydroxyphenylglycol; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Norepinephrine; Paraventricular Hypothalamic Nucleus; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Suprachiasmatic Nucleus; Supraoptic Nucleus | 2000 |
Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats.
Previous studies showed that spinal opioidergic neurotransmission is markedly altered in the polyarthritic rat, a model of chronic inflammatory pain. Present investigations aimed at assessing possible changes in opioid-mediated control of the spinal outflow of met-enkephalin (ME) and dynorphin (DYN) in these animals. Intrathecal (i.t.) perfusion under halothane anesthesia showed that polyarthritis was associated with both a 40% decrease in the spinal outflow of ME-like material (MELM) and a 90% increase in that of DYNLM. Local treatment with the mu-opioid agonist DAGO (10 microM i.t.) inhibited equally (-30%) the MELM outflow in polyarthritic and control rats, whereas the delta agonist DTLET (10 microM i.t.) also reduced the peptide outflow in controls (-27%) but enhanced it in polyarthritic animals (+56%). On the other hand, both DAGO (10 microM i.t.) and DTLET (10 microM i.t.) decreased (-40 and -49%) DYNLM outflow in polyarthritic rats, but were inactive in controls. Finally, neither MELM outflow nor that of DYNLM were affected by the kappa-agonist U50488H (10 microM i.t.) in both groups of rats. In all cases, the changes due to active agonists could be prevented by specific antagonists which were inactive on their own except the kappa antagonist nor-binaltorphimine (10 microM i.t.) that decreased (-38%) DYNLM outflow in polyarthritic rats. These data indicate that functional changes in spinal opioid receptors may promote enkephalinergic neurotransmission and reduce dynorphinergic neurotransmission in polyarthritic rats, thereby contributing to the analgesic efficacy of opioids in inflammatory pain. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Anesthesia; Animals; Arthritis; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Iodine Radioisotopes; Ligands; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord | 2000 |
Kappa-opioid receptor modulation of nicotine-induced behaviour.
The ability of kappa-opioid receptor ligands to modulate dependence-related behavioural effects of drugs like morphine and cocaine is well documented. The present study examined the effects of kappa-opioid agonists on nicotine-induced locomotor stimulation in rats chronically pre-exposed to nicotine (0.4 mg/kg/day). U50,488 [0.5-3 mg/kg subcutaneously (s.c.)], U69,593 [0.08-0.32 mg/kg intraperitoneally (i.p.)] and CI-977 (0.005-0.02 mg/kg s.c.) administered 30 min prior to nicotine (0.06, 0.2 and 0.4 mg/kg s.c.) dose-dependently antagonised its acute locomotor-activating effect, which was completely prevented by the highest tested dose of each agonist. Baseline activity was unaffected by the largest doses of U50,488 and U69,593, but it was reduced by 0.01 and 0.02 mg/kg of CI-977. The selective kappa-opioid receptor antagonist nor-BNI [30 microg intracerebroventricularly (i.c.v.)] blocked the effects of U69,593 on nicotine-induced behaviour, thus supporting the involvement of kappa-opioid receptors in this effect. In conclusion, the activation of kappa-opioid receptors clearly prevented nicotine-induced locomotor stimulation. The effects of at least two of the kappa-opioid agonists were not due to a general motor suppression. It is suggested that the mechanism entails a depression of nicotine-induced increases in accumbal dopamine by these compounds. The results should encourage further research on the role of the kappa-opioid system in the behavioural and neurochemical effects of nicotine, including those related to nicotine dependence. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Benzeneacetamides; Benzofurans; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Motor Activity; Naltrexone; Nicotine; Nicotinic Agonists; Pyrrolidines; Rats; Receptors, Opioid, kappa | 2000 |
Spinal kappa-opioid system plays an important role in suppressing morphine withdrawal syndrome in the rat.
To explore the possible involvement of spinal kappa-opioid receptor in modulating morphine withdrawal syndrome, rats were made dependent on morphine by multiple injections of morphine HCl for 5 days. They were then given intrathecal administration (i.t.) of a kappa-opioid receptor agonist trans-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzenacetamide hydrochloride (U-50,488H, 2.5-10 microg) or its antagonist nor-binaltorphimine (nor-BNI, 1.25-5 microg), followed by intraperitoneal administration (i.p.) of naloxone (0.5 mg/kg), and the withdrawal syndrome was scored for 60 min. U-50,488H produced a dose-dependent suppression, whereas nor-BNI a dose-dependent potentiation in withdrawal syndrome. The latter result implies that an endogenous kappa receptor agonist, most probably dynorphin, exerts a tonic suppressive effect on morphine syndrome at spinal level. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Male; Morphine; Naltrexone; Narcotic Antagonists; Rats; Rats, Wistar; Receptors, Opioid, kappa; Substance Withdrawal Syndrome | 2000 |
Dose- and time-dependent bimodal effects of kappa-opioid agonists on locomotor activity in mice.
The kappa-opioid agonists U50488H, bremazocine, and BRL52537, and the mu-opioid agonist morphine were compared in their ability to modify spontaneous motor activity in male NMRI mice. Higher, analgesic doses of the kappa-agonists reduced rearing, motility, and locomotion in nonhabituated mice. These effects, as well as the analgesic action of U50488H, were blocked by the selective kappa-opioid antagonists nor-binaltorphimine and DIPPA. In contrast, lower, subanalgesic doses (1.25 and 2.5 mg/kg for U50488H; 0.15 and 0.075 mg/kg for bremazocine, and 0.1 mg/kg for BRL52537) time dependently increased motor activity. The stimulatory effects of U50488H and bremazocine were not observed in habituated animals and were reduced by dopamine depletion. Surprisingly, the stimulatory effects of U50488H and bremazocine were not blocked by nor-binaltorphimine and DIPPA but they were completely eliminated by naloxone (0.1 mg/kg). The effects of morphine were dose-dependent; an initial limited suppression was followed by increased motility and locomotion (but not rearing) with a peak effect at 20 mg/kg both in habituated and nonhabituated mice. The selective mu-opioid antagonist beta-funaltrexamine blocked morphine-induced motor stimulation and analgesia but failed to affect the analgesic and motor stimulatory effects of U50488H. The results indicate that kappa-opioid agonists interact with different functional subtypes of opioid receptors. A stimulatory, naloxone-sensitive but nor-binaltorphimine- and DIPPA-insensitive subtype of opioid receptor appears to operate only when the dopamine system is tonically active in nonhabituated animals. At higher doses, kappa-agonists produce analgesia and motor suppression, effects mediated by a "classic" (inhibitory) kappa-opioid receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetamides; Animals; Benzomorphans; Dose-Response Relationship, Drug; Isothiocyanates; Male; Mice; Morphine; Motor Activity; Naloxone; Naltrexone; Receptors, Opioid, kappa; Time Factors | 2000 |
Place aversion induced by blockade of mu or activation of kappa opioid receptors in the dorsal periaqueductal gray matter.
Neural circuits in the dorsal periaqueductal grey matter (DPAG) play an important role in the integration of defensive behaviour. As considerable numbers of mu and kappa opioid receptors have been found in this region, we studied the effects of morphine, [3H]-[H-D-Phe-Cys-Tyr- D-Trp-Orn-Thr-Pen-Thr-NH2] (CTOP), a selective peptide antagonist for mu opioid receptors, U-50488H, a specific agonist for kappa opioid receptors, and nor-binaltorphimine (nor-BNI), a long-lasting selective antagonist for kappa opioid receptors, injected into the DPAG of rats submitted to the corral method, a conditioned place preference test. The behavioural testing apparatus was a circular open field consisting of four uniform quadrants that were equally preferred by the rats prior to drug treatments. For conditioning, rats received drug injections on three consecutive days and were placed into their assigned quadrant. Injection of 40 nmol of morphine into the DPAG produced place aversion effects, with reduced time spent in the drug-paired quadrant on the testing day. These place aversion effects were not inhibited by previous DPAG microinjection of CTOP (1 nmol) but were significantly reduced by prior systemic injections of nor-BNI (2 mg / kg). Microinjection of CTOP alone produced a clear decrease in the time spent in the treatment quadrant, whereas nor-BNI alone did not. Similarly, microinjection into the DPAG of the kappa agonist U-50488H (10 nmol) mimicked the effects of morphine, also producing place aversion for the drug-paired quadrant. These findings suggest that blockade of mu opioid receptors or activation of kappa opioid receptors in the DPAG may produce conditioned place aversion. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Behavior, Animal; Conditioning, Operant; Dose-Response Relationship, Drug; Male; Morphine; Naltrexone; Periaqueductal Gray; Rats; Rats, Wistar; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 2000 |
Activation of peripheral kappa opioid receptors inhibits capsaicin-induced thermal nociception in rhesus monkeys.
8-Methyl-N-vanillyl-6-nonenamide (capsaicin) was locally applied in the tail of rhesus monkeys to evoke a nociceptive response, thermal allodynia, which was manifested as reduced tail-withdrawal latencies in normally innocuous 46 degrees C water. Coadministration of three kappa opioid ligands, U50,488 (3.2-100 microgram), bremazocine (0.1-3.2 microgram), and dynorphin A(1-13) (3.2-100 microgram), with capsaicin in the tail dose-dependently inhibited capsaicin-induced allodynia. This local antinociception was antagonized by a small dose of an opioid antagonist, quadazocine; (0.32 mg), applied in the tail; however, this dose of quadazocine injected s.c. in the back did not antagonize local U50,488. Comparing the relative potency of either agonist or antagonist after local and systemic administration confirmed that the site of action of locally applied kappa opioid agonists is in the tail. In addition, local nor-binaltorphimine (0.32 mg) and oxilorphan (0.1-10 microgram) antagonist studies raised the possibility of kappa opioid receptor subtypes in the periphery, which indicated that U50,488 produced local antinociception by acting on kappa1 receptors, but bremazocine acted probably on non-kappa1 receptors. These results provide functional evidence that activation of peripheral kappa opioid receptors can diminish capsaicin-induced allodynia in primates. This experimental pain model is a useful tool for evaluating peripherally antinociceptive actions of kappa agonists without central side effects and suggests new approaches for opioid pain management. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Azocines; Benzomorphans; Capsaicin; Dynorphins; Female; Hot Temperature; Ligands; Macaca mulatta; Male; Naltrexone; Narcotic Antagonists; Pain Measurement; Peptide Fragments; Receptors, Opioid, kappa | 1999 |
Effects of U50488 and bremazocine on [Ca2+]i and cAMP in naive and tolerant rat ventricular myocytes: evidence of kappa opioid receptor multiplicity in the heart.
To explore the existence of multiplicity of kappa receptor in the heart, two series of experiments were performed. In the first we studied the antagonistic actions of nor-BNI, a selective kappa 1 antagonist, and quadazocine, a preferential kappa 2 antagonist, against the effects of U50488, a selective kappa 1 agonist, and bremazocine, a universal agonist preferentially binding to kappa 2 receptor, on the electrically stimulated [Ca2+]i transient and forskolin-stimulated cAMP accumulation in the rat ventricular myocyte. In the second series of experiments, we determined and compared the effects of above two kappa receptor agonists in the ventricular myocytes made insensitive to kappa 1 and kappa 2 agonists by prior exposure to the respective agonists. At the concentration range of 3 x 10(-6)-3 x 10(-5) M, both U50488 and bremazocine dose-dependently inhibited the [Ca2+]i transient induced by electrical stimulation. The inhibitory effects of U50488 and bremazocine were antagonized by nor-BNI and quadazocine. The antagonistic actions of nor-BNI were significantly greater against the effects of U50488, but smaller against the effects of bremazocine than those of quadazocine. At 1 x 10(-6)-5 x 10(-5) M, both U50488 and bremazocine dose-dependently and significantly inhibited the forskolin-induced cAMP accumulation. The inhibitory effect of 30 microM U50488 on cAMP accumulation was significantly attenuated by 5 microM nor-BNI, but not by quadazocine at the same concentration; whereas the effect of 30 microM bremazocine was significantly blocked by 5 microM quadazocine, but not by nor-BNI at the same concentration. The inhibitory effect of 30 microM U50488 on electrically stimulated [Ca2+]i was abolished by preincubation of myocytes with 10(-6) M U50488 for 24 h, but not with 10(-6) M bremazocine for h; whereas the inhibitory effect of 30 microM bremazocine on electrically stimulated [Ca2+]i transient was significantly attenuated after incubation of the myocyte with 10(-6) M bremazocine for 24 h, but not with 10(-6) M U50488 for 24 h. The observations indicate the existence of kappa receptor subtypes in the rat heart. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Azocines; Benzomorphans; Calcium; Cells, Cultured; Colforsin; Cyclic AMP; Drug Resistance; Electric Stimulation; Heart; Heart Ventricles; Male; Naltrexone; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 1999 |
Different roles of mu-, delta- and kappa-opioid receptors in ethanol-associated place preference in rats exposed to conditioned fear stress.
The present study was designed to investigate the role of the endogenous opioid system in the development of ethanol-induced place preference in rats exposed to conditioned fear stress (exposure to an environment paired previously with electric foot shock), using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) with conditioned fear stress induced significant place preference. Naloxone (1 and 3 mg/kg, s.c.), a non-selective opioid receptor antagonist, significantly attenuated this ethanol-induced place preference. Moreover, the selective mu-opioid receptor antagonist beta-funaltrexamine (3 and 10 mg/kg, i.p.) and the selective delta-opioid receptor antagonist naltrindole (1 and 3 mg/kg, s.c.) significantly attenuated ethanol-induced place preference. In contrast, the selective kappa-opioid receptor antagonist nor-binaltorphimine (3 mg/kg, i.p.) significantly enhanced ethanol-induced place preference. Furthermore, 75 mg/kg ethanol (which tended to produce place preference) combined with the mu-opioid receptor agonist morphine (0.1 mg/kg, s.c.) or the selective delta-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha- octahydroquinolino [2,3,3,-g] isoquinoline (TAN-67; 20 mg/kg, s.c.), at doses which alone did not produce place preference, produced significant place preference. However, co-administration of the selective kappa-opioid receptor agonist trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide methanesulfonate (U50,488H; 0.3 and 1 mg/kg, s.c.) with ethanol (300 mg/kg, i.p.) dose dependently attenuated ethanol-induced place preference. Moreover, conditioned fear stress shifted the response curve for the aversive effect of U50,488H to the left. These results suggest that mu- and delta-opioid receptors may play critical roles in the rewarding mechanism of ethanol, and that kappa-opioid receptors may modulate the development of the rewarding effect of ethanol under psychological stress. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Behavior, Animal; Central Nervous System Depressants; Conditioning, Psychological; Ethanol; Fear; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Quinolines; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Stress, Psychological | 1999 |
Opioidergic modulation of voltage-activated K+ currents in magnocellular neurons of the supraoptic nucleus in rat.
Opioidergic modulation plays an important role in the control of oxytocin and vasopressin release by magnocellular neurons (MCNs) in the supraoptic and paraventricular nuclei of the hypothalamus. We have used whole cell patch-clamp recording in acute slices of the supraoptic nucleus (SON) of the hypothalamus to study opioidergic modulation of voltage-dependent K+ currents in MCNs that are involved in release activity. The mu-receptor agonist D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin (DAMGO, 2 microM) affected K+ currents in 55% of magnocellular neurons recorded from. In these putative oxytocinergic cells, DAMGO increased the delayed rectifier current (IK(V)) amplitude by approximately 50% without significant effects on its activation kinetics. The transient A current (IA) was enhanced by DAMGO by approximately 36%. Its inactivation kinetic was accelerated slightly while the voltage dependence of steady-state inactivation was shifted by -6 mV to more negative potentials. All DAMGO effects were blocked by the preferential non-kappa-opioid antagonist naloxone (10 microM). The kappa-opioid agonist trans-(+/-)-3, 4-dichloro-N-methyl-N(2-[1-pyrrolidinyl]cyclohexyl)benzeneacetamide (U50,488; 10 microM) strongly suppressed IK(V) by approximately 57% and evoked a 20-mV hyperpolarizing shift and an acceleration of activation in both, DAMGO-sensitive and -insensitive putative vasopressinergic MCNs. U50,488 reduced IA by approximately 29% and tau of inactivation by -20% in DAMGO-sensitive cells. In contrast, in DAMGO-insensitive cells U50,488 increased IA by approximately 23% and strongly accelerated inactivation (tau -44%). The effects of U50,488 were suppressed by the selective kappa-receptor antagonist nor-binaltorphimine (5 microM). We conclude that mu- and kappa-opioidergic inputs decrease and increase excitability of oxytocinergic MCNs, respectively, through modulation of voltage-dependent K+ currents. In vasopressinergic MCNs, kappa-opioidergic inputs differentially modulate these K+ currents. The modulation of K+ currents is assumed to significantly contribute to opioidergic control of hormone release by MCNs within the supraoptic nucleus and from the axon terminals in the neural lobe. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Ion Channel Gating; Membrane Potentials; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Patch-Clamp Techniques; Potassium Channels; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Supraoptic Nucleus | 1999 |
Analgesia-producing mechanism of processed Aconiti tuber: role of dynorphin, an endogenous kappa-opioid ligand, in the rodent spinal cord.
The analgesia-producing mechanism of processed Aconiti tuber was examined using rodents whose nociceptive threshold was decreased by loading repeated cold stress (RCS). The antinociceptive effect of processed Aconiti tuber (0.3 g/kg, p.o.) in RCS-loaded mice was antagonized by pretreatment with a kappa-opioid antagonist, nor-binaltorphimine (10 mg/kg, s.c.), and was abolished by an intrathecal injection of anti-dynorphin antiserum (5 microg). The Aconiti tuber-induced antinociception was inhibited by both dexamethasone (0.4 mg/kg, i.p.) and a dopamine D2 antagonist, sulpiride (10 mg/kg, i.p.), in RCS-loaded mice, and it was eliminated by both an electric lesion of the hypothalamic arcuate nucleus (HARN) and a highly selective dopamine D2 antagonist, eticlopride (0.05 microg), administered into the HARN in RCS-loaded rats. These results suggest that the analgesic effect of processed Aconiti tuber was produced via the stimulation of kappa-opioid receptors by dynorphin released in the spinal cord. It was also shown that dopamine D2 receptors in the HARN were involved in the expression of the analgesic activity of processed Aconiti tuber. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Administration, Topical; Analgesics; Animals; Arcuate Nucleus of Hypothalamus; Cold Temperature; Dexamethasone; Dopamine Antagonists; Drugs, Chinese Herbal; Dynorphins; Glucocorticoids; Hypothalamus; Immune Sera; Ligands; Male; Mice; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Salicylamides; Spinal Cord; Sulpiride | 1999 |
Cardioprotection of preconditioning by metabolic inhibition in the rat ventricular myocyte. Involvement of kappa-opioid receptor.
To determine whether opioid receptors (ORs) are involved in the delayed cardioprotection of ischemic preconditioning (IP), the effect of severe metabolic inhibition (MI) with a glucose-free buffer that contained sodium cyanide and 2-deoxy-D-glucose on the viability of isolated rat ventricular myocytes was first determined 20 hours after preconditioning with a sublethal metabolic inhibition (MIP) with a glucose-free buffer that contained 2-deoxy-D-glucose and lactate for 30 minutes in the presence of OR antagonists. With the use of trypan blue exclusion as an index of cell viability, severe MI killed >60% of the cells and the value increased significantly after MIP. In the presence of 5x10(-6) mol/L nor-binaltorphimine (nor-BNI), a selective kappa-OR antagonist, but not 5x10(-6) mol/L CTOP, a selective mu-OR antagonist, or 5x10(-6) mol/L naltrindole, a selective delta-OR antagonist, the cardioprotection of MIP was significantly attenuated. To verify the role of kappa-OR, we studied the effects of severe MI after pretreatment with the kappa-OR agonist U50,488H (UP) for 30 minutes. U50,488H at 3x10(-6) to 1x10(-4) mol/L increased cell viability concentration-dependently with an EC50 of 3.311x10(-6) mol/L. In the presence of 5x10(-6) nor-BNI, the cardioprotection of UP (3x10(-5) mol/L) was blocked. A time course study showed that UP-induced cardioprotection occurred in 2 windows: the first occurred approximately 1 hour later and the other occurred 16 to 20 hours later. Additional studies on cell contraction and intracellular Ca2+ ([Ca2+]i) revealed that both UP and MIP attenuated the inhibitory effects of severe MI on contractility and electrically induced [Ca2+]i transient in single ventricular myocytes. On blockade of protein kinase C, the delayed cardioprotections of UP and MIP were significantly attenuated. In conclusion, the results of the present study have provided evidence that kappa-OR mediates the cardioprotection of MIP, which may involve protein kinase C and [Ca2+]i. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Calcium; Cell Survival; Electrophysiology; Energy Metabolism; Heart Ventricles; In Vitro Techniques; Ischemic Preconditioning, Myocardial; Membrane Potentials; Muscle Fibers, Skeletal; Myocardial Contraction; Myocardial Ischemia; Myocardium; Naltrexone; Narcotic Antagonists; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Trypan Blue | 1999 |
Kappa opioid receptor agonists differentially inhibit two classes of rat spinal neurons excited by colorectal distention.
Quantitative neurophysiological studies have identified the presence of at least 2 spinal neuronal populations (abrupt and sustained) that are excited by the noxious visceral stimulus colorectal distention. This study examined the effects of the kappa opioid receptor agonists fedotozine and U50488H on the activity of these neurons.. In decerebrate, cervical spinal cord-transected male rats, the lumbosacral spinal cord was exposed by a laminectomy. Dorsal horn neurons showing excitatory responses to colorectal distention (80 mm Hg, 20 seconds) were identified using microelectrodes. Cumulative doses of fedotozine and U50488H were administered intravenously or intrathecally, and antagonists were used.. Intravenous fedotozine and U50488H dose-dependently inhibited the evoked activity of sustained neurons. This inhibition was partially reversed by the kappa opioid antagonist norbinaltorphimine. The same agents had insignificant effects on the evoked activity of abrupt neurons. Fedotozine inhibited spontaneous activity of both abrupt and sustained neurons. Intrathecally administered U50488H had no effect on abrupt or sustained neurons, but intrathecally administered fedotozine inhibited the evoked and spontaneous activity of both groups.. Kappa opioid receptor agonists acting peripherally had differential effects on 2 spinal neuronal populations responsive to colorectal distention. Fedotozine had additional inhibitory effects acting within the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzyl Compounds; Colon; Male; Naltrexone; Propylamines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Rectum; Spinal Cord | 1999 |
Interactions between cholecystokinin and opioids in the isolated guinea-pig ileum.
1. Although cholecystokinin octapeptide sulphate (CCK-8) activates the opioid system of isolated guinea-pig ileum (GPI) whether it activates the mu- or kappa-system, or both, remains unclear. Neither is it known whether CCK-8 influences the withdrawal responses in GPI preparations briefly exposed to opioid agonists. This study was designed to clarify whether CCK-8 activates mu- or kappa-opioid systems or both; and to investigate its effect on the withdrawal contractures in GPI exposed to mu- or kappa-agonists and on the development of tolerance to the withdrawal response. 2. In GPI exposed to CCK-8, the selective kappa-antagonist nor-binaltorphimine elicited contractile responses that were concentration-related to CCK-8 whereas the selective mu-antagonist cyprodime did not. 3. In GPI preparations briefly exposed to the selective mu-agonist, dermorphin, or the selective kappa-agonist, U-50, 488H, and then challenged with naloxone, CCK-8 strongly enhanced the withdrawal contractures. 4. During repeated opioid agonist/CCK-8/opioid antagonist tests tolerance to opioid-induced withdrawal responses did not develop. 5. These results show that CCK-8 preferentially activates the GPI kappa-opioid system and antagonizes the mechanism(s) that control the expression of acute dependence in the GPI. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphinans; Muscle Contraction; Naloxone; Naltrexone; Oligopeptides; Opioid Peptides; Receptor, Cholecystokinin A; Receptor, Cholecystokinin B; Receptors, Cholecystokinin; Receptors, Opioid; Sincalide; Substance Withdrawal Syndrome | 1999 |
Differential antagonism of the rate-decreasing effects of kappa-opioid receptor agonists by naltrexone and norbinaltorphimine.
Eight kappa-opioid receptor agonists were examined for their effects in squirrel monkeys responding under a fixed interval 3-min schedule of stimulus termination. Six of these kappa-opioid receptor agonists decreased dose-dependently the total number of responses and with an order of potency consistent with kappa-opioid receptor interaction. Three of these kappa-opioid receptor agonists, bremazocine, U69,593 [[(5a,7a,8b)-(+)-N-[7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl)] benzeneacetamide] and enadoline, were evaluated following pretreatment with 1.0 mg/kg of naltrexone or 3.0 mg/kg of norbinaltorphimine. The effects of the three agonists were antagonized significantly by naltrexone, but only those of bremazocine and U69,593 were antagonized significantly by norbinaltorphimine. Statistical analysis of the data averaged over six monkeys revealed that naltrexone was significantly more potent than norbinaltorphimine at antagonizing enadoline and U69,593, but naltrexone and norbinaltorphimine were equipotent at antagonizing bremazocine. Moreover, naltrexone was 8-fold more potent at antagonizing U69,593 and enadoline than at antagonizing bremazocine. These results suggest that under these conditions the effects of U69,593 and enadoline may be mediated, in part, by a different receptor population, perhaps a subtype of kappa-opioid receptors, from the one that mediates the effects of bremazocine. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Behavior, Animal; Benzeneacetamides; Benzofurans; Benzomorphans; Conditioning, Operant; Dose-Response Relationship, Drug; Ethylketocyclazocine; Nalorphine; Naltrexone; Narcotic Antagonists; Pyrroles; Pyrrolidines; Receptors, Opioid, kappa; Reinforcement Schedule; Saimiri; Thiophenes | 1999 |
Anti-arrhythmic effect of kappa-opioid receptor stimulation in the perfused rat heart: involvement of a cAMP-dependent pathway.
During myocardial ischaemia the beta-adrenoceptor is activated, which contributes, at least partly, to cardiac arrhythmias via inducing [Ca2+]i oscillations. Since beta-adrenoceptor is negatively modulated by the kappa-opioid receptor in the heart, the present study attempted to determine if kappa-opioid receptor stimulation modulates the arrhythmogenic action of beta-adrenoceptor stimulation and to delineate the underlying mechanism. The effect of U50,488H, a selective kappa-opioid agonist, on arrhythmias in the isolated perfused rat heart subjected to low flow and 10(-6)mol/l norepinephrine (NE) were determined. Low flow induced arrhythmias, which were potentiated by NE, but not by 10(-6)mol/l U50,488H. The arrhythmia-potentiating effect of NE was antagonized by 10(-6)mol/l propranolol, a beta-adrenoceptor antagonist. U50,488H at 10(-6)mol/l also abolished the potentiation in arrhythmias by NE without affecting the arrhythmias induced by low flow. The anti-arrhythmic action of the kappa-opioid receptor agonist was abolished by 10(-6)mol/l nor-binaltorphimine, a selective kappa-opioid receptor antagonist, but not by 10(-7)mol/l calphostin C, an inhibitor of protein kinase C. Similarly, kappa-opioid receptor stimulation with U50,488H also abolished the NE-induced [Ca2+]i oscillations which are believed to cause cardiac arrhythmias, in ventricular myocytes. To determine whether the inhibitory actions of U50,488H against the effects of beta-adrenoceptor stimulation was via a cAMP-dependent or a cAMP-independent pathway, we determined the effects of U50,488H on NE-enhanced cAMP production and [Ca2+]i oscillations induced by either forskolin, an activator of adenylate cyclase, or Bay K-8644, a selective L-type Ca2+ channel agonist, in the ventricular myocytes. We found that U50,488H abolished the effect of forskolin, but did not alter the effect of Bay K-8644, on [Ca2+]i oscillations in the ventricular myocyte. In addition, U50, 488H also attenuated significantly the NE-induced elevation in cAMP in the heart. The observations suggest that kappa-opioid receptor stimulation abolishes the effect of beta-adrenoceptor stimulation on arrhythmias and [Ca2+]i oscillation via a cAMP-dependent pathway. The finding may be useful for the prevention and treatment of ischaemic heart diseases. Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic beta-Antagonists; Animals; Anti-Arrhythmia Agents; Arrhythmias, Cardiac; Calcium; Colforsin; Cyclic AMP; Cytosol; Electric Stimulation; Electrocardiography; Heart; Heart Rate; In Vitro Techniques; Male; Myocardial Contraction; Naltrexone; Norepinephrine; Propranolol; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 1999 |
Intracisternal nor-binaltorphimine distinguishes central and peripheral kappa-opioid antinociception in rhesus monkeys.
Systemic administration of nor-binaltorphimine (nor-BNI) produces a long-lasting kappa-opioid receptor (kappaOR) antagonism and has kappa(1)-selectivity in nonhuman primates. The aim of this study was to establish the pharmacological basis of central kappaOR antagonism in rhesus monkeys (Macaca mulatta). After intracisternal (i.c.) administration of small doses of nor-BNI, the duration and selectivity of nor-BNI antagonism were evaluated against two kappaOR agonists, (trans)-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]benzeneacetamide (U50,488) and bremazocine. Thermal antinociception was measured in the warm water (50 degrees C) tail-withdrawal assay and sedation was evaluated by observers blind to treatment conditions. Following i.c. pretreatment with 0.32 mg nor-BNI, a 5- to 10-fold rightward shift of the U50,488 baseline dose-effect curve was observed in antinociception. In contrast, this dose of nor-BNI only produced an insignificant 2-fold shift against bremazocine. Pretreatment with a smaller dose (0.032 mg) of nor-BNI produced a 3-fold shift of U50, 488, which lasted for 7 days, but failed to alter the potency of bremazocine. This differential antagonism profile of i.c. nor-BNI also was observed in sedation ratings. In addition, the centrally effective dose of nor-BNI (0.32 mg), when administered s.c. in the back, did not antagonize either U50,488- or bremazocine-induced antinociception and sedation. After i.c. pretreatment with the same dose, nor-BNI also did not antagonize the peripherally mediated effect of U50,488 against capsaicin-induced thermal nociception in the tail. These results indicate that i.c. nor-BNI produces central kappaOR antagonism and support the notion of two functional kappaOR subtypes in the central nervous system. Moreover, it provides a valuable pharmacological basis for further characterizing different sources of kappaOR-mediated effects, namely, from central or peripheral nervous system receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Opioid; Animals; Benzomorphans; Central Nervous System; Cisterna Magna; Dose-Response Relationship, Drug; Female; Hot Temperature; Injections; Macaca mulatta; Male; Naltrexone; Narcotic Antagonists; Peripheral Nervous System; Receptors, Opioid, kappa | 1999 |
Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPgammaS binding and immunohistochemistry.
1 Although the ORL1 receptor is clearly located within the spinal cord, the functional signalling mechanism of the ORL1 receptor in the spinal cord has not been clearly documented. The present study was then to investigate the guanine nucleotide binding protein (G-protein) activation mediated through by the ORL1 receptor in the mouse spinal cord, measuring the modulation of guanosine-5'-o-(3-[35S]-thio) triphosphate ([35S]-GTPgammaS) binding by the putative endogenous ligand nociceptin, also referred as orphanin FQ. We also studied the anatomical distribution of nociceptin-like immunoreactivity and nociceptin-stimulated [35S]-GTPgammaS autoradiography in the spinal cord. 2 Immunohistochemical staining of mouse spinal cord sections revealed a dense plexus of nociceptin-like immunoreactive fibres in the superficial layers of the dorsal horn throughout the entire length of the spinal cord. In addition, networks of fibres were seen projecting from the lateral border of the dorsal horn to the lateral grey matter and around the central canal. 3 In vitro [35S]-GTPgammaS autoradiography showed high levels of nociceptin-stimulated [35S]-GTPgammaS binding in the superficial layers of the mouse dorsal horn and around the central canal, corresponding to the areas where nociceptin-like immunoreactive fibres were concentrated. 4 In [35S]-GTPgammaS membrane assay, nociceptin increased [35S]-GTPgammaS binding of mouse spinal cord membranes in a concentration-dependent and saturable manner, affording maximal stimulation of 64.1+/-2.4%. This effect was markedly inhibited by the specific ORL1 receptor antagonist [Phe1Psi (CH2-NH) Gly2] nociceptin (1 - 13) NH2. None of the mu-, delta-, and kappa-opioid and other G-protein-coupled receptor antagonists had a significant effect on basal or nociceptin-stimulated [35S]-GTPgammaS binding. 5 These findings suggest that nociceptin-containing fibres terminate in the superficial layers of the dorsal horn and the central canal and that nociceptin released in these areas may selectively stimulate the ORL1 receptor to activate G-protein. Furthermore, the unique pattern of G-protein activation in the present study provide additional evidence that nociceptin is distinct from the mu-, delta- or kappa-opioid system. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Atropine; Autoradiography; Baclofen; Binding, Competitive; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Haloperidol; Immunohistochemistry; In Vitro Techniques; Male; Membranes; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Propranolol; Receptors, Opioid; Somatostatin; Spinal Cord; Sulfur Radioisotopes; Yohimbine | 1999 |
ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides.
The ATP-gated K(+) channel openers - diazoxide, levcromakalim and morphine - enhance K(+) efflux by opening ATP-gated K(+) channels, thereby inducing cell hyperpolarization. Hyperpolarization decreases intracellular Ca(2+) levels, which leads to a decrease in neurotransmitter release contributing to the antinociceptive effects of the drugs. Previous findings implicate the release of endogenous opioids as the mediator of the antinociceptive effects of ATP-gated K(+) channel openers. Diazoxide and levcromakalim, administered intracerebroventricularly (i.c.v.), produced dose-dependent antinociception as determined by the tail-flick method ¿ED(50) 44 microg/mouse [95% confidence limits (CLs) from 28 to 68 microg/mouse] for diazoxide¿. Glyburide (10 microg/mouse), an ATP-gated K(+) channel antagonist, attenuated the effects of diazoxide, levcromakalim and morphine. Diazoxide- and levcromakalim-induced antinociception were both antagonized by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide), a mu-opioid receptor selective antagonist, and ICI 174,864 (N, N-diallyl-Tyr-Aib-Aib-Phe-Leu), a delta-opioid receptor antagonist, but were differentially attenuated by the kappa-opioid receptor antagonist, nor-Binaltorphimine. Combinations of inactive doses of the K(+) channel openers and opioid receptor agonists produced significant antinociceptive enhancement. Diazoxide (2 microg/mouse) shifted morphine's dose-response curve 47-fold, while levcromakalim (0.1 microg/mouse) shifted the curve 27-fold. The dose-response curve of kappa-opioid receptor agonist U50,488H (trans-(+/-)-3, 4 Dichloro-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane sulfonate) was shifted 106-fold by diazoxide in a parallel manner, while levcromakalim administration increased the potency of U50,488H by 15-fold. Diazoxide shifted the dose-response curve of the delta-opioid receptor agonist, DPDPE [(D-Pen(2,5))-enkephalin], leftward in a non-parallel manner, while DPDPE was 6-fold more potent when combined with levcromakalim. We hypothesize that endogenous opioids mediate ATP-gated K(+) channel opener-induced antinociception and enhancement of opioids. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenosine Triphosphate; Analgesics; Animals; Cromakalim; Diazoxide; Dose-Response Relationship, Drug; Drug Interactions; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Glyburide; Injections, Intraventricular; Ion Channel Gating; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Narcotic Antagonists; Nociceptors; Opioid Peptides; Pain; Potassium Channels; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 1999 |
Differential response to kappa-opioidergic agents in dietary fat selection between Osborne-Mendel and S5B/P1 rats.
We have investigated the central effect of a kappa-opioid agonist and an antagonist on the macronutrient preference in two strains of rat, the Osborne Mendel (OM) and S5B/P1 rats, that have different susceptibility to obesity and differential preference for dietary fat intake. OM rats prefer diets high in fat and are sensitive to diet-induced obesity, whereas S5B/P1 prefer a low fat diet and are resistant to high-fat diet-induced obesity. Rats adapted to a two-choice high fat (HF)/low fat (LF) diet were food deprived (20 h) and then infused into the third cerebroventricle with 10 micrograms nor-binaltorphimine (nor-BNI), a selective kappa-antagonist. Nor-BNI preferentially suppressed HF intake, but not LF intake in OM rats, whereas it affected neither diet in S5B rats. Infusion of U50488, a selective kappa-agonist (33 nmol), into the third cerebroventricle in sated rats, potently stimulated the intake of HF only in the OM rats, whereas it induced a significant but moderate stimulation of intake of both HF and LF diets in the S5B/P1 rats. Total energy intake following U50488 was not significantly different between the two strains. These findings suggest that the enhanced sensitivity of the OM rats to kappa-opioid stimulation for dietary fat may contribute to their preference for dietary fat and possibly their increased susceptibility for obesity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Behavior, Animal; Brain; Diet; Dietary Fats; Eating; Energy Metabolism; Food Preferences; Male; Naltrexone; Narcotic Antagonists; Narcotics; Obesity; Rats; Rats, Inbred Strains; Receptors, Opioid, kappa | 1998 |
Suppression of cAMP by phosphoinositol/Ca2+ pathway in the cardiac kappa-opioid receptor.
To determine whether the phosphoinositol/Ca2+ pathway interacts with the adenylate cyclase/adenosine 3',5'-cyclic monophosphate (cAMP) pathway in the cardiac kappa-receptor, the effects of U-50488, a specific kappa-receptor agonist, on the intracellular Ca2+ concentration ([Ca2+]i) and forskolin-induced accumulation of cAMP in rat ventricular myocytes were determined after interference of the phosphoinositol/Ca2+ pathway. U-50488 suppressed the forskolin-induced accumulation of cAMP and elevated [Ca2+]i, which were blocked by norbinaltorphimine, a specific kappa-receptor antagonist, and pertussis toxin. The effects of U-50488 were qualitatively similar to those of A-23187, a Ca2+ ionophore, but opposite to those of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA)-acetoxymethyl ester (AM), a [Ca2+]i chelator. Abolition of U-50488-induced elevation of [Ca2+]i by BAPTA-AM also abolished the effect of U-50488 on forskolin-induced accumulation of cAMP. Inhibition of the phospholipase C by specific inhibitors, U-73122 and neomycin, abolished the effects of U-50488 on both [Ca2+]i and forskolin-induced accumulation of cAMP. The results showed for the first time that kappa-receptor stimulation may suppress cAMP accumulation via activation of the phosphoinositol/Ca2+ pathway in the rat heart. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenylate Cyclase Toxin; Animals; Calcimycin; Calcium; Cells, Cultured; Chelating Agents; Colforsin; Cyclic AMP; Egtazic Acid; Heart; Heart Ventricles; Kinetics; Male; Myocardium; Naltrexone; Narcotic Antagonists; Pertussis Toxin; Phosphatidylinositols; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; Virulence Factors, Bordetella | 1998 |
U50,488H inhibits effects of norepinephrine in rat cardiomyocytes-cross-talk between kappa-opioid and beta-adrenergic receptors.
In order to determine the effect of kappa-opioid receptor agonist on the beta1-adrenoceptor stimulation in the heart, the effects of norepinephrine (NE), a beta1-adrenoceptor agonist, on contraction and electrically induced intracellular calcium ([Ca2+]i) transient in the single rat ventricular myocyte pretreated with a kappa-opioid receptor agonist, trans-(+/-)-3, 4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)-benzeneacetamide (U50,488H), at 0.01-1 microM were studied with a video edge tracker method and a spectrofluorometric method using fura-2 as calcium indicator, respectively. NE at 0.01-10 microM augmented both twitch amplitude and electrically induced [Ca2+]i transient dose-dependently, which were abolished by propranolol at 1 microM, a beta-adrenoceptor antagonist. The effects of NE on both contraction and [Ca2+]i transient were attenuated in a dose-dependent manner by U50,488H at 0.01-1 microM, which itself had no effect at all. The maximum response ( Emax) was decreased, while the concentration that produces 50% of the maximum response (EC50) was enhanced, by U50, 488H. The inhibitory effects of U50,488H on beta-adrenoceptor stimulation were completely blocked by pretreatment with norbinaltorphimine, a specific kappa-opioid receptor antagonist at 1 microM, or preincubation with pertussis toxin (PTX) at 200 ng/ml for 6 h. On the other hand, the inhibition on NE-induced augmentation in electrically induced [Ca2+]i transient by U50,488H was not affected by pretreatment with U73122, a specific inhibitor of phospholipase C (PLC), at 10 microM for 30 min. U50,488H attenuated the augmentation of the electrically stimulated [Ca2+]i transient induced by forskolin at 0.1 and 0.5 microM. It did not, however, affect the augmentation of the electrically induced [Ca2+]i transient by N6, 2'-O-dibutyryl adenosine cyclic monophosphate (DB-cAMP). The results suggest that kappa-opioid receptor stimulation by U50,488H at 10(-6 )M or lower may inhibit the effects of beta-adrenoceptor stimulation by acting at a PTX-sensitive G-protein and AC, but not via the phosphoinositol pathway. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenergic beta-Agonists; Animals; Bucladesine; Calcium; Colforsin; Electric Stimulation; GTP-Binding Proteins; In Vitro Techniques; Intracellular Fluid; Myocardial Contraction; Myocardium; Naltrexone; Norepinephrine; Pertussis Toxin; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, beta; Receptors, Opioid, kappa; Type C Phospholipases; Virulence Factors, Bordetella | 1998 |
Receptor-mediated activation of G-proteins by kappa opioid agonists in frog (Rana esculenta) brain membranes.
This study delineates the heterotrimeric guanine nucleotide binding regulatory protein (G-protein) types in frog (Rana esculenta) brain membranes and their activation by kappa opioid agonists. Ethylketocyclazocine (EKC), trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)b enzeneacetamide (U-50,488) and bremazocine displayed dose-dependent, norbinaltorphimine-reversible stimulation of guanosine-5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding in crude membrane preparations. G-proteins were identified by Western-blotting using previously characterized specific antisera that were generated against mammalian G-protein alpha-subunits and beta-subunits. A photoreactive guanosine 5'-triphosphate (GTP) analog, [alpha-32P]GTP azidoanilide ([alpha-32P]AA-GTP) irreversibly labeled four proteins in the molecular weight range of 39-43 kDa. Ethylketocyclazocine and U-50,488 stimulated photolabelling of these proteins among which the 39 kDa band comigrated with the protein specifically labelled with the alpha(i2) antibody and the 40 kDa band was identified as alpha(o1). The other two bands were also stained with the alpha(common) antibody, but were not further identified. These results suggest that the endogenously expressed kappa opioid receptors that are present in frog brain interact with multiple G-proteins in situ. Furthermore, the structure of most G-proteins seems to be well preserved during phylogenesis. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzomorphans; Brain; Cell Membrane; Ethylketocyclazocine; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Kinetics; Naltrexone; Narcotic Antagonists; Rana esculenta; Receptors, Opioid, kappa | 1998 |
Comparative hypotensive actions of three nonpeptide kappa opioid agonists on hippocampus of SHRs and normotensive WKY rats.
Comparative centrally mediated hypotensive effects of three nonpeptide kappa opioid agonist drugs (bremazocine, spiradoline, and U-50,488H) were evaluated in chloralose-anesthetized male spontaneously hypertensive rats (SHRs) and in normotensive Wistar-Kyoto (WKY) and Sprague-Dawley (SD) rats. The drugs were administered unilaterally into previously established active hypotensive sites in the dorsal hippocampus at doses of 12, 24, and 48 nmol. Each drug produced dose-related decreases in mean arterial pressure, ranging from -5 to -40% of predrug control values, with bremazocine being somewhat more effective than spiradoline, which was in turn slightly more active than U-50,488H. The effects were only marginally greater in SHRs than in normotensive controls. Each drug caused a modest decrease in heart rate, but except for the highest dose of bremazocine, the effects were not statistically significant. The onset of hypotension after intrahippocampal injection of each agent was approximately 2 min and lasted approximately 30 min with U-50,488H and spiradoline and >60 min with bremazocine. The responses to all three drugs were completely blocked by prior injection of the active hippocampal sites with nor-binaltorphimine (nor-BNI), a selective kappa-receptor antagonist. Because bremazocine is more selective for kappa-2 opioid receptors, whereas U-50,488H and spiradoline favor the kappa-1 subtype, the results suggest that drugs active on each of these subtypes should be investigated as potential antihypertensives. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antihypertensive Agents; Benzomorphans; Dose-Response Relationship, Drug; Hippocampus; Male; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Opioid, kappa | 1998 |
Dynorphin uses a non-opioid mechanism to potentiate N-methyl-D-aspartate currents in single rat periaqueductal gray neurons.
The interaction of the endogenous K-opioid, dynorphin, with N-methyl-D-aspartate (NMDA) receptors was studied in single periaqueductal gray (PAG) cells using the whole cell patch recording technique. We have found that dynorphin A (1-17) rapidly and reversibly potentiates NMDA-activated currents in a subpopulation of PAG cells. The potentiation cannot be blocked by the non-specific opioid antagonist, naloxone, nor can it be reversed by the specific kappa-opioid antagonist, nor-BNI. In addition, the non-opioid fragment of dynorphin, dynorphin A (2-17), is effective in potentiating NMDA currents, while the specific kappa-opioid, U50,488, cannot mimic the action of dynorphin A (1-17). The non-opioid dynorphin action and the rapid onset and recovery of the potentiation are consistent with the idea that dynorphin interacts directly with NMDA receptors in PAG cells. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Action Potentials; Analgesics, Non-Narcotic; Animals; Drug Synergism; Dynorphins; N-Methylaspartate; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Patch-Clamp Techniques; Peptide Fragments; Periaqueductal Gray; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, kappa | 1998 |
Involvement of mu- and delta-opioid receptors in the ethanol-associated place preference in rats exposed to foot shock stress.
The purpose of this study was to establish the ethanol-induced place preference in rats exposed to foot shock stress using the conditioned place preference paradigm. We also investigated the role of the endogenous opioid system in the development of the ethanol-induced place preference. The administration of ethanol (300 mg/kg, i.p.) with foot shock stress, but not without such stress, induced a marked and significant place preference. Naloxone (1 and 3 mg/kg, s.c.), a non-selective opioid receptor antagonist, significantly attenuated the ethanol-induced place preference. Moreover, the selective mu-opioid receptor antagonist beta-funaltrexamine (3 and 10 mg/kg, i.p.) and selective delta-opioid receptor antagonist naltrindole (1 and 3 mg/kg, s.c.), but not the selective kappa-opioid receptor antagonist nor-binaltorphimine (1 and 3 mg/kg, i.p.), significantly attenuated the ethanol-induced place preference. Furthermore, 150 mg/kg ethanol (which tended to produce a place preference, although not significantly) combined with each dose (that did not produce a place preference) of the mu-opioid receptor agonist morphine (0.1 mg/kg, s.c.) or selective delta-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12aalpha-octahydroquinolino [2,3,3-g] isoquinoline (TAN-67; 20 mg/kg, s.c.), but not the selective kappa-opioid receptor agonist trans-3, 4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide methanesulfonate (U50,488H; 1 mg/kg, s.c.), produced a significant place preference. These data indicate that stress may be important for development of the rewarding effect of ethanol, and that mu- and delta-opioid receptors may be involved in the rewarding mechanism of ethanol under stressful conditions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Ethanol; Exploratory Behavior; Foot; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Morphine; Naloxone; Naltrexone; Narcotics; Quinolines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu | 1998 |
Kappa-opioid potentiation of tumor necrosis factor-alpha-induced anti-HIV-1 activity in acutely infected human brain cell cultures.
Opioids have been postulated to play an immunomodulatory role in the pathogenesis of HIV-1. Synthetic kappa-opioid receptor (KOR) ligands have been found to inhibit HIV-1 expression in acutely infected microglial cell cultures. We recently found that interleukin(IL)-1beta and tumor necrosis factor(TNF)-alpha have antiviral effects in acutely infected mixed glial/neuronal cell cultures. In the present study, we investigated whether selective KOR ligands would exert antiviral effects in acutely infected brain cell cultures. While the KOR ligand trans-3,4-dichloro-N-methyl-N[2-(1-pyrolidinyl)cyclohexyl]benze neaceamide methanesulfonate (U50,488) alone had little anti-HIV-1 activity, this opioid potentiated in a concentration-dependent manner the antiviral activity of TNF-alpha, but not of IL-1beta. The potentiating effect of U50,488 was detected after a 6-hr pretreatment and peaked at 24 hr. The KOR antagonist nor-binaltorphimine completely blocked the potentiating effect of U50,488, suggesting the involvement of a KOR-mediated mechanism. Antibodies to TNF-alpha completely blocked the potentiating effect of U50,488, suggesting a critical role for TNF-alpha. Antibodies to IL-1beta blocked the potentiating effect of U50,488, suggesting that IL-1beta was released following U50,488 treatment, which might contribute to the potentiating effect of U50,488. These in vitro findings support the notion that synthetic kappa-opioids could be considered as potential adjunctive therapeutic agents in HIV-1-related brain disease. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Antiviral Agents; Brain; Cells, Cultured; Drug Synergism; HIV-1; Humans; Interleukin-1; Naltrexone; Receptors, Opioid, kappa; Tumor Necrosis Factor-alpha | 1998 |
Relationship between inhibitory effect of endogenous opioid via mu-receptors and muscarinic autoinhibition in acetylcholine release from myenteric plexus of guinea pig ileum.
Relationship between activation of opioid receptors and muscarinic autoinhibition in acetylcholine (ACh) release from the myenteric plexus was studied in longitudinal muscle myenteric plexus (LMMP) preparations of guinea pig ileum. A mu-receptor agonist, [D-Ala2, N-Me-Phe4, Gly5-ol] enkephalin (DAMGO), at a concentration of 1 microM inhibited the ACh release evoked by electrical field stimulation (EFS) at 1 Hz but not at 10 Hz. After the muscarinic autoreceptors were blocked with atropine (1 microM), DAMGO inhibited EFS-evoked ACh release also at 10 Hz. After the autoreceptors were potently activated with muscarine (200 microM), the inhibitory effect of DAMGO at 1 Hz was abolished. A kappa-receptor agonist, U-50,488, at 1 microM inhibited the EFS-evoked ACh release both at 1 and 10 Hz. U-50,488 inhibited ACh release regardless of the presence of atropine or muscarine. A delta-agonist, enkephalin [D-PEN2.5] (PDPDE), did not show any significant effect. On the other hand, a selective mu-receptor antagonist, cyprodime, increased ACh release evoked by EFS at 1 Hz, but not at 10 Hz. After the autoreceptors were blocked, cyprodime increased EFS-evoked ACh release also at 10 Hz. The selective kappa-receptor antagonist, nor-binaltorphimine, did not affect ACh release in the absence or presence of atropine. The results suggest that endogenous opioid(s) inhibits ACh release by activating mu-, but not kappa- and delta-receptors in the LMMP of guinea pig ileum and that the inhibitory effect of endogenous opioid(s) in the ACh release is important when muscarinic autoinhibition mechanism does not fully work. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Atropine; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphinans; Muscarine; Muscarinic Agonists; Muscarinic Antagonists; Muscle, Smooth; Myenteric Plexus; Naltrexone; Narcotic Antagonists; Opioid Peptides; Receptors, Muscarinic; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1998 |
Inhibition of the neuronal nicotinic receptor-mediated current by kappa opioid receptor agonists in PC12 cells.
The authors studied effects of opioid receptor agonists on neuronal nicotinic-receptor-mediated current in PC12 cells using whole-cell current recording. At 1 microM, [d-Ala, N-Me, Phe, Gly-ol]- enkephalin (DAMGO), a selective micro receptor agonist, or 10 microM methionine-enkephalin, a micro and delta receptor agonist, did not inhibit the current elicited by 30 microM nicotine significantly. Dynorphin A (1-17) (0.1-1 microM), an endogenous kappa receptor agonist, and U50488 (0.1-10 microM), a non-peptide selective kappa receptor agonist, depressed the nicotine-induced current reversibly in a dose-dependent manner. They accelerated the current decay, resulting in greater effects on the non-desensitized current than the peak current. These effects were not affected by nor-binaltrophimine, a selective kappa receptor antagonist, or by inclusion of guanosine 5'-O-(2-thiobiphosphate) (GDP[beta-S]), a GTP binding protein blocker, into the pipette solution. These results demonstrate that two kappa opioid receptor agonists, dynorphin A (1-17) and U50488, inhibit neuronal nicotinic-receptor-mediated current without the involvement of opioid receptors or GTP binding proteins. The acceleration of the current decay suggests a direct action on nicotinic receptors such as open channel block, or augmentation of desensitization. Modulation of neuronal nicotinic receptors by dynorphins may play a role in some areas where dynorphin release sites and neuronal nicotinic receptors are colocalized. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Dynorphins; Electric Conductivity; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Naltrexone; Narcotic Antagonists; Neurons; Nicotinic Antagonists; PC12 Cells; Rats; Receptors, Nicotinic; Receptors, Opioid, kappa | 1998 |
Phospholipase C inhibitors attenuate arrhythmias induced by kappa-receptor stimulation in the isolated rat heart.
To determine whether the phospholipase C (PLC)/inositol 1,4,5 trisphosphate (IP3)/Ca2+ pathway mediates cardiac arrhythmias induced by kappa-opioid receptor stimulation, the effects of U50,488H, a selective kappa-opioid receptor agonist, on cardiac rhythm in a isolated perfused rat heart, intracellular calcium ([Ca2+]i) in a single ventricular myocyte and IP3 production in myocytes were studied in the presence and absence of PLC inhibitors. U50,488H, the effects of which had been shown to be abolished by a selective kappa-receptor antagonist, nor-binaltorphimine, induced arrhythmias dose-dependently and increased both [Ca2+]i and IP3-production in the heart. More importantly, the effects of U50,488H were blocked by PLC inhibitors, neomycin and streptomycin. To further confirm the selectivity of action of the PLC inhibitor, the effects of another PLC inhibitor U73122 and its inactive structural analog, U73343, on cardiac rhythm in the isolated perfused rat heart were compared. The former did, while the latter did not, block the arrhythmogenic effect of U50,488H. We also determined whether the effects of kappa-receptor stimulation involves a pertussis toxin (PTX)-sensitive G-protein. We found that pretreatment with PTX at 4 microg/l for 10 min, a treatment shown to affect PTX sensitive G-protein-mediated functions, attenuated significantly the U50,488H-induced arrhythmias. The present study provides evidence that kappa-receptor stimulation-induced cardiac arrhythmias involves, at least partly, the PLC/IP3/Ca2+ pathway as well as a PTX sensitive G-protein. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Arrhythmias, Cardiac; Calcium; Enzyme Inhibitors; Estrenes; Heart Rate; In Vitro Techniques; Inositol 1,4,5-Trisphosphate; Male; Naltrexone; Narcotic Antagonists; Neomycin; Pertussis Toxin; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Signal Transduction; Streptomycin; Type C Phospholipases; Virulence Factors, Bordetella | 1998 |
kappa-opioid regulation of neuronal activity in the rat supraoptic nucleus in vivo.
We investigated the influence of endogenous kappa-opioids on the activity of supraoptic neurons in vivo. Administration of the kappa-antagonist nor-binaltorphimine (200 micrograms/kg, i.v.), increased the activity of phasic (vasopressin), but not continuously active (oxytocin), supraoptic neurons by increasing burst duration (by 69 +/- 24%) and decreasing the interburst interval (by 19 +/- 11%). Similarly, retrodialysis of nor-binaltorphimine onto the supraoptic nucleus increased the burst duration (119 +/- 57% increase) of vasopressin cells but did not alter the firing rate of oxytocin cells (4 +/- 8% decrease). Thus, an endogenous kappa-agonist modulates vasopressin cell activity by an action within the supraoptic nucleus. To eliminate kappa-agonist actions within the supraoptic nucleus, we infused the kappa-agonist U50,488H (2.5 micrograms/hr at 0.5 micrograms/hr) into one supraoptic nucleus over 5 d to locally downregulate kappa-receptor function. Such infusions reduced the spontaneous activity of vasopressin but not oxytocin cells and reduced the proportion of cells displaying spontaneous phasic activity from 26% in vehicle-infused nuclei to 3% in U50, 488H-infused nuclei; this treatment also prevented acute inhibition of both vasopressin and oxytocin cells by U50,488H (1000 micrograms/kg, i.v.), confirming functional kappa-receptor downregulation. In U50, 488H-infused supraoptic nuclei, vasopressin cell firing rate was increased by nor-binaltorphimine (100 and 200 micrograms/kg, i.v.) but not to beyond that found in vehicle-treated nuclei, indicating that these cells were not U50,488H-dependent. Thus, normally functioning kappa-opioid mechanisms on vasopressin cells are essential for the expression of phasic firing. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Animals; Cells, Cultured; Dendrites; Down-Regulation; Dynorphins; Electrophysiology; Female; Injections, Intravenous; Membrane Potentials; Microdialysis; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oxytocin; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Supraoptic Nucleus; Vasopressins | 1998 |
Immunomodulatory action of class mu-, delta- and kappa-opioid receptor agonists in mice.
Endogenous opioids exert a variety of functions outwith the central nervous system, including modulation of some murine lymphocyte functions. The results of this study indicate that mu-, delta- and kappa-receptor selective agonists are potent in vitro stimulators of mitogen-induced proliferation of murine T-lymphocytes. Moreover, the observed enhancement of mitogen-induced proliferation was reversed by mu-, delta- and kappa-receptor class selective antagonists, beta-funaltrexamine, ICI 174,864 and nor-binaltorphimine, respectively. An additional study has revealed that repeated administration (four injections) of the opioid receptor selective agonists DAGO, DPDPE and U-50488 also enhanced the concanavalin A-induced proliferation of lymphocytes. These results suggest that there are three classes of opioid receptors on T-lymphocytes and that all these receptor classes are involved in the stimulation of concanavalin A-induced proliferation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Immunity; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Mitogens; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; T-Lymphocytes | 1998 |
Inhibition of lipopolysaccharide-induced nitric oxide and cytokine production by ultralow concentrations of dynorphins in mixed glia cultures.
Dynorphins (dyn) are a major class of endogenous opioid peptides that modulate the functions of immune cells. However, the effects of dyn on the immune functions of glial cells in the central nervous system (CNS) have not been well characterized. Because nitric oxide (NO) and the proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) produced by glial cells are involved in various physiopathological conditions in the CNS, this study examined the effects of dyn on the production of NO and TNF-alpha from mouse glial cells treated with lipopolysaccharide (LPS). LPS induced a concentration-dependent increase in the production of NO or TNF-alpha from the mouse primary mixed glia cultures. Ultralow concentrations (10(-16)-10(-12) M) of dynorphin (dyn) A-(1-8) significantly inhibited the LPS-induced production of NO or TNF-alpha. The inhibitory effects of dyn A-(1-8) were not blocked by nor-binaltorphimine, a selective kappa opioid receptor antagonist. U50-488H, a selective kappa opioid receptor agonist, did not affect the LPS-induced production of NO or TNF-alpha. Ultralow concentrations (10(-16)-10(-12) M) of des-[Tyr1]-dyn A-(2-17), a nonopioid analog that does not bind to kappa opioid receptors, exhibited the same inhibitory effects as dyn A-(1-17) and dyn A-(1-8). These results suggest that dyn modulate the immune functions of microglia and/or astrocytes in the brain and these modulatory effects of dyn are not mediated by classical kappa opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cells, Cultured; Dynorphins; Lipopolysaccharides; Mice; Naltrexone; Neuroglia; Nitric Oxide; Peptide Fragments; Pyrrolidines; Tumor Necrosis Factor-alpha | 1997 |
Reversal by kappa-agonists of peritoneal irritation-induced ileus and visceral pain in rats.
Peritoneal irritation in rats induced by i.p. administration of acetic acid produces abdominal contractions reflecting visceral pain, and gastrointestinal ileus characterized by inhibition of gastric emptying and small intestine transit. In this study, gastric emptying (GE) and intestinal transit, calculated by the geometric center (GC) method, were estimated using a test meal labeled with 51Cr-EDTA. Visceral pain was assessed by counting abdominal contractions. Acetic acid produced abdominal contractions (80.8 +/- 3.3) and inhibition of GE (-54%) and GC (-63%) during the test-period. The kappa-opioid receptor agonists, CI-977 (+/-)-U-50,488H, (+/-)-bremazocine, PD-117,302, (-)-cyclazocine, and U-69,583, reversed abdominal contractions and inhibitions of gastrointestinal transit in a dose-related manner. The mu-opioid receptor agonists and potent analgesics, morphine and fentanyl did not restore normal gastric emptying and intestinal transit. These data suggest that selective kappa-opioid receptor agonists might be used to treat abdominal pain associated with motility and transit impairment during postoperative ileus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetic Acid; Analgesics; Animals; Benzofurans; Benzomorphans; Cyclazocine; Fentanyl; Gastric Emptying; Intestinal Pseudo-Obstruction; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Peritoneum; Pyrroles; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Thiophenes | 1997 |
Participation of central kappa-opioid receptor in arrhythmogenesis.
The effect of kappa receptors agonists and antagonists was studied in the model of epinephrine induced arrhythmias. Kappa receptor agonists U-50,488 and [D-Ala2]-Dynorphin A (1-13) administered I.C.V. potentiate the arrhythmogenic effect of epinephrine. The effect of U-50,488 was completely blocked by kappa receptor antagonist, nor-binaltorphine. Administration of N-cholinergic receptor inhibitor, hexamethonium, prevented pro-arrhythmic effects of U-50,488 and [D-Ala2]-Dynorphin A (1-13). The data support the hypothesis that central kappa opioid receptors play an important role in the arrhythmogenesis. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Arrhythmias, Cardiac; Dynorphins; Epinephrine; Hexamethonium; Male; Naloxone; Naltrexone; Narcotic Antagonists; Peptide Fragments; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa | 1997 |
Effects of kappa opioids on cocaine self-administration by rhesus monkeys.
Kappa opioid agonists attenuate some neurochemical and behavioral effects of cocaine and are being considered as potential treatments for cocaine dependence. The present study examined the effects of two kappa opioid agonists, the benzomorphan ethylketocyclazocine (EKC) and the arylacetamide U50,488, on cocaine self-administration in rhesus monkeys. Monkeys responded for 0.032 mg/kg/injection cocaine (i.v.) and 1 g banana-flavored food pellets during alternating daily sessions of cocaine and food availability. Chronic treatment for 10 consecutive days with EKC (0.0032-0.032 mg/kg/hr) or U50,488 (0.032-0.1 mg/kg/hr) dose-dependently decreased self-administration of cocaine unit doses at the peak of the cocaine dose-effect curve (0.01 and 0.032 mg/kg/injection). These decreases in cocaine self-administration were often sustained throughout the 10 days of treatment. Doses of EKC and U50,488 that decreased cocaine self-administration usually decreased food-maintained responding as well. In addition, EKC and U50,488 often produced emesis and sedation during the first few days of treatment, although tolerance appeared to develop rapidly to these effects. In general, EKC produced fewer undesirable effects than U50,488 at doses that decreased cocaine self-administration. The kappa antagonist norbinaltorphimine (3.2 mg/kg) did not affect responding maintained by cocaine or food. However, both norbinaltorphimine (3.2 mg/kg) and the opioid antagonist naloxone (1.0 mg/kg/hr) blocked the effects of EKC and U50,488. These results indicate that chronic administration of EKC and U50,588 produce a dose-dependent, kappa receptor-mediated and often sustained decrease in cocaine self-administration. However, these kappa agonists also produce undesirable behavioral effects that may complicate their use as treatments for cocaine dependence. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Circadian Rhythm; Cocaine; Dose-Response Relationship, Drug; Ethylketocyclazocine; Female; Macaca mulatta; Male; Naloxone; Naltrexone; Pyrrolidines; Receptors, Opioid, kappa; Self Administration; Substance-Related Disorders | 1997 |
Effect of enterostatin and kappa-opioids on macronutrient selection and consumption.
Enterostatin, the activation peptide of pancreatic procolipase, suppresses consumption of high-fat diets and selectively suppresses fat consumption over carbohydrate consumption. Kappa-opioid subtype agonists stimulate feeding whereas antagonists suppress feeding. We investigated the effects of enterostatin, the kappa-opioid agonist U50488, and the kappa-opioid antagonist nor-binaltorphimine (nor-BNI) on macronutrient selection and food consumption in rats adapted to choose between a high-fat (HF) diet or a low-fat-high-carbohydrate (LF) diet. In fasted rats, lateral cerebro-ventricular injection (LV) of enterostatin selectively suppressed consumption of the HF diet, with no effect on LF diet consumption. Nor-BNI also selectively suppressed consumption of the HF diet without affecting LF diet consumption. Additionally, U50488 prevented the suppression of consumption of the HF diet in response to enterostatin. In food-sated rates, U50488 preferentially increased consumption of the HF diet and had no effect on consumption of the LF diet. Combined infusions of subthreshold doses of enterostatin and nor-BNI also inhibited consumption of the HF but not the LF diet, whereas combined infusions of maximal doses of enterostatin and nor-BNI had no additive effects. Collectively, these data suggest that a kappa-opioid pathway modulates selection and consumption of diets high in fat and that enterostatin modulates consumption of dietary fat by interacting with this pathway. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Butorphanol; Colipases; Dietary Carbohydrates; Dietary Fats; Eating; Enzyme Precursors; Food Preferences; Male; Naltrexone; Narcotic Antagonists; Narcotics; Protein Precursors; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 1997 |
Butorphanol-mediated antinociception in mice: partial agonist effects and mu receptor involvement.
In the present experiments, we characterized the agonist and antagonist effects of butorphanol in mice. In the mouse radiant-heat tail-flick test, the mu agonists morphine and fentanyl and the kappa agonist U50,488H were fully effective as analgesics, whereas butorphanol was partially effective (producing 82% of maximal possible analgesic effect). Naltrexone was approximately equipotent in antagonizing the effects of morphine, fentanyl and butorphanol; in vivo apparent pA2 values for these naltrexone/agonist interactions were 7.5 (unconstrained). Naltrexone was approximately 10 times less potent in antagonizing the effect of U50,488H (average apparent pK(B) = 6.7). The selective mu antagonist beta-funaltrexamine (0.1-1.0 mg/kg) antagonized the effects of butorphanol in a dose-dependent insurmountable manner. Pretreatment with nor-binaltorphimine (32 mg/kg), a kappa-selective antagonist, did not reliably antagonize butorphanol, and naltrindole (20 and 32 mg/kg), a delta-selective antagonist, failed to antagonize the effects of butorphanol. Low doses of butorphanol (1.0, 1.8 or 3.2 mg/kg) caused parallel, rightward shifts in the dose-effect curve for morphine and parallel leftward shifts in the dose-effect curve for U50,488H. Taken together, the results of the present study suggest that butorphanol is a partial agonist in the mouse radiant-heat tail-flick test and that activity at mu receptors accounts for the majority of its antinociceptive effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Butorphanol; Male; Mice; Morphine; Naltrexone; Pyrrolidines; Receptors, Opioid, mu | 1997 |
Antinociceptive effects of morphine and U-50,488H on vaginal distension in the anesthetized rat.
The antinociceptive activity of the kappa- and mu-opioid receptor agonists, (+/-)-U-50,488H and morphine, was examined in a vaginal distension model in anaesthetized female rats. Vaginal distension induced a reproducible cardiovascular response (CVR) which was inhibited in a dose related manner by morphine (0.03-1.0 mg/kg i.v., ED50 = 0.16 mg/kg) and (+/-)-U-50,488H (0.08-1.6 mg/kg i.v., ED50 = 0.49 mg/kg). Morphine (0.3 microg/rat) administered i.c.v. inhibited the CVR by 81.6 +/- 7.9% whereas (+/-)-U-50,488H (30-300 microg/rat) was inactive by this route. A low dose of naloxone (30 microg/kg i.v.) blocked the effect of morphine but not that of (+/-)-U-50,488H. The kappa-opioid antagonist, nor-binaltorphimine (10 mg/kg s.c.) abolished the response to (+/-)-U-50,488H but not that of morphine. This demonstrates that both central and peripheral mu-opioid receptors may be involved in morphine-induced antinociception whereas the kappa-opioid agonist, (+/-)-U-50,488H, blocks vaginal nociception by acting on peripheral kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics, Non-Narcotic; Analgesics, Opioid; Anesthesia; Animals; Blood Pressure; Cardiovascular System; Estrus; Female; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Vaginal Diseases | 1997 |
Anatomical distribution of mu, delta, and kappa opioid- and nociceptin/orphanin FQ-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate binding in guinea pig brain.
An in vitro autoradiographic technique has recently been developed to visualize receptor-activated G-proteins by using agonist-stimulated [35S]guanylyl-5'-O-(gamma-thio)-triphosphate ([35S]GTPgammaS) binding in the presence of excess guanosine 5'-diphosphate. This technique was used to localize opioid-activated G-proteins in guinea pig brain, a species that contains the three major types of opioid receptors. This study used selective mu, delta, and kappa opioid agonists as well as nociceptin or orphanin FQ (N/OFQ) peptide, an endogenous ligand for an orphan opioid receptor-like (ORL1) receptor, to stimulate [35S]GTPgammaS binding in guinea pig brain sections. Opioid receptor specificity was confirmed by blocking agonist-stimulated [35S] GTPgammaS binding with the appropriate antagonists. In general, the distribution of agonist-stimulated [35S]GTPgammaS binding correlated with previous reports of receptor binding autoradiography, although quantitative differences suggest regional variations in receptor coupling efficiency. Mu, delta, and kappa opioid-stimulated [35S]GTPgammaS binding was found in the caudate-putamen, nucleus accumbens, amygdala, and hypothalamus. Mu-stimulated [35S]GTPgammaS binding predominated in the hypothalamus, amygdala, and brainstem, whereas kappa-stimulated [35S]GTPgammaS binding was particularly high in the substantia nigra and cortex and was moderate in the cerebellum. N/OFQ-stimulated [35S] GTPgammaS binding was highest in the cortex, hippocampus, and hypothalamus and exhibited a unique anatomical distribution compared with opioid-stimulated [35S]GTPgammaS binding. The present study extends previous reports on opioid and ORL1 receptor localization by anatomically demonstrating functional activity produced by mu, delta, and kappa opioid and ORL1 receptor activation of G-proteins. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Animals; Autoradiography; Brain Chemistry; Cerebellum; Diencephalon; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Guanosine 5'-O-(3-Thiotriphosphate); Guinea Pigs; Male; Medulla Oblongata; Mesencephalon; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptin; Opioid Peptides; Pons; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sulfur Radioisotopes; Telencephalon | 1997 |
kappa-Opioid receptor agonists prevent sensitization to the conditioned rewarding effects of cocaine.
A place preference conditioning procedure was used to examine the influence of kappa-opioid receptor ligands upon the development of sensitization to the conditioned rewarding effects of cocaine. Previous exposure to cocaine (10-20 mg/kg; i.p.; days 1-5) resulted in an enhancement of the conditioned rewarding effects of this agent, e.g., sensitization. Thus, doses of cocaine (5.0-10.0 mg/kg; i.p.) that failed to produce place preferences in control rats produced significant place preferences in cocaine-experienced animals. In animals that had received the kappa-agonist U50,488H (5.0 mg/kg; s.c.) in combination with the repeated cocaine treatment regimen, no enhancement of cocaine-induced place conditioning was seen. Similarly, the kappa-agonist U69593 administered on days 1 to 5 or only on days 3 to 5 of the cocaine treatment regimen prevented the enhanced response to cocaine. This effect occurred after either systemic (0.04-0.16 mg/kg; s.c.) or intracerebroventricular (1.0 mg) treatment and was abolished by the kappa-opioid receptor antagonist, nor-binaltorphimine. In contrast to its effects when administered in combination with cocaine, prior administration of U69593, alone, failed to modify the conditioned response to cocaine. Microdialysis studies revealed a marked elevation of extracellular dopamine levels within the ventral striatum after repeated cocaine administration. In animals that had received U69593 in combination with cocaine, no elevation of dopamine was seen. These data demonstrate that sensitization develops to the conditioned rewarding effects of cocaine and that the activation of central nervous system kappa-opioid receptors prevents the development of this phenomenon. An involvement of the mesolimbic dopamine system in mediating the interaction of kappa-agonists with cocaine is suggested. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzeneacetamides; Cocaine; Conditioning, Psychological; Dopamine; Male; Naltrexone; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reward | 1996 |
Opioid antagonist profile of SC nor-binaltorphimine in the formalin paw assay.
The antinociceptive effects of mu and kappa agonists were examined after the systemic administration of the opioid antagonists nor-binaltorphimine (nor-BNI) and naloxone in the late response or tonic nociceptive phase of the mouse formalin assay. Initially, SC morphine (ED50, 0.97 mg/kg), racemic U-50488H (ED50, 0.79 mg/kg), (-)U-50488 (ED50, 0.41 mg/kg), and another agonist PD 117,302 (ED50, 0.28 mg/kg) were found to produce graded increases in the level of antinociception as measured by this procedure; naloxone, administered immediately before morphine and U-50488H, antagonized their antinociceptive actions. The effects of morphine and U-50488H then were evaluated 10 min to 96 h after the administration of nor-BNI. Subcutaneous nor-BNI at 30.0 mg/kg, but not at 3.0 or 10.0 mg/kg, attenuated the antinociceptive effects of morphine and U-50488H when the interval separating nor-BNI and the agonists was kept constant at 1 h. Time-course analysis of the effects of combinations of nor-BNI with morphine led to irregular findings: 10.0 mg/kg of nor-BNI lessened the effects of morphine (2.0 mg/kg) if the dosing interval was 10 min, whereas 30.0 mg/kg of nor-BNI attenuated the effects of morphine (2.0 mg/kg) if the dosing interval was 1 or 4 h; 10.0 mg/kg of nor-BNI also diminished the antinociceptive effects of U-50488H (1.7 mg/kg) only if the interval spacing the two drugs was 24 h. In comparison, a threefold higher dose of nor-BNI (30.0 mg/kg) reduced the effects of U-50488H (1.7 mg/kg) if the interval was 1 h or more. In these latter experiments, the antagonist effects of SC nor-BNI (30.0 mg/kg) were evident up to 96 h posttreatment. These results show that the mu opioid antagonist activity of nor-BNI is variable and that the kappa opioid antagonist selectivity of nor-BNI is a function of dose and treatment interval and is long-lasting even after systemic administration. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Formaldehyde; Male; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Pyrroles; Pyrrolidines; Receptors, Opioid, kappa; Receptors, Opioid, mu; Thiophenes | 1996 |
Estrogen and progesterone activate spinal kappa-opiate receptor analgesic mechanisms.
Rats and humans manifest elevated response thresholds to aversive stimuli during gestation and parturition. This pregnancy-associated antinociception is mediated, in part, by a spinal cord dynorphin/kappa antinociceptive system. Simulating the maternal pregnancy blood concentration profile (in non-pregnant animals) of 17-beta-estradiol (E2) and progesterone (P) produces an opioid antinociception which closely approximates that of actual pregnancy. The current study was initiated in order to determine whether sex steroid-induced antinociception involves a spinal cord kappa-opiate receptor-coupled system (as does the antinociception of actual gestation). Additionally, sex steroid modulation of the intrathecal (i.t.) antinociceptive effectiveness of a kappa agonist was investigated. The opioid antinociception associated with simulating the pregnancy blood concentration profile of E2 and P (hormone-stimulated pregnancy, HSP) is significantly antagonized by i.t. administration of nor-binaltorphimine, an antagonist highly specific for the kappa-opiate receptor. This indicates that exposure (of non-pregnant animals) to the pregnancy blood profile of E2 and P activates a spinal cord kappa-opiate receptor analgesic system, as occurs during actual gestation. Furthermore, during HSP, antinociceptive responsiveness to i.t. U50,488H (kappa-selective) is significantly enhanced (approximately 40%). This effect is abolished in animals treated concomitantly with steroid hormones and systemic naltrexone or i.t. nor-binaltorphimine. In contrast to the effects of steroid treatment on antinociceptive responsiveness to i.t. U50,488H, no alteration in antinociceptive responsiveness to i.t. sufentanil was observed on day 19 of HSP over all doses tested (0.1-1 nmol). Thus, during HSP (and actual gestation), a less robust constituent of intrinsic opioid pain-attenuating systems in the spinal cord is recruited. pF to mediate, at least in part, the maternal antinociception of gestation. pF, positive modulation of the spinal cord kappa analgesic system occurs post-synaptically. This laboratory previously reported that simulating the pregnancy blood concentration profile of E2 and P also positively modulates spinal dynorphin content and the processing of its precursor, suggesting a presynaptic loci of action. Thus, female rats possess a spinal dynorphin/kappa analgesic system that can be positively modulated, pre-synaptically as well as post-synaptically, by circulating sex steroids. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Estrogens; Female; Naltrexone; Narcotic Antagonists; Nociceptors; Pain Threshold; Progesterone; Pseudopregnancy; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Spinal Cord | 1996 |
Evidence that D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic neurons in the male rat occurs via inhibition of tonically active afferent dynorphinergic neurons.
The purpose of the present study was to determine if D2 receptor-mediated activation of hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons occurs via afferent neuronal inhibition of tonically active inhibitory dynorphinergic neurons in the male rat. To this end, the effects of either surgical deafferentation of the mediobasal hypothalamus or administration of a kappa opioid receptor agonist (U-50,488) or antagonist (nor-binaltorphimine (NOR-BNI)) on D2 receptor-mediated activation of TIDA neurons were assessed. For comparison, the activity of mesolimbic DA neurons was also determined in these studies. TIDA and mesolimbic DA neuronal activities were estimated by measuring dopamine synthesis (accumulation of 3,4-dihydroxyphenylalanine (DOPA) following decarboxylase inhibition) and metabolism (concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC)) in terminals of these neurons in the median eminence and nucleus accumbens, respectively. Intraperitoneal administration of the D2 receptor agonist quinelorane caused a dose-dependent increase in DOPAC in the median eminence and a decrease in DOPAC in the nucleus accumbens; surgical deafferentation of the mediobasal hypothalamus prevented the effect of quinelorane in the median eminence, but not the nucleus accumbens. Activation of kappa opioid receptors with U-50,488 had no effect per se, but blocked quinelorane-induced increases in median eminence DOPA. In contrast, U-50,488 had no effect on DOPA in the nucleus accumbens of either vehicle- or quinelorane-treated rats. Blockade of kappa opioid receptors with NOR-BNI increased median eminence DOPA, and prevented the stimulatory effects of quinelorane on dopamine synthesis. Administration of prolactin also increased median eminence DOPA, but did not alter the ability of quinelorane to stimulate dopamine synthesis. Neither NOR-BNI nor prolactin had any effect on DOPA in the nucleus accumbens of vehicle- or quinelorane-treated rats. These results suggest that D2 receptor-mediated activation of TIDA neurons occurs via an afferent neuronal mechanism involving, at least in part, inhibition of tonically active inhibitory dynorphinergic neurons in the male rat. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; 3,4-Dihydroxyphenylacetic Acid; Afferent Pathways; Analgesics; Animals; Cerebral Ventricles; Dihydroxyphenylalanine; Dopa Decarboxylase; Dopamine; Dopamine Agonists; Dynorphins; Hypothalamus; Hypothalamus, Middle; Injections, Intraperitoneal; Injections, Intraventricular; Limbic System; Male; Median Eminence; Naltrexone; Narcotic Antagonists; Neurons; Nucleus Accumbens; Prolactin; Pyrrolidines; Quinolines; Rats; Receptors, Dopamine D2; Receptors, Opioid, kappa | 1996 |
Systemic administration of dynorphin A-(1-13) markedly improves cycloheximide-induced amnesia in mice.
The effects of systemic or intracerebroventricular injection of dynorphin A-(1-13), a kappa-selective opioid receptor agonist, on cycloheximide-induced amnesia were investigated by using a step-down-type passive avoidance task in mice. The intracerebroventricular injection of dynorphin A-(1-13) (0.3-3 micrograms) before training significantly prolonged step-down latency. The systemic administration of dynorphin A-(1-13) (1, 3 and/or 10 mg/kg, i.p.) before training or retention tests markedly inhibited the cycloheximide (30 mg/kg, s.c.)-induced shortening of step-down latency, indicating antiamnesic effects of dynorphin A-(1-13). One and 3 mg/kg doses of ((+/-)trans-3, 4-dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, methanesulfonate hydrate (U-50,488H), another kappa-selective opioid receptor agonist, significantly inhibited the shortening. The anti-amnesic effects of dynorphin A-(1-13) (3 and 10 mg/kg, i.p.) were almost completely antagonized by intracerebroventricular administration of the quaternary derivative of the opioid receptor antagonist naltrexone methobromide (0.3 microgram), but not by systemic administration of the opioid receptor antagonist (1 mg/kg, s.c.), demonstrating central mediation of the anti-amnesic effects of dynorphin A-(1-13). Furthermore, the kappa-selective opioid receptor antagonist, nor-binaltorphimine (2 mg/kg, s.c.), almost completely antagonized the effects of dynorphin A-(1-13) (3 and 10 mg/kg, i.p.). These results suggest that dynorphin A-(1-13) produces anti-amnesic effects through the blood-brain barrier. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amnesia; Analgesics; Animals; Avoidance Learning; Cycloheximide; Dynorphins; Injections, Intraventricular; Male; Memory; Mice; Naltrexone; Narcotic Antagonists; Protein Synthesis Inhibitors; Pyrrolidines; Quaternary Ammonium Compounds; Receptors, Opioid, kappa | 1996 |
kappa-opioid receptor expression defines a phenotypically distinct subpopulation of astroglia: relationship to Ca2+ mobilization, development, and the antiproliferative effect of opioids.
To assess the role of kappa-opioid receptors in astrocyte development, the effect of kappa-agonists on the growth of astroglia derived from 1-2-day-old mouse cerebra was examined in vitro. kappa-Opioid receptor expression was assessed immunocytochemically (using KA8 and KOR1 antibodies), as well as functionally by examining the effect of kappa-receptor activation on intracellular calcium ([Ca2+]i) homeostasis and DNA synthesis. On days 6-7, as many as 50% of the astrocytes displayed kappa-receptor (KA8) immunoreactivity or exhibited increases in [Ca2+]i in response to kappa-agonist treatment (U69,593 or U50,488H). Exposure to U69,593 (100 nM) for 72 h caused a significant reduction in number and proportion of glial fibrillary acidic protein-immunoreactive astrocytes incorporating bromodeoxyuridine (BrdU) that could be prevented by co-administering the kappa-antagonist, nor-binaltorphimine (300 nM). In contrast, on day 14, only 5 or 14%, respectively, of the astrocytes were kappa-opioid receptor (KA8) immunoreactive or displayed functional increases in [Ca2+]i. Furthermore, U69,593 (100 nM) treatment failed to inhibit BrdU incorporation at 9 days in vitro. Experimental manipulations showed that kappa-receptor activation increases astroglial [Ca2+]i both through influx via L-type channels and through mobilization of intracellular stores (which is an important Ca2+ signaling pathway in cell division). Collectively, these results indicate that a subpopulation of developing astrocytes express kappa-opioid receptors in vitro, and suggest that the activation of kappa-receptors mobilizes [Ca2+]i and inhibits cell proliferation. Moreover, the proportion of astrocytes expressing kappa-receptors was greatest during a period of rapid cell growth suggesting that they are preferentially expressed by proliferating astrocytes. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Astrocytes; Benzeneacetamides; Bromodeoxyuridine; Calcium; Calcium Channel Blockers; Cell Count; Cell Division; Cells, Cultured; DNA; Enzyme Inhibitors; Gene Expression Regulation, Developmental; Immunohistochemistry; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Nifedipine; Phenotype; Pyrrolidines; Receptors, Opioid, kappa; Thapsigargin; Time Factors | 1996 |
Opioid receptor-mediated control of acetylcholine release in human neocortex tissue.
The effects of various opioid receptor agonists and antagonists on evoked acetylcholine release were studied in slices of human neocortex prelabelled with [3H]-choline, superfused and depolarized electrically (2 min, 3 Hz, 2 ms, 24 mA) or by K+ (20 mM). The delta-opioid receptor agonist DPDPE and the kappa-opioid receptor agonist U50488 reduced the evoked [3H]-overflow (acetylcholine release) in a concentration-dependent fashion; the delta-opioid receptor antagonist naltrindole and the kappa-opioid receptor antagonist norbinaltorphimine, respectively, antagonized these effects. Application of the mu-opioid receptor agonist DAGO also resulted in an inhibition of acetylcholine release; however, both delta- and kappa-opioid receptor antagonists were able to block this effect. The mu-opioid receptor agonists morphine and (+)-nortilidine had no effect. These results indicate that acetylcholine release in human neocortex is inhibited through delta- and kappa-opioid receptors, but not through mu-opioid receptors. Acetylcholine release was significantly increased by the delta-opioid receptor antagonist naltrindole in the presence of a mixture of peptidase inhibitors providing evidence for a delta-opioid receptor-mediated inhibition of acetylcholine release by endogenous enkephalin. K(+)-evoked acetylcholine release in the presence of TTX was inhibited by U50488, but not by DPDPE, suggesting the presence of kappa-opioid receptors on cholinergic terminals and the localization of delta-receptors on cortical interneurons. Therefore, the potent effect of DPDPE on acetylcholine release is likely to be indirect, by modulation of intrinsic cortical neurons. These interneurons probably do not use GABA as neurotransmitter since both GABAA and GABAB receptor agonists (muscimol and baclofen, respectively) were without effect on acetylcholine release. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Adolescent; Adult; Aged; Analgesics; Analysis of Variance; Baclofen; Cerebral Cortex; Dose-Response Relationship, Drug; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Female; GABA Agonists; Humans; Male; Middle Aged; Muscimol; Naloxone; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid, delta; Tetrodotoxin | 1996 |
U-50488H, a selective kappa-opioid receptor agonist, improves carbon monoxide-induced delayed amnesia in mice.
The effects of trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl] cyclohexyl) benzeneacetamide methanesulfonate salt (U-50488H) on carbon monoxide (CO)-induced amnesia in mice were investigated using spontaneous alternation and step-down type passive avoidance tasks. The lower percentage alternation and shorter median step-down latency in the retention test of the CO-exposed group indicated that memory deficiency occurred in mice when behavioral testing commenced 5-7 days after CO exposure. Administration of U-50488H (0.21 and 0.64 mumol/kg s.c.) 25 min before spontaneous alternation performance or the first training session of the passive avoidance task improved the CO-induced impairment of alternation performance and passive avoidance tasks. To determine whether the effect of U-50488H was mediated via kappa-opioid receptors, we attempted to block its action using a selective kappa-opioid receptor antagonist (nor-binaltorphimine). Nor-binaltorphimine (5.44 nmol/mouse i.c.v.) blocked the effect of U-50488H on CO-induced delayed amnesia. Furthermore, a low dose of scopolamine (0.41 mumol/kg s.c.) also blocked the ameliorating effect of U-50488H. U-50488H (0.21-2.15 mumol/kg s.c.) did not facilitate the acquisition of memory in normal mice. These results suggest that U-50488H modulates the kappa-opioid receptor-mediated opioid neuronal system and activates the cholinergic neuronal system, and that it ameliorates the disruptive effect of CO on acquisition and/or consolidation of memory. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amnesia; Analgesics; Animals; Avoidance Learning; Carbon Monoxide Poisoning; Electric Stimulation; Male; Mice; Naltrexone; Narcotic Antagonists; Pyrrolidines | 1996 |
Characterization of the opioid receptor subtypes mediating the negative inotropic effects of DAMGO, DPDPE and U-50, 488H in isolated human right atria strips.
The present investigation was aimed at elucidating if mu-, delta- and kappa-opioid receptors are involved in the effects of DAMGO (selective mu-agonist), DPDPE (selective delta-agonist) and U-50,488H (selective kappa-agonist) in isolated electrically driven human right atria strips. The negative inotropic effects induced by the opioid agonists used in this study were not antagonized in presence of naloxone (preferentially mu-antagonist), naltrindole (selective delta-antagonist) and norbinaltorphimine (selective kappa-antagonist). These data suggest that the opioid receptors are not involved in the cardiac depressant effects induced by mu-, delta- and kappa-opioid agonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adult; Aged; Analgesics; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Female; Heart Atria; Humans; Male; Middle Aged; Myocardial Contraction; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pyrrolidines; Receptors, Opioid | 1995 |
The opioid peptide dynorphin directly blocks NMDA receptor channels in the rat.
1. The actions of dynorphin on N-methyl-D-aspartate (NMDA) responses were examined in acutely dissociated trigeminal neurons in rat. Whole-cell and single-channel currents were recorded using the patch clamp technique. 2. Dynorphins reduced NMDA-activated currents (INMDA). The IC50 was 0.25 microM for dynorphin (1-32), 1.65 microM for dynorphin (1-17) and 1.8 microM for dynorphin (1-13). 3. The blocking action of dynorphin is voltage independent. 4. The inhibitory action of dynorphin cannot be blocked by high concentration of the non-selective opioid receptor antagonist naloxone, nor by the specific kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI). 5. Single-channel analyses indicate that dynorphin reduces the fraction of time the channel is open without altering the channel conductance. 6. We propose that dynorphin acts directly on NMDA receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Dynorphins; In Vitro Techniques; Ion Channels; Naloxone; Naltrexone; Neurons; Patch-Clamp Techniques; Pyrrolidines; Rats; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, kappa; Structure-Activity Relationship; Trigeminal Nerve | 1995 |
Kappa opioid inhibition of morphine and cocaine self-administration in rats.
Two kappa agonists, U50,488 and spiradoline, produced dose-related acute decreases in both morphine and cocaine self-administration in rats; higher doses of both agents were required to decrease rates of bar-pressing for water. On the day after kappa agonist administration, both agents produced extinction-like patterns of responding in many rats self-administering morphine or cocaine but not in rats responding for water. Two days after their administration, both U50,488 and spiradoline produced significant decreases in both morphine and cocaine intake; some rats continued to show decreases in drug self-administration for 5-6 days. Although the kappa antagonist nor-binaltorphimine (10 mg/kg s.c.) had no effect itself on either morphine or cocaine self-administration, it fully antagonized the effects of U50,488 (10 m/kg i.p.). The results suggest that although endogenous kappa opioid systems may not tonically modulate mechanisms involved in drug reinforcement, pharmacological activation of kappa pathways may be a novel and effective pharmacological approach to treating both opioid and stimulant addiction. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Cocaine; Dose-Response Relationship, Drug; Extinction, Psychological; Female; Morphine; Naltrexone; Narcotics; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reinforcement, Psychology; Self Administration | 1995 |
Mouse strain differences in in vivo and in vitro immunosuppressive effects of opioids.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Erythrocytes; Female; Immunosuppressive Agents; Mice; Mice, Inbred Strains; Morphine; Naloxone; Naltrexone; Opioid Peptides; Pyrrolidines; Species Specificity; Spleen | 1995 |
Kappa opioid receptor agonists suppress absence seizures in WAG/Rij rats.
Involvement of the kappa opioid receptor in the regulation of epileptic activity was studied in WAG/Rij rats, a genetic model of absence epilepsy. I.c.v. administration of the kappa agonists U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]- benzeneacetamide), U69,593 (5 alpha, 7 alpha, 8 beta)-(-)-N-methyl-(1-pyrrolidinyl)-1- oxaspiro(4,5)dec-8-yl)benzeneacetamide) or PD117,302 ((+/-)-trans-N-methyl-N-[2-(1-pyrrolidinyl)- cyclohexyl]benzo[b]thiophene-4-acetamide), 50 and 150 micrograms/5 microliter each, dose-dependently decreased the number and mean duration of spike wave discharges (SWD). Peripheral administration of U50,488H (10 and 30 mg/kg s.c.) also attenuated the seizure activity in this model. The specific kappa opioid receptor antagonist nor-binaltorphimine (Nor-BNI, 10 micrograms/5 microliters i.c.v., 18 h before EEG registration) moderately increased the number of SWD, which suggests that endogenous opioids acting through kappa receptors may tonically inhibit the seizure activity in these rats. In addition, the enhancement of an absence-like seizure activity induced by the specific mu opioid receptor agonist D-Ala2-N-methyl-Phe4-Gly5-ol-enkephalin (DAMGO, 0.7 microgram/5 microliters i.c.v.) was also attenuated in rats pretreated with U50,488H, U69,593 or PD117,302. These data indicate that activation of the kappa opioid receptor exerts an inhibitory effect on absence-like seizure activity in WAG/Rij rats. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Anticonvulsants; Dose-Response Relationship, Drug; Electroencephalography; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Epilepsy, Absence; Injections, Intraventricular; Injections, Subcutaneous; Male; Molecular Sequence Data; Naltrexone; Pyrroles; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid, kappa; Receptors, Opioid, mu; Thiophenes | 1995 |
kappa-Opioid receptor-transfected cell lines: modulation of adenylyl cyclase activity following acute and chronic opioid treatments.
The opioid receptors mu, delta and kappa have recently been cloned. Here we show that kappa-agonists inhibit adenylyl cyclase activity in Chinese hamster ovary cells stably transfected with rat kappa-opioid receptor cDNA. Chronic exposure of the cells to kappa-agonists did not lead to significant desensitization of the capacity of the agonists to inhibit adenylyl cyclase. On the other hand, withdrawal of the agonist following the chronic treatment led to the phenomenon of supersensitivity ('overshoot') of adenylyl cyclase activity. Both the inhibition of adenylyl cyclase activity by the acute opioid treatment and the chronic agonist-induced supersensitivity are pertussis toxin sensitive, demonstrating involvement of Gi/Go proteins in both processes. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenylate Cyclase Toxin; Adenylyl Cyclase Inhibitors; Animals; Benzeneacetamides; CHO Cells; Colforsin; Cricetinae; Cyclic AMP; Etorphine; GTP-Binding Proteins; Naloxone; Naltrexone; Opioid Peptides; Pertussis Toxin; Pyrrolidines; Receptors, Opioid, kappa; Virulence Factors, Bordetella | 1995 |
Ca2+ channel inhibition by kappa opioid receptors expressed in Xenopus oocytes.
Functional coupling between kappa opioid receptors and voltage-dependent Ca2+ channels was studied in the Xenopus oocyte translation system, in which specific RNAs encoding rat kappa opioid receptor, rabbit BI-2 alpha 1 subunit, and human beta subunit were co-injected. Perfusion of the oocytes with U50488H inhibited depolarization-evoked Ba2+ current (IBa) in a reversible manner, showing maximal inhibition of 25% at 1 microM (IC50 = 31 nM). The inhibitory effect of U50488H was desensitized by pre-exposure of the oocytes to U50488H and abolished by the kappa opioid antagonist nor-binaltorphimine and by overnight pretreatment with pertussis toxin. Agents affecting the activity of protein kinase A or C did not affect the U50488H-induced inhibition of IBa. These findings suggest that kappa opioid receptors inhibit the activity of neuronal Ca2+ channels via GTP-binding proteins, without the participation of protein kinase A or C. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Barium; Calcium Channels; Electric Conductivity; GTP-Binding Proteins; Injections; Naltrexone; Oocytes; Pertussis Toxin; Pyrrolidines; Rats; Receptors, Opioid, kappa; RNA; Virulence Factors, Bordetella; Xenopus laevis | 1994 |
Involvement of kappa-opioid receptor mechanisms in the calcitonin-induced potentiation of opioid effects at the hypothalamus-pituitary-adrenocortical axis.
The present study was conducted to evaluate the influence of calcitonin on the neuroendocrine effects of both the mu-opioid receptor agonist, morphine, and the selective kappa-opioid receptor agonist, U-50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1- pyrrolidynyl)cyclohexyl]benzeneacetamide methane sulphonate), at the hypothalamus-pituitary-adrenocortical axis in rats. Calcitonin given alone (2.5, 5 or 10 UI/kg i.p.) induced no changes or a slight reduction (20 UI/kg i.p.) in plasma corticosterone, 45 min after its administration. Morphine did not produce any modification in plasma corticosterone at doses of 3 or 10 mg/kg i.p., whereas it produced a significant increase in corticosterone secretion at doses of 20 or 30 mg/kg i.p., 30 min after its administration. Pretreatment with calcitonin (2.5 UI/kg i.p.) 15 min before morphine (3 or 10 mg/kg i.p.) did not modify the effect of the opioid on plasma corticosterone. U-50,488H (0.5, 1, 5 or 15 mg/kg i.p.) induced an increase in the release of corticosterone only at the higher dose, 30 min after injection. Significantly higher plasma corticosterone levels after U-50,488H administration at doses of 0.5, 1 or 5 mg/kg i.p. were observed when calcitonin was administered 15 min before the kappa-opioid receptor agonist. The enhanced responsiveness of the hypothalamus-pituitary-adrenocortical axis to U-50,488H (1 mg/kg i.p.) in animals pretreated with calcitonin, was completely blocked by the selective kappa-opioid receptor antagonist, nor-binaltorphimine, suggesting a role of kappa-opioid receptors in mediating the calcitonin-induced supersensitivity to U-50,488H.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Calcitonin; Corticosterone; Drug Synergism; Hypothalamo-Hypophyseal System; Male; Morphine; Naltrexone; Narcotics; Pituitary-Adrenal System; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1994 |
Peripheral kappa-opioid receptors mediate the antinociceptive effect of fedotozine (correction of fetodozine) on the duodenal pain reflex inrat.
Fedotozine has been shown to act on gastrointestinal sensitivity through peripheral kappa-opioid receptors. The present study investigated the action of fedotozine and reference compounds, morphine and (+/-)-U-50,488H, on duodenal pain in anesthetized rats. The noxious stimulus was produced by duodenal distension (100 mm Hg; 30 s). Fedotozine (1-5 mg/kg i.v.) produced a dose-dependent inhibition of the cardiovascular reflex induced by duodenal distension (ED50 = 1.87 mg/kg) but had no effect at doses up to 300 micrograms/rat by either intracerebroventricular (i.c.v.) or intrathecal routes (i.t.). The mu-opioid receptor agonist, morphine, was active by both i.v. (ED50 = 0.62 mg/kg) and i.c.v. routes (ED50 = 2.17 micrograms/rat) as was the kappa-opioid receptor agonist, (+/-)-U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1- pyrrolidinyl]cyclohexyl)benzeneacetamide) (ED50 = 0.25 mg/kg and 149 micrograms/rat for i.v. and i.c.v. routes, respectively). The selective kappa-opioid receptor antagonist, nor-binaltorphimine (10 mg/kg s.c.), abolished the response to fedotozine (5 mg/kg i.v.) and (+/-)-U-50,488H (2 mg/kg i.v.) but not that to morphine (1 mg/kg i.v.). In contrast, naloxone (30 micrograms/kg i.v.) blocked the response to morphine (1 mg/kg i.v.) but not that to fedotozine (5 mg/kg i.v.) or (+/-)-U-50,488H (2 mg/kg i.v.). It is concluded that the antinociceptive effects of fedotozine on duodenal pain are mediated by peripheral kappa-opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzyl Compounds; Blood Pressure; Dose-Response Relationship, Drug; Duodenum; Injections, Intravenous; Injections, Intraventricular; Male; Morphine; Naloxone; Naltrexone; Pain; Propylamines; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Reflex | 1994 |
Both T cells and macrophages are targets of kappa-opioid-induced immunosuppression.
We have previously shown that antibody responses are inhibited following administration of kappa-opioid agonists. We found that the inhibition was blocked by either naloxone or the kappa-selective antagonist norbinaltorphimine. This inhibitory activity is apparent after short-term treatment with the kappa-opioid agonist. In an attempt to identify the cell populations which serve as the target for this immunosuppressive effect, we have carried out cell fractionation analyses to generate isolated T cells and macrophages. Using multiple cell fractionation methods, we have determined that short-term treatment of either T cells or macrophages with the kappa-opioid agonist U50,488H results in significant inhibition of in vitro antibody responses. We also find that the inhibition of both T cell and macrophage activity can be blocked by naloxone. These studies demonstrate that resting T cells and macrophages express kappa-opioid receptors and exhibit significant opioid responsiveness prior to activation by antigen. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Antibody Formation; Cell Separation; Cells, Cultured; Depression, Chemical; Lymphocyte Activation; Lymphocyte Cooperation; Macrophage Activation; Macrophages, Peritoneal; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C3H; Naloxone; Naltrexone; Neuroimmunomodulation; Pyrrolidines; Receptors, Opioid, kappa; Rosette Formation; Specific Pathogen-Free Organisms; T-Lymphocytes | 1994 |
U50,488, a kappa opioid receptor agonist, attenuates cocaine-induced increases in extracellular dopamine in the nucleus accumbens of rats.
Because an increase in extracellular levels of dopamine in the nucleus accumbens has been associated with the reinforcing effects of addictive drugs, we investigated whether U50,488, a selective kappa opioid receptor agonist, would alter cocaine-induced increases in extracellular dopamine in the nucleus accumbens using in vivo microdialysis in awake and freely moving rats. Cocaine (20 mg/kg i.p.) produced a 10-fold increase in extracellular dopamine levels. Pretreatment (20 min beforehand) with U50,488 (10 mg/kg i.p.), which alone caused a modest decrease in dopamine levels, produced a 50% decrease in the effect of cocaine on dopamine levels. This attenuation was completely reversed by administration of a kappa opioid receptor antagonist, nor-binaltorphimine (10 mg/kg s.c.), 20 min before the agonist challenge. Treatment with nor-binaltorphimine alone induced a brief increase in dopamine levels. These findings indicate that activation of kappa receptors attenuates cocaine's effects and that kappa opioid receptor agonists may, therefore, be useful as functional cocaine antagonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cocaine; Dopamine; Extracellular Space; Female; Naltrexone; Nucleus Accumbens; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa | 1994 |
Comparative effects of intrahippocampal injection of dynorphin A(1-8), dynorphin A(1-13), dynorphin A(1-17), U-50,488H, and dynorphin B on blood pressure and heart rate in spontaneously hypertensive and normotensive Wistar-Kyoto rats.
We previously demonstrated centrally mediated hypotensive and bradycardic effects of dynorphin A(1-8) (DA1-8) on microinjection into various areas of the hippocampal formation (HF) of both anesthetized and conscious male normotensive and spontaneously hypertensive rats (SHR). The purpose of the present study was to determine whether other dynorphin fragments also had this activity. We microinjected DA1-8, dynorphin A(1-13), dynorphin A(1-17), dynorphin B (DB), and the nonpeptide kappa-opioid agonist U-50,488H into HF areas previously found to react to DA1-8, at doses ranging from 0.05 to 50 nmol. The subjects were male SHR and normotensive Wistar-Kyoto (WKY) rats in which arterial pressure and heart rate were monitored. Dose-related centrally mediated hypotension and bradycardia were found in both strains with all agents used, except for DB, which had no effects. Similarly injected drug vehicle was also without effect. In general, the responses were greater in SHR than in WKY rats. Preinjection of the active HF areas with 2 nmol of nor-binaltorphimine (nor-BNI), a selective kappa-opioid receptor antagonist, which itself had no blood pressure or heart rate effects, abolished both the decrease in blood pressure and heart rate of all dynorphins and U-50,488H. The results demonstrated the equivalent abilities of all the dynorphin fragments studied, except DB, to cause HF-mediated hypotension and bradycardia. The results with U-50,488H and nor-BNI strongly implicate kappa-opiate receptor activation of the HF in these effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Antihypertensive Agents; Blood Pressure; Dynorphins; Heart Rate; Hippocampus; Hypertension; Male; Molecular Sequence Data; Naltrexone; Peptide Fragments; Pyrrolidines; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Reference Values | 1994 |
The kappa agonist fedotozine modulates colonic distention-induced inhibition of gastric motility and emptying in dogs.
Gastric motor disturbances, associated with a delay in gastric emptying, occur in patients with the irritable bowel syndrome. The influence of fedotozine and kappa agonists on the cologastric reflex produced by nonpainful colonic distention was evaluated in conscious dogs.. Colonic distention was applied in dogs fitted with either strain gauges or gastric cannula to assess its influence on gastrointestinal motility and gastric emptying, respectively.. Colonic distention delayed the occurrence of gastric migrating motor complex by 141%, an effect blocked by intravenous fedotozine, U 50,488 (25 and 50 micrograms/kg), and hexamethonium (0.5 mg/kg) but not by D-Ala2, N-methyl, Phe4, Gly5-ol enkephalin (1, 5, and 10 micrograms/kg), granisetron (50 and 100 micrograms/kg), or bretylium tosylate (5 mg/kg). Nor-binaltorphimine hydrochloride (1 mg/kg intravenously) eliminated the suppressive action of fedotozine. Colonic distention reduced the 1-hour gastric emptying of solids by 40.1%, an effect blocked by fedotozine and U 50,488 (50 and 100 micrograms/kg); nor-binaltorphimine hydrochloride (1 mg/kg) antagonized the blocking effect of fedotozine.. Fedotozine acts through kappa receptors to block the colonic distention-induced delay on gastric motility and emptying. The cologastric reflex involves nicotinic ganglionic receptors but not adrenergic pathway and 5-hydroxytryptamine 3 receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzyl Compounds; Bretylium Compounds; Catheterization; Colon; Dogs; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Gastric Emptying; Gastrointestinal Motility; Granisetron; Hexamethonium; Male; Naltrexone; Narcotic Antagonists; Propylamines; Pyrrolidines; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reflex; Stomach | 1994 |
Morphine reduces the release of met-enkephalin-like material from the rat spinal cord in vivo by acting at delta opioid receptors.
The modulation by morphine of the spinal release of met-enkephalin-like material (MELM) was investigated in anaesthetized rats whose intrathecal space was perfused with an artificial CSF (ACSF). Morphine (10 microM in the ACSF), as well as a mu- (DAGO, 10 microM) or delta opioid receptor agonist (DTLET, 10 microM), significantly decreased the outflow of MELM. The effects of morphine and DTLET were prevented by the delta antagonist, naltrindole (10 microM), but not by naloxone (10 microM). Conversely, naloxone, but not naltrindole, prevented the inhibitory effect of DAGO. Although neither the kappa 1 agonist, U 50488H (10 microM), nor the kappa 1 antagonist, norbinaltorphimine (10 microM), exerted on their own any significant effect, norbinaltorphimine enhanced the inhibitory action of morphine. In contrast to the inhibition induced by morphine (with or without naloxone) which was preventable by 10 microM naltrindole, the inhibition of MELM release by morphine plus norbinaltorphimine was only partly reduced by naltrindole. Thus, concomitant stimulation of mu, delta and kappa 1 receptors might account for the apparent delta opioid receptor-dependent inhibition of MELM release by morphine. Indeed, its potential inhibitory effect through the stimulation of mu receptors (normally prevented by the concomitant stimulation of kappa 1 receptors) becomes efficient only when kappa 1 receptors are blocked. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Enkephalins; Injections, Spinal; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pyrrolidines; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Spinal Cord | 1994 |
Species difference in the modulatory effect of kappa agonist on 5-HT release from ground squirrel and rat hippocampus.
Inclusion of the kappa agonist U50488 in the perifusion medium enhanced K(+)-stimulated 5-HT release from ground squirrel hippocampal slices, but reduced 5-HT outflow in both young and old rats' hippocampal slices. The stimulatory effect of U50488 on 5-HT release from ground squirrel hippocampus was not significantly attenuated by the non-specific opioid antagonist naloxone (10(-5) M), but was completely reversed by the specific kappa antagonist nor-BNI (10(-6)M), and the voltage-dependent sodium channel blocker TTX (10(-6)M). In contrast, the inhibitory effect of U50488 on 5-HT release from the young rat hippocampus was attenuated by naloxone (10(-6)M), but not by nor-BNI (10(-6)M) or TTX (10(-6)M). These results illustrate a significant species difference in the modulatory effect of opioids on neurotransmitter release in the hippocampus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Aging; Animals; Dose-Response Relationship, Drug; Female; Hippocampus; In Vitro Techniques; Male; Naloxone; Naltrexone; Potassium; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Sciuridae; Serotonin; Species Specificity; Tetrodotoxin | 1994 |
Differential binding domains of peptide and non-peptide ligands in the cloned rat kappa opioid receptor.
This study was to identify specific regions in kappa opioid receptors that accounted for binding selectivity of kappa ligands. Six chimeric mu/kappa receptors were constructed from cloned rat kappa and mu opioid receptors and transiently expressed in COS-1 cells. All six chimeric mu/kappa receptors bound [3H] diprenorphine with high affinities, indicating that these chimeras retain opioid receptor conformation. Binding affinities of three peptide ligands (dynorphin A, alpha-neo-endorphin, and dynorphin B) and three nonpeptide ligands (norbinaltorphimine, U50,488H, and U69,593) for chimeras were determined and compared to those for mu and kappa opioid receptors. The second extracellular loop and the adjoining C-terminal portion of the fourth transmembrane helix were essential for the high affinity binding of dynorphin A, alpha-neo-endorphin, and dynorphin B to the kappa receptor. The third extracellular loop and the sixth and seventh transmembrane helices played an important role in determining the selectivity of nor-binaltorphimine for the kappa over the mu receptor. U50,488H and U69,593 appeared to require the whole kappa receptor except the second extracellular loop to attain high affinity binding. Thus, the kappa opioid receptor has differential binding domains for peptide and non-peptide ligands. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Base Sequence; Benzeneacetamides; Binding Sites; Binding, Competitive; Cell Line; Chlorocebus aethiops; Cloning, Molecular; Diprenorphine; DNA Primers; Dynorphins; Endorphins; Kinetics; Ligands; Molecular Sequence Data; Naltrexone; Polymerase Chain Reaction; Protein Conformation; Protein Structure, Secondary; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Fusion Proteins; Transfection | 1994 |
Role of vagal afferents in the antinociception produced by morphine and U-50,488H in the colonic pain reflex in rats.
The mechanisms underlying the antinociception induced by morphine or U-50,488H (trans-(+-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]- cyclohexyl)benzeneacetamide) against painful colonic distension were examined in anaesthetized rats. The respective ED50 values for morphine and U-50,488H were 0.34 and 0.35 mg/kg for the i.v. route, and 1.68 and 167 micrograms/rat for the i.c.v. route. Morphine was active by the intrathecal route (ED50 = 7.8 micrograms) whereas U-50,488H had no effect at doses up to 100 micrograms/rat. The morphine response was selectively antagonized by naloxone (30 micrograms/kg i.v.) whereas that of U-50,488H was blocked by nor-binaltorphimine (10 mg/kg s.c.). Bilateral vagotomy abolished the response to morphine at 0.35 mg/kg i.v. and reduced by 41.3% that to 1 mg/kg morphine, but had no effect on that to U-50,488H or i.c.v. morphine (10 micrograms/rat). It is concluded that peripheral mu- and kappa-opioid receptors may produce antinociception for colonic pain and that vagal integrity is required for mu-opioid but not kappa-opioid peripheral antinociception. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Blood Pressure; Colon; Injections, Intraventricular; Injections, Spinal; Male; Morphine; Naloxone; Naltrexone; Neurons, Afferent; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reflex; Vagotomy; Vagus Nerve | 1994 |
Interactions between delta 9-tetrahydrocannabinol and kappa opioids in mice.
The selective kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) has been shown to modulate cannabinoid-induced antinociception by delta 9-tetrahydrocannabinol (delta 9-THC). However, it is not known whether nor-BNI blocks other pharmacological effects of delta 9-THC or if this is a specific action of nor-BNI. Studies were conducted in which pretreatment with nor-BNI (2, 10 and 20 micrograms i.t.) selectively blocked delta 9-THC-induced antinociception while not significantly affecting other commonly observed cannabinoid actions, which included hypothermia, hypoactivity and catalepsy. Chronic administration studies were performed to determine if cross tolerance could be established between delta 9-THC and the highly specific kappa opioid receptor agonists, U-50,488H and CI-977. The chronic delta 9-THC-treated groups were significantly tolerant, not only to i.t. delta 9-THC-induced antinociception in the tail-flick test, but also to i.t. U-50,488 and CI-977 compared with those treated chronically with vehicle. They were not cross tolerant to either DAMGO or DPDPE. Dose-response curves were generated for both delta 9-THC (i.t.) and CI-977 (i.t.) in mice tolerant to delta 9-THC and CI-977. Parallel shifts to the right of the delta 9-THC dose-response curves were observed in animals tolerant to delta 9-THC and also in animals tolerant to CI-977. Animals tolerant to CI-977 also demonstrated parallel shifts of the dose-response curves of both delta 9-THC and CI-977. This study demonstrated that cannabinoid actions can be distinguished from each other. The pharmacological separation of antinociception from the other cannabinoid-induced actions implies that it may have a mechanism distinct from other effects. In addition, this study indicates that delta 9-THC and the kappa opioid agonists may share a common mechanism of action in the production of antinociception and that a possible interaction exists between i.t. administered cannabinoid compounds and the kappa opioid receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzofurans; Dronabinol; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Male; Mice; Mice, Inbred ICR; Naltrexone; Pyrrolidines; Receptors, Opioid, kappa | 1994 |
Antagonism of the morphine-induced Straub tail reaction by kappa-opioid receptor activation in mice.
The Straub tail reaction (STR) induced by intracerebroventricular injection (ICV) of morphine was significantly antagonized by beta-funaltrexamine (beta-FNA, mu antagonist), given intracerebroventricularly (ICV), but not naltrindole given ICV (NTI, delta antagonist) or SC norbinaltorphimine given subcutaneously (SC) (nor-BNI, kappa antagonist). When given either SC or ICV the kappa-agonist, U-50,488 H markedly suppressed the STR elicited by ICV morphine; these effects were reversed by nor-BNI. These results suggest that the activation of supraspinal kappa receptors can inhibit the ICV morphine-induced STR which results from activation of supraspinal mu receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred Strains; Morphine; Naltrexone; Narcotic Antagonists; Pain Measurement; Pyrrolidines; Receptors, Opioid, kappa | 1993 |
Blockade of morphine reward through the activation of kappa-opioid receptors in mice.
The effects of systemic (s.c.) treatment with the kappa-agonists U-50,488H and E-2078 (a stable dynorphin analog) on the morphine-induced place preference were examined in mice. Morphine (s.c.) caused a dose-related preference for the drug-associated place; the effects at doses of 3 and 5 mg/kg were significant. On the other hand, U-50,488H or E-2078 produced a dose-related conditioned place aversion. Both U-50,488H (1 mg/kg, s.c.) and E-2078 (0.1 mg/kg, s.c.) induced a slight, nonsignificant place aversion. Pretreatment with U-50,488H (1 mg/kg) abolished the morphine (3 mg/kg)-induced place preference. The morphine-induced place preference was also significantly decreased by pretreatment with E-2078 (0.1 mg/kg). The inhibitory effects of the kappa-agonists were antagonized by the kappa-antagonist nor-binaltorphimine (nor-BNI; 3 mg/kg, s.c.). In contrast, pretreatment with U-50,488H did not affect the place preference induced by the dopamine (DA) receptor agonist apomorphine (1 mg/kg, s.c.). In addition, morphine (3 mg/kg, s.c.) significantly increased the levels of the DA metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the limbic forebrain (nucleus accumbens and olfactory tubercle) but not in the striatum, implying that activation of the mesolimbic DA system may play an important role in the morphine-induced place preference in mice. Pretreatment with U-50,488H significantly reduced the morphine-induced elevation of DA metabolites in the limbic forebrain.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; 3,4-Dihydroxyphenylacetic Acid; Analgesics; Animals; Apomorphine; Conditioning, Operant; Dopamine; Dynorphins; Homovanillic Acid; Injections, Subcutaneous; Limbic System; Male; Mice; Mice, Inbred Strains; Morphine; Motivation; Naltrexone; Peptide Fragments; Prosencephalon; Pyrrolidines; Receptors, Opioid, kappa; Reward | 1993 |
The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line is coupled to adenylyl cyclase through a pertussis toxin-sensitive guanine nucleotide-binding regulatory protein.
The R1.1 mouse thymoma cell line expresses a high-affinity kappa opioid binding site. Opioid binding to this site is inhibited by guanine nucleotides, suggesting that the receptor is coupled to a guanine nucleotide-binding protein. Here, we present evidence that the kappa opioid binding site on R1.1 cell membranes is negatively coupled to adenylyl cyclase. The kappa-selective agonists (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)- cyclohexyl]benzeneacetamide methane-sulfonate hydrate [(-)-U50,488], (5 alpha,7 alpha, 8 beta)-(-)-N-methyl-N-(7-(1-pyrrolidinyl)-1-oxas- piro(4,5)dec-8-yl)benzeneacetamide (U69,593) and several dynorphin peptides inhibited basal and forskolin-stimulated cyclic AMP production by up to 40% in R1.1 cell membranes. The order of potency for the inhibition of adenylyl cyclase activity by opioid agonists correlated with their Ki values for the inhibition of [3H]U69,593 binding. Opioid-mediated inhibition of adenylyl cyclase activity was stereoselective, as (-)-U50,488 was more potent than the (+) isomer, and the inhibition was blocked by the kappa-selective antagonist nor-binaltorphimine. The opioid-mediated inhibition of adenylyl cyclase activity was also completely blocked by incubating R1.1 cells with Bordetella pertussis toxin (PTX). Incubation of R1.1 cell membranes with PTX and [adenylate-32P]NAD+ resulted in the exclusive labeling of a 41-kDa protein, as determined by separating the membrane proteins under reducing conditions on a SDS polyacrylamide gel, followed by autoradiography. These results suggest that a PTX-sensitive inhibitory guanine nucleotide-binding protein mediates the link between the thymoma kappa opioid receptor and adenylyl cyclase. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenylate Cyclase Toxin; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Analgesics; Animals; Cell Membrane; Cyclic AMP; Dynorphins; GTP-Binding Proteins; Mice; Naltrexone; Pertussis Toxin; Pyrrolidines; Receptors, Opioid, kappa; Sensitivity and Specificity; Thymoma; Thymus Neoplasms; Tumor Cells, Cultured; Virulence Factors, Bordetella | 1993 |
Regulatory role of enteric kappa opioid receptors in human colonic motility.
The effects of different kappa opioid agonists and antagonists on spontaneous mechanical activities and responses to electrical transmural nerve stimulation of both longitudinal and circular muscle strips from the human sigmoid colon were studied. A superfusion apparatus was used to record isometric contractions. Exogenously added kappa agonists did not modify spontaneous contractile activities on either type of strip. Nerve stimulation induced a triphasic response composed of a first contraction (C1) followed by a relaxation (C2) and an off-contraction (C3); this response was mediated by cholinergic excitatory nerves and non-adrenergic, non-cholinergic excitatory and inhibitory nerves. Dynorphin 1-13 and the synthetic kappa agonist trans-3,4-dichloro-N-methyl-N-(2- [1pyrolidinyl]-cyclohexyl) dramatically decreased the amplitude of the excitatory components C1 and C3. The effects of both kappa agonists were blocked in presence of the kappa antagonist Nor-Binaltorphimine. The delta antagonist ICI 174864 did not prevent the inhibition of the contractions C1 and C3 induced by dynorphin. Therefore, these data suggest that kappa receptors are involved in the neuroregulation of smooth muscle of human colon and mediate inhibition of cholinergic and non-cholinergic excitatory transmission within myenteric plexus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Colon, Sigmoid; Dynorphins; Electric Stimulation; Enkephalin, Leucine; Gastrointestinal Motility; Humans; In Vitro Techniques; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid, kappa | 1993 |
Central kappa opioid receptor-evoked changes in renal function in conscious rats: participation of renal nerves.
The present investigations examined the cardiovascular and renal responses produced by central nervous system stimulation of kappa opioid receptors by the selective kappa opioid receptor agonist, U-50488H, in conscious Sprague-Dawley rats. Administration of U-50488H (1 microgram total) into the lateral cerebroventricle produced a profound diuretic and antinatriuretic response. In addition, concurrent with the decrease in urinary sodium excretion, i.c.v. U-50488H elicited an increase in renal sympathetic nerve activity. The increases in urine flow rate and renal sympathetic nerve activity and the decrease in urinary sodium excretion produced by U-50488H were completely prevented in rats that had undergone pretreatment with the selective kappa opioid receptor antagonist, nor-binaltorphimine. In contrast, in animals that had undergone irreversible mu opioid receptor blockade with the selective mu opioid receptor antagonist, beta-funaltrexamine, central U-50488H administration elicited similar diuretic and antinatriuretic responses as observed in intact naive animals. In further studies, the antinatriuretic response produced by i.c.v. U-50488H was completely abolished in rats that had undergone chronic bilateral renal denervation, a technique used to remove the influence of the renal sympathetic nerves. Glomerular filtration rates and effective renal plasma flows were not altered by i.c.v. administration of U-50488H in intact or renal denervated animals. Together, these studies provide evidence for the role of central kappa opioid receptor mechanisms in the regulation of urinary sodium and water excretion. Moreover, these studies indicate that the changes in renal sodium handling produced by central kappa opioid agonists result from an action of these compounds to modulate sympathetic neural outflow to the kidneys. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Diuresis; Glomerular Filtration Rate; Heart Rate; Kidney; Male; Naltrexone; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sympathetic Nervous System | 1993 |
Kappa opioid antagonist effects of systemically administered nor-binaltorphimine in a thermal antinociception assay in rhesus monkeys.
The effects of subcutaneously administered nor-binaltorphimine (nor-BNI; 1.0 and 3.2 mg/kg) were examined in the warm-water (50 degrees C and 55 degrees C) tail-withdrawal assay in rhesus monkeys (n = 3). Nor-BNI alone produced variable antinociceptive effects in 50 degrees C water up to 3.5 hr after administration but was completely ineffective against the 55 degrees C stimulus. Pretreatment with nor-BNI under conditions where it was devoid of antinociceptive effects produced rightward shifts in dose-effect curves for the kappa opioid agonist U50,488 for as long as 14 and 21 days after 1.0 and 3.2 mg/kg of nor-BNI, respectively. Under conditions when U50,488 dose-effect curves were shifted, nor-BNI (3.2 mg/kg) also caused rightward shifts in the antinociceptive dose-effect curves of the kappa agonist U69,593 but not in those of the mu agonist alfentanil or the kappa agonists [5R-(5,7,8,beta)]N-methyl-N-[7- (1-pirrolidinyl)1-oxaspiro[4,5]dec-8-yl]4-benzofuranaceta mide, bremazocine, ethylketocyclazocine and Mr2033. It is concluded that under the present conditions, nor-BNI acts as a selective kappa opioid antagonist with an extremely long duration of action. These findings are also consistent with the notion that nor-BNI may antagonize only compounds acting at a subtype of kappa opioid receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetamides; Analgesics; Animals; Benzomorphans; Dose-Response Relationship, Drug; Female; Heating; Macaca mulatta; Naltrexone; Nociceptors; Pain Measurement; Pyrrolidines; Receptors, Opioid, kappa; Time Factors | 1993 |
Neurophysiological evidence for increased kappa opioidergic control of spinal cord neurons in rats with unilateral inflammation at the ankle.
The role of the endogenous kappa opioid system in the control of neuronal activity has been studied in the spinal cord of normal rats and in rats with Freund's adjuvant induced unilateral inflammation of the ankle under barbiturate anaesthesia. During recordings from neurons with ankle input the kappa receptor agonist U50,488H and/or the kappa antagonist nor-binaltorphamine were administered ionophoretically using multibarrel electrodes. In most neurons tested U50,488H reduced the responses evoked by pressure applied across the ankle whereas smaller proportions of neurons showed increased activity or were not affected. The kappa opioid antagonist nor-binaltorphamine affected more neurons in rats with inflammation than in control rats. Ongoing activity was increased in 7 of 19 (37%) neurons in control rats, in 16 of 24 (67%) neurons in the acute phase of inflammation (2 days post inoculation) and in 15 of 23 (65%) neurons in the chronic phase of inflammation (16-20 days post inoculation). During application of nor-binaltorphamine in control rats, the responses to pressure were increased in 9 cells (36%), reduced in 7 cells (28%) and unaffected in 9 cells (36%). In the acute phase of inflammation significantly more neurons (11 of 15, 73%) showed enhanced responses to pressure during ionophoresis of nor-binaltorphamine but not in the chronic phase. These results show that spinal cord neurons with ankle input are influenced by the endogenous kappa opioid system particularly under inflammatory conditions. The upregulation of this system under inflammatory conditions may serve to counteract inflammation-induced hyperexcitability. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Arthritis, Experimental; Freund's Adjuvant; Inflammation; Joints; Male; Naltrexone; Neurons; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reference Values; Spinal Cord; Stress, Mechanical | 1993 |
The kappa opioid agonist U-50,488H antagonizes respiratory effects of mu opioid receptor agonists in conscious rats.
The interactive effects of mu and kappa opioid receptor agonists on respiratory function were investigated following their i.c.v. injection into conscious rats. The highly selective mu receptor agonist [D-Ala2,N-Methyl-Phe4,Gly-ol] enkephalin (DAMGO; 1.2-10 nmol) and the relatively selective mu agonist morphine (20 and 30 nmol) significantly decreased arterial pH and PO2, and increased arterial PCO2 and blood pressure. Morphine and a low dose of DAMGO (1.2 nmol) also significantly elevated respiratory rate. Heart rate was decreased by DAMGO and, depending upon dose, was either decreased (20 nmol) or increased (30 nmol) by morphine. The selective kappa opioid agonist U-50,488H (200 nmol i.c.v.), which by itself had no significant effect on either respiration or cardiovascular function, dose-dependently antagonized the acidotic, hypoxemic and hypercapnic effects of both DAMGO (2.5 nmol) and morphine (30 nmol). Furthermore, these mu antagonistic properties of U-50,488H were blocked completely after pretreatment with 25 nmol of the highly selective kappa opioid antagonist nor-binaltorphimine. These results indicate that the antagonism of mu opioid respiratory depressant effects by U-50,488H is kappa opioid receptor mediated. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Male; Morphine; Naltrexone; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Respiration | 1993 |
Effects of dopamine and kappa opioid receptors on fetal responsiveness to perioral stimuli.
Opioid ligands or drugs that act on dopaminergic pathways effect changes in the motor behavior of near-term rat fetuses. In this study, selective manipulation of kappa opioid and D1 DA receptors was used to investigate opioid and dopamine involvement in mediating the behavioral effects of milk infusion. Milk reduced expression of the fetal facial wiping response to a tactile probe, and this effect was blocked by the kappa antagonist nor-binaltorphimine as well as the D1 antagonist SCH-23390. Administration of either the kappa agonist U50,488 or the D1 agonist SKF-38393 mimicked the effects of milk and reduced fetal responsiveness to the probe in the absence of milk infusion. Administration of nor-binaltorphimine reversed the effects of SKF-38393 and resulted in a high incidence of the wiping response. However, administration of SCH-23390 did not reverse the low incidence of facial wiping induced by U50,488. These findings suggest that milk modulates activity at dopamine receptors, which in turn promotes activity at kappa receptors of the opioid system to bring about changes in cutaneous responsiveness in the fetal rat. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzazepines; Brain; Dopamine; Dose-Response Relationship, Drug; Female; Fetal Movement; Naltrexone; Pregnancy; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Opioid, kappa; Stereotyped Behavior; Sucking Behavior | 1993 |
The actions of the kappa 1 opioid agonist U-50,488 on presynaptic nerve terminals of the chick ciliary ganglion.
The actions of the kappa 1 opioid receptor agonist U-50,488 (trans-(+-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benz ene - acetamide methane sulfonate) on the membrane properties of presynaptic calyciform nerve terminals of the chick ciliary ganglion were examined using intracellular recordings obtained from intact ganglion preparations maintained in vitro. U-50,488 produced a concentration-dependent (30-1000 microM) hyperpolarization with an apparent increase in input resistance. This hyperpolarization resulted from inhibition of the Na(+)-K+ inward rectifier, since it was blocked by 3 mM Cs+ and was not observed when terminals were depolarized beyond resting potential where inward rectification was voltage inactivated. A depolarizing effect on membrane potential with a further rise in input resistance was commonly observed at the highest perfused U-50,488 concentration (1 mM). The depolarizing event appears to result from a decrease in membrane potassium conductance, as the reversal potential for the response was estimated to be between -70 and -90 mV and the potassium channel blocker Ba2+ (1 mM) abolished the response. The kappa 1 opioid receptor agonist also blocked spontaneously occurring miniature hyperpolarizations in the terminals, which are considered to be due to a Ca(2+)-dependent K+ conductance. Most of the responses to U-50,488 were abolished in the presence of the kappa 1 receptor antagonist norbinaltorphimine. In conclusion, the excitability of presynaptic nerve terminals in the chick ciliary ganglion can be modulated by the inhibition of at least three separate ion conductances following activation of kappa 1 opioid receptor sites in the nerve terminal region. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Animals, Newborn; Chickens; Electrophysiology; Ganglia, Parasympathetic; In Vitro Techniques; Membrane Potentials; Naltrexone; Nerve Endings; Potassium Channels; Pyrrolidines; Receptors, Opioid, kappa; Sodium Channels; Synapses | 1993 |
Anticonvulsant effects of U-54494A and U-50488H in genetically epilepsy-prone rats and DBA/2 mice: a possible involvement of glycine/NMDA receptor complex.
1. The effects of U-54494A and U-50488H on convulsions produced by sound have been studied in genetically epilepsy-prone DBA/2 mice and genetically epilepsy-prone rats. 2. Both compounds showed a dose-dependent anticonvulsant activity. U-54494A was less potent as an anticonvulsant than U-50488H in genetically epilepsy-prone rats and elicited a similar potency to that of U-50488H in DBA/2 mice when administered intracerebroventricularly or intraperitoneally. 3. Similar sedative and hypothermic effects were observed after the highest dose of U-54494A and U-50488H in DBA/2 mice. U-50488H seems to exhibit a greater sedative effect and to affect the rotarod test in rats much more than U-54494A. U-54494A elicited a better therapeutic index than U-50488H. 4. The anticonvulsant properties of both compounds are antagonized by high doses of naloxone and nor-binaltorphimine, a selective kappa-opioid antagonist. 5. The effects of U-50488H and U-54494A in DBA/2 mice were also antagonized by the glycine/NMDA receptor antagonist D-serine. 6. The present results suggest a possible interaction between kappa-opioid and the glycine/NMDA receptors during epileptic phenomena. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anticonvulsants; Epilepsy; Female; Male; Mice; Mice, Inbred DBA; Motor Activity; Naloxone; Naltrexone; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Receptors, Opioid, kappa; Serine | 1993 |
Effects of the kappa-opioid agonist U50,488 on parturition in rats.
1. The effects of the kappa-opioid agonist U50,488 on parturition were studied in the rat. 2. Given directly after the birth of the second pup U50,488 (5 mg or 10 mg kg-1, i.p.) delayed the birth of the subsequent 4 pups by ca. 100 min, acting like morphine (10 mg kg-1, i.p.). In controls given the vehicle i.p., the birth of the 4 pups after treatment took 45.4 +/- 4.6 min. The effects of U50,488 could be prevented by simultaneous naloxone injection (10 mg kg-1). Injection of either U50,488 or morphine at 1 mg kg-1, i.v. also significantly delayed parturition. The effects of U50,488 but not of morphine were fully prevented by preinjection with nor-binaltorphimine (0.5 mg kg-1, i.v.) showing selective kappa-opioid receptor-mediated inhibition by U50,488 of established parturition. 3. In rats with an indwelling jugular venous cannula, i.v. injection of U50,488 (5 mg kg-1) after the birth of the second pup slowed parturition in a similar way to i.p. injection and significantly reduced blood plasma oxytocin concentration measured by radioimmunoassay compared with vehicle-injected controls. 4. Bolus i.v. injections of oxytocin (4 mu once per 5 min) significantly reduced the delay in parturition caused by i.v. U50,488, but continuous i.v. infusion of oxytocin (4 mu 5 min-1) was less effective. 5. Since i.v. oxytocin did not immediately reverse the effects of U50,488 on parturition, direct effects of U50,488 on isometric uterine contractions in vitro were sought. U50,488 inhibited spontaneous or oxytocin-stimulated contractions of uteri from rats within 24 h after parturition in a dose-related manner; the inhibitory effect was not naloxone-reversible.6. Thus U50,488 inhibited established parturition in the rat in a Kappa-opioid selective manner by reducing oxytocin secretion. The inhibitory effect may well have been potentiated by a direct non-opioid depressant action on contractile activity of the uterus. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Female; Infusions, Intravenous; Injections, Intravenous; Labor, Obstetric; Male; Morphine; Naloxone; Naltrexone; Oxytocin; Pregnancy; Pyrrolidines; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptors, Opioid, kappa; Uterine Contraction | 1993 |
Withdrawal contractures of guinea-pig isolated ileum after acute activation of kappa-opioid receptors.
1. The present study was undertaken to investigate firstly whether a brief exposure for 5 min of guinea-pig isolated ileum to the kappa-opioid agonist, U-50,488H produced a withdrawal contracture on addition of naloxone and secondly to ascertain whether the response was due to the activation of kappa-opioid receptors. 2. Naloxone (10(-6) M) did not elicit a response in preparations exposed to U-50,488H (5 x 10(-7) M-2 x 10(-6) M). However, after exposure to U-50,488H (5 x 10(-7) M), naloxone (10(-6) M) produced a strong contracture if the agonist was washed out 1 min before the addition of the antagonist. 3. The addition of naloxone (10(-6) M) to the ileum preparation exposed to U-50,488H (10(-7) M or lower) caused a response of similar intensity irrespective of whether the agonist had been washed out. 4. The selective kappa-opioid antagonist, nor-binaltorphimine (2.7 x 10(-9) M and 2.7 x 10(-7) M), injected before the opioid agonists, prevented the naloxone-induced contracture after exposure to U-50,488H (8 x 10(-8) M) but did not affect the contracture after exposure to morphine (5 x 10(-7) M). 5. Nor-binaltorphimine (2.7 x 10(-9) M) caused a contraction of the ileum preparation when injected 5 min after exposure to U-50,488H (8 x 10(-8) M) but not after morphine (5 x 10(-7) M). 6. The alpha 2-adrenoceptor agonist, clonidine (3 x 10-8 M) and the calcium channel blocker, nifedipine(3 x 10-8 M), injected 1 min before naloxone, blocked the ileum contraction to naloxone after exposure to U-50,488H (8 x 10-8 M). The results demonstrate that the stimulation of Kappa-opioid receptors can induce a similar dependence in guinea-pig ileum to that produced by activation of micro receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Clonidine; Guinea Pigs; Ileum; In Vitro Techniques; Male; Morphine; Muscle Contraction; Muscle, Smooth; Naloxone; Naltrexone; Nifedipine; Pyrrolidines; Receptors, Opioid, kappa; Substance Withdrawal Syndrome | 1993 |
Blockade of cannabinoid-induced antinociception by norbinaltorphimine, but not N,N-diallyl-tyrosine-Aib-phenylalanine-leucine, ICI 174,864 or naloxone in mice.
Previous studies showed that cannabinoids administered intrathecally (i.t.) produced antinociception and synergism with the antinociceptive effects of morphine. Low doses of naloxone that appear selective for the mu receptor failed to block the antinociceptive effect of the cannabinoids. The present studies evaluated the interaction of the cannabinoids with kappa and delta opioid antagonists and agonists. Antinociception produced by delta 9 tetrahydrocannabinol (THC) and delta 8-THC (i.v., ED80 doses) was blocked by the kappa antagonist, nor-BNI (10 and 20 micrograms/mouse). The effects of CP 55,940 administered i.v. were blocked by norbinaltorphimine (nor-BNI; i.v. but not i.t.). The delta antagonist, N,N-diallyl-Tyr-Aib-Phe-Leu (ICI 174,864; 10 micrograms/mouse administered i.t.), failed to block the effects of any of the cannabinoids administered i.v. Nor-BNI administered i.t. blocked the antinociception produced by the cannabinoids (administered i.t., ED80 doses). The AD50s generated for nor-BNI vs. i.t. administered delta 9-THC, delta 8-THC, levonantradol and CP 55,940 were 3.5, 1.1, 3.8 and 4.5 micrograms/mouse, respectively. Nor-BNI (10 micrograms/mouse i.t.) shifted the dose-effect curve for delta 9-THC to the right in a parallel manner. delta 9-THC was additive with the kappa agonist, U50,488H, whereas delta 9-THC produced a parallel 37-fold shift to the left in the dose-effect curve of the delta agonist, DPDPE. Nor-BNI (70 micrograms/mouse i.c.v.) or ICI 174,864 (10 micrograms/mouse i.t.) failed to block the effects of the cannabinoids administered i.t. The exact nature of the nor-BNI/cannabinoid interaction is yet to be determined. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Dronabinol; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Infusions, Intravenous; Injections, Spinal; Mice; Naloxone; Naltrexone; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, delta | 1993 |
Opioid control of the release of calcitonin gene-related peptide-like material from the rat spinal cord in vivo.
The possible control by opioids of the spinal release of calcitonin gene-related peptide-like material (CGRPLM) was investigated in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid. Morphine (20 mg/kg i.v.; or at 10-100 microM added to the perfusing fluid), the mu selective agonist DAGO (10 microM) and the kappa selective agonist U 50488 H (10 microM) did not affect the spontaneous outflow of the CGRPLM. In contrast, the selective delta agonist DTLET (10 microM) significantly increased CGRPLM release. The latter effect could be prevented by the selective delta antagonist naltrindole (10 microM) as expected from the involvement of this class of opioid receptors. However, the addition of naltrindole alone to the perfusing fluid did not modify CGRPLM outflow, indicating that endogenous opioids do not exert a tonic control of CGRP-containing fibers through the stimulation of delta receptors. In contrast, intrathecal perfusion with naloxone (10 microM) or nor-binaltorphimine (10 microM), a selective antagonist of kappa receptors, produced a marked increase in spinal CGRPLM release, suggesting that endogenous opioids acting at mu and kappa receptors, respectively, exert a tonic inhibitory control of CGRP-containing fibers. Indeed, a significant decrease in the spinal release of CGRPLM release could be evoked by the combined addition of U 50488 H (10 microM) plus DAGO (10 microM) to the perfusing medium, indicating that the simultaneous stimulation of both kappa and mu receptors is required for this negative control to occur. This could notably be achieved with morphine (10 microM) in the presence of naltrindole (10 microM) which also produced a significant reduction in the spinal release of CGRPLM. In conclusion, morphine per se did not change CGRPLM release because this drug triggers opposite positive (through the stimulation of delta receptors) and negative (through the concomitant stimulation of both kappa and mu receptors) control mechanisms within the rat spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Calcitonin Gene-Related Peptide; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Spinal; Iodine Radioisotopes; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pyrrolidines; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord | 1993 |
Effects of kappa-agonist on the antinociception and locomotor enhancing action induced by morphine in mice.
The antinociception of intracerebroventricular injection (i.c.v.) of morphine was markedly abolished by pretreatment with naloxonazine (micro 1-antagonist), s.c.; beta-funaltrexamine (micro 1/micro 2-antagonist), i.c.v.; DSP-4 (noradrenaline neurotoxin), s.c.; or p-chlorophenylalanine (serotonin synthesis inhibitor), s.c. in the mouse 55 degrees C hot-plate assay. Pretreatment with nor-binaltorphimine (kappa-antagonist), i.c.v. or PCPA, s.c. drastically blocked the kappa-agonist U-50,488H-induced supraspinal antinociception. These findings indicate either noradrenergic or serotonergic involvement in the mediation of the antinociceptio of i.c.v.-morphine through mu-receptors. On the contrary, the antinociception of i.c.v.- U-50,488H through kappa-receptors appears to depend on the serotonergic but not noradrenergic systems. The antinociceptive interaction between the i.c.v.-morphine and -U-50,488H was an additive effect. On the other hand, i.c.v.-morphine dose-dependently increased the locomotion in mice, and this hyperlocomotion of morphine was drastically blocked by pretreatment with either beta-funaltrexamine, i.c.v. or 6-hydroxydopamine (dopamine depletor), i.c.v. I.c.v.-U-50,488H dose-dependently reduced the increasing locomotion of i.c.v.-morphine, but not that of s.c.-apomorphine (dopamine receptor agonist), and this effect of U-50,488H was completely reversed by pretreatment with nor-binaltorphimine, i.c.v. These results suggest that coadministration of kappa-agonists can suppress the dopamine-related hyperlocomotion of mu-agonists without decreasing the anti-nociception of mu-agonists in mice. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzylamines; Dopamine; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred Strains; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Narcotics; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sympathomimetics | 1993 |
Kappa opioid receptor-mediated regulation of prolactin and alpha-melanocyte-stimulating hormone secretion in male and female rats.
The purpose of this study was to examine the effects of the kappa opioid receptor agonist U-50,488 and antagonist nor-binaltorphimine (NOR-BNI) on the secretion of prolactin and alpha-melanocyte-stimulating hormone (alpha MSH) in male and female rats. Activation of kappa opioid receptors with U-50,488 increased plasma prolactin concentrations in both male and female rats, whereas blockade of kappa opioid receptors with NOR-BNI decreased plasma prolactin concentrations in male, but not in female rats. U-50,488 also increased and NOR-BNI decreased plasma concentrations of alpha MSH; similar effects were observed in both male and female rats. These results reveal a sexual difference in kappa opioid receptor-mediated regulation of prolactin, but not alpha MSH secretion. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; alpha-MSH; Animals; Female; Male; Naltrexone; Prolactin; Pyrrolidines; Rats; Receptors, Opioid, kappa; Sex Characteristics; Sex Factors; Time Factors | 1993 |
Chronic kappa opioid receptor antagonism produces supersensitivity to U-50,488H at the hypothalamo-pituitary-adrenocortical (HPA) axis level.
The present study was conducted to evaluate the influence of chronic kappa receptor blockade on the neuroendocrine effects of the selective kappa 1 opioid agonist U-50,488H, on the hypothalamo-pituitary-adrenocortical (HPA) axis. Male Sprague-Dawley rats were chronically treated with naloxone (3 mg kg-1 day-1 for 7 days) or distilled water by s.c. implantation of osmotic minipumps and the response of the HPA axis to U-50,488H or saline was assessed before and 24 h after pump removal. Chronic infusion of naloxone reduced body weight gain and blocked the increase in corticosterone secretion induced by U-50,488H, indicating occupation of kappa opioid receptors. Significantly higher plasma corticosterone levels after U-50,488H administration at doses of 5 or 15 mg/kg were observed 1 day after cessation of naloxone treatment compared with those in corresponding control rats. The enhanced responsiveness of the HPA axis to U-50,488H (15 mg/kg) was antagonized by norbinaltorphimine (5 mg/kg), suggesting a role for kappa receptors in mediating supersensitivity to the kappa agonist. The findings of the present study demonstrated that chronic blockade of the kappa receptor results in augmentation of kappa agonist-induced stimulation of the HPA axis activity (functional supersensitivity). Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Body Weight; Corticosterone; Dose-Response Relationship, Drug; Hyperalgesia; Hypothalamo-Hypophyseal System; Male; Naloxone; Naltrexone; Pituitary-Adrenal System; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Sensitivity and Specificity; Sodium Chloride | 1993 |
U-50,488H, a kappa-opioid receptor agonist, markedly prevents memory dysfunctions induced by transient cerebral ischemia in mice.
Transient ischemia produced marked memory dysfunctions in mice on three different tasks, spontaneous alternation, elevated plus-maze and passive avoidance, as tested 1, 1-2, and 2-3 days after ischemic insult, respectively. U-50,488H, a kappa-opioid receptor agonist, administered 20 min before ischemic insult markedly prevented the impairment of spontaneous alternation, the prolongation of transfer latency in elevated-plus maze and the shortening of step-through latency in passive avoidance induced by transient ischemia. The protective effect of U-50,488H (30 mg/kg) on ischemia-induced memory dysfunctions observed in the three tasks was almost completely reversed by pretreatment with nor-binaltorphimine (4 micrograms, i.c.v.), a kappa-selective opioid antagonist. Although U-50,488H (30 mg/kg) did not affect body temperature in sham mice, it blocked hypothermia induced by ischemic insult. These results suggest that the protective effect of U-50,488H on memory dysfunctions in ischemic mice is associated with the activation of kappa-opioid receptors and is not based upon hypothermia. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amnesia; Analgesics; Animals; Avoidance Learning; Body Temperature; Drug Interactions; Ischemic Attack, Transient; Learning; Male; Memory; Mice; Mice, Inbred Strains; Naltrexone; Pyrrolidines; Receptors, Opioid, kappa; Reperfusion; Time Factors | 1993 |
Evidence for the up-regulation of kappa opiate mechanisms in mice selectively bred for high analgesia.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Female; Mice; Morphine; Naltrexone; Pyrrolidines; Receptors, Opioid, kappa; Stress, Psychological; Swimming; Up-Regulation | 1993 |
Kappa-/mu-receptor interactions in the opioid control of the in vivo release of substance P-like material from the rat spinal cord.
The possible involvement of mu and kappa receptors in the opioid control of the spinal release of substance P-like material was assessed in vivo, in halothane-anaesthetized rats whose intrathecal space was continuously perfused with an artificial cerebrospinal fluid supplemented with various opioid receptor agonists and antagonists. Whereas the intrathecal perfusion with the mu agonist DAGO (10 microM) significantly enhanced (approximately + 50%) the spontaneous release of substance P-like material, that with the kappa agonist U 50488 H (10 microM) produced no change in the peptide outflow. The respective antagonists naloxone (10 microM) for the mu receptors and nor-binaltorphimine (10 microM) for the kappa receptors did not affect the spontaneous release of substance P-like material, indicating that endogenous opioids acting at mu and kappa receptors do not exert a tonic control on substance P-containing neurons in the spinal cord of halothane-anaesthetized rats. However, as expected from the involvement of mu receptors, the stimulatory effect of DAGO on the peptide outflow could be prevented by naloxone but not norbinaltorphimine. Furthermore, instead of an increase with DAGO alone, a significant decrease in the spinal release of substance P-like material was observed upon the intrathecal perfusion with DAGO plus U 50488 H. Additional experiments with the respective mu and kappa antagonists naloxone and nor-binaltorphimine demonstrated that this effect actually resulted from the simultaneous stimulation of mu and kappa receptors.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Drug Interactions; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Kinetics; Male; Models, Neurological; Naloxone; Naltrexone; Pyrrolidines; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Substance P | 1992 |
Sexual differences in kappa opioid receptor-mediated regulation of tuberoinfundibular dopaminergic neurons.
The purpose of the present study was to examine the acute effects of kappa opioid receptor blockade or activation on the activity of tuberoinfundibular dopaminergic (TIDA) neurons in gonadally-intact or castrated male and female rats. In the absence of drug treatment, the basal activity of TIDA neurons (accumulation of 3,4-dihydroxyphenylalanine, DOPA, in the median eminence after administration of a decarboxylase inhibitor) in male rats was approximately one third of that in diestrous females. In male rats, blockade of kappa opioid receptors following administration of the kappa antagonist norbinaltorphimine (NOR-BNI) increased the activity of TIDA neurons suggesting that these neurons are tonically inhibited by endogenous kappa opioids. By contrast, NOR-BNI had no effect on TIDA neuronal activity in gonadally-intact diestrous female rats, but increased the activity of these neurons in ovariectomized female rats. These results suggest that ovarian hormones block the inhibitory effects of endogenous kappa opioids on the activity of TIDA neurons. Activation of kappa opioid receptors following administration of the kappa agonist U-50,488 caused a dose-related decrease in TIDA neuronal activity in diestrous female rats. U-50,488 had no effect on TIDA neuronal activity in gonadally-intact male rats, but decreased the activity of these neurons in orchidectomized male rats. Taken together, these results reveal a sexual difference in the responsiveness of TIDA neurons to kappa opioid receptor agonists and antagonists, and suggest that gonadal steroid-induced gender differences in the basal activity of TIDA neurons may be due, in part, to differences in tonic inhibitory regulation of these neurons by endogenous kappa opioids. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Arcuate Nucleus of Hypothalamus; Dihydroxyphenylalanine; Dopamine; Female; Male; Median Eminence; Naltrexone; Narcotic Antagonists; Neurons; Orchiectomy; Ovariectomy; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Sex Characteristics; Tuber Cinereum | 1992 |
The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity.
Systemic injections of the kappa (kappa) opioid receptor agonist U-50,488H decreased male sexual behavior, locomotor activity, body temperature and bodily grooming, and induced body flattening. The U-50,488H-induced inhibitions of male sexual behavior were prevented by systemic injections of naloxone and by intra-cranial injections of the kappa opioid antagonist nor-binaltorphimine (NBNI). Injections of NBNI to either the ventral tegmental area (VTA) or the nucleus accumbens septi (NAS) increased female-directed behavior, and prevented the U-50,488H-induced decreases in female-directed behavior. Intra-VTA NBNI prevented U-50,488H-induced decreases in the mean number of ejaculations, intra-NAS NBNI prevented U-50,488H-induced increases in copulation latencies. Intra-medial preoptic area (mPOA) injections of NBNI increased female-directed behavior, and attenuated U-50,488H-induced decreases in female-directed behavior as well as U-50,488H-induced increases in both copulation and ejaculation latencies. Injections of NBNI dorsal to the mPOA were ineffective. Two of 26 days following the central injection of NBNI, systemic injections of U-50,488H remained behaviorally ineffective, leaving both sexual behavior and locomotor activity undiminished. These results suggest that the stimulation of central kappa opioid receptors inhibits sexual behavior in the male rat; perhaps endogenous kappa opioid agonists induce sexual refractory periods. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Body Temperature; Injections; Male; Motor Activity; Naloxone; Naltrexone; Nucleus Accumbens; Preoptic Area; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Sexual Behavior, Animal; Tegmentum Mesencephali | 1992 |
Kappa opioid receptor activity modulates memory for peck-avoidance training in the 2-day-old chick.
To examine the role of kappa opioid receptors in memory formation, 2-day-old chicks were injected intracerebrally with either the endogenous opioid peptide dynorphin(1-13), the highly kappa selective agonist U-50,488 or the kappa selective antagonist nor-binaltorphimine (nor-BNI), given one-trial peck-avoidance training, and tested 24 h later. Dynorphin(1-13) impaired memory in a dose dependent manner at 24 h test. Injection of U-50,488 caused a biphasic dose-dependent effect on memory; low doses caused a trend toward enhanced memory and high doses caused significant impairment. Conversely, injection of low doses of nor-BNI caused a trend toward memory impairment, and higher doses caused significant memory enhancement. The results indicate that memory formation for one-trial peck-avoidance training may be modulated by kappa opioid receptor activity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Animals, Newborn; Avoidance Learning; Chickens; Dose-Response Relationship, Drug; Dynorphins; Male; Memory; Naltrexone; Peptide Fragments; Pyrrolidines; Receptors, Opioid, kappa | 1992 |
Effects of nor-binaltorphimine on the development of analgesic tolerance to and physical dependence on morphine.
The effects of a highly selective kappa antagonist, nor-binaltorphimine (nor-BNI), on the development of tolerance to morphine analgesia and physical dependence on morphine were examined. Pretreatment with nor-BNI (5 mg/kg s.c.) 2 h prior to injection of morphine or a selective kappa agonist, U-50,488H, significantly antagonized the analgesic effect of U-50,488H, but not morphine analgesia in mice. The development of tolerance to morphine analgesia was significantly potentiated by pretreatment of mice with nor-BNI 2 h prior to morphine treatment during chronic morphine treatment for 5 days. Additionally, the pretreatment with nor-BNI during chronic treatment with the high dose of morphine for 5 days significantly potentiated the naloxone-induced body weight loss in morphine-dependent mice and rats. These findings suggest that inactivation of the kappa opioid system may potentiate the development of tolerance to morphine analgesia in mice and may aggravate the naloxone-precipitated body weight loss in morphine-dependent mice and rats. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Analysis of Variance; Animals; Behavior, Animal; Body Weight; Drug Tolerance; Male; Mice; Morphine; Morphine Dependence; Naltrexone; Pyrrolidines; Rats | 1992 |
Pentazocine-induced biphasic analgesia in mice.
Pentazocine (PZ) is well known to act as an opioid mixed agonist-antagonist analgesic. In the present study, we selected the mouse warm plate test condition of 51 +/- 0.5 degrees C instead of 55 +/- 0.5 degrees C to determine the analgesic action of PZ. As a result, i.c.v. PZ produced a biphasic antinociceptive response, while U-50,488H (U-50) and morphine (MRP) showed a monophasic response. Pretreatment with i.c.v. beta-FNA (mu antagonist) antagonized the initial response, whereas the delayed one was antagonized by pretreatment with nor-BNI (kappa antagonist). In addition, pretreatment with NTI (delta antagonist) significantly attenuated the initial response but not the delayed one. These results suggest that the initial and delayed responses may be mediated mainly by mu/delta and kappa receptors, respectively. With regards to the interaction between MRP and PZ, a low dose of PZ antagonized the analgesic action of MRP, while a high dose PZ plus MRP showed the additive effect. Furthermore, tolerance developed almost equally to both initial and delayed responses, indicating that tolerance to the kappa component of PZ may be developed as well as the mu component of action of PZ. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Drug Administration Schedule; Drug Interactions; Drug Tolerance; Indoles; Injections, Intraventricular; Male; Mice; Morphinans; Morphine; Naltrexone; Narcotic Antagonists; Pentazocine; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Time Factors | 1991 |
Ontogeny of mu- and kappa-opiate receptor control of the hypothalamo-pituitary-adrenal axis in rats.
The purpose of the present study was to determine the relative ontogeny of mu- and kappa-opiate receptor control of the hypothalamo-pituitary-adrenal (HPA) axis in rats. The ability of the mu-agonist morphine and the kappa-agonist U-50,488 to stimulate the HPA axis was determined by evaluating ACTH and corticosterone (CS) secretion in developing rat pups. Morphine elicited marked rises in both ACTH and CS secretion in 10-day-old rats, and these increases were maximal from 30-60 min after drug administration. Both morphine and U50,488H caused a dose-related rise in CS secretion that was blocked by the synthetic glucocorticoid dexamethasone. The mu-opiate antagonist beta-funaltrexamine blocked the morphine-induced rise in CS secretion, and the kappa-antagonist norbinaltorphimine blocked the action of U50,488H. While a maximal dose of U50,488H (1 mg/kg) elicited a significant rise in CS secretion as early as postnatal day 2, significant effects of a maximal dose of morphine (5 mg/kg) were not observed until day 5. The effects of both drugs were significantly blunted during the stress-hyporesponsive period from days 5-15. The results of this study demonstrate that significant opiate receptor control of HPA function can be demonstrated early in postnatal development, even before the onset of the stress-hyporesponsive period. In addition, these data suggest that kappa-receptor control is functional before mu-receptor control of HPA function. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenal Glands; Adrenocorticotropic Hormone; Animals; Corticosterone; Dexamethasone; Female; Hypothalamus; Kinetics; Morphine; Naltrexone; Pituitary Gland; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1991 |
Opioids regulate the release of human chorionic gonadotropin hormone from trophoblast tissue.
Opioid ligands were investigated for their effect on hCG release from trophoblast tissue obtained from term human placenta. Data obtained indicate that opiate agonists stimulate in vitro basal hCG release from trophoblast tissue. The potency of these opioid agonists correspond to their kappa receptor selectivity, i.e., the greater the selectivity the lower is the effective concentration causing maximum stimulation. Opioid antagonists inhibit the release of hCG due to their reversal of the stimulation caused by endogenous opioid peptides. Potency of the antagonists correspond also to their kappa receptor selectivity. Antagonists reverse the stimulation of hCG release caused by agonists indicating that the ligand's action is mediated by the placental kappa opioid receptors. The bell shaped response curves for agonists and antagonists suggest that opioids play a role in the regulation of hCG release from trophoblast tissue, but other mechanism(s) may also exist. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Benzeneacetamides; Chorionic Gonadotropin; Endorphins; Female; Humans; Morphine; Naltrexone; Placenta; Pregnancy; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Trophoblasts | 1991 |
Role of spinal kappa opioid receptors in the blockade of the development of antinociceptive tolerance to morphine.
The site of action of the kappa opioid receptor agonist, U-50,488H in suppressing the development of tolerance to morphine antinociception was examined by local application, either intrathecal (i.t., spinal) or intracerebroventricular (i.c.v., supraspinal) in mice. Mice given morphine s.c., i.c.v. or i.t. daily developed tolerance regardless of the route. Co-administration of U-50,488H i.p. at a subanalgesic dose suppressed the development of tolerance to s.c. and i.t. administered morphine without affecting the antinociceptive effect of morphine. U-50,488H did not influence the development of tolerance to i.c.v. administered morphine. The antinociceptive effect of s.c. administered morphine was not affected by co-administration of U-50,488H given i.t. or i.c.v.; however, the development of tolerance to morphine was suppressed by i.t. but not i.c.v. administered U-50,488H. The suppressive effect of U-50,488H on the development of tolerance to morphine was abolished by pretreatment with nor-binaltorphimine (nor-BNI) given i.p. or i.t. Intracerebroventricularly administered nor-BNI failed to abolish the effect of U-50,488H. We suggest that U-50,488H suppresses the development of tolerance to morphine at the spinal level by interacting with kappa opioid receptors in this area. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Drug Tolerance; Injections, Intraventricular; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Morphine; Naltrexone; Nociceptors; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Spinal Cord | 1991 |
U-50,488H inhibits dynorphin and glutamate release from guinea pig hippocampal mossy fiber terminals.
The selective kappa opioid agonist U-50,488H was tested for its ability to modulate the potassium-induced rise of cytosolic Ca2+ in, and transmitter release from, guinea pig hippocampal mossy fiber synaptosomes. U-50,488H dose dependently inhibited the potassium-induced rise in synaptosomal free Ca2+ levels. This inhibition was attenuated by the selective kappa opioid antagonist nor-binaltorphimine, but was insensitive to naloxone and the sigma opioid antagonist ICI 174,864. U-50,488H also dose dependently depressed the potassium-induced release of L-glutamate and dynorphin B-like immunoreactivity from mossy fiber synaptosomes in a nor-binaltorphimine-sensitive manner. This is the first report to confirm the presence of a presynaptic kappa opioid receptor in the hippocampal mossy fiber-CA3 synapse and the nature of its influence on neurotransmitter release. The present results may be used to suggest that endogenous dynorphin peptides interact with this kappa opioid receptor to autoregulate the excitatory mossy fiber synaptic input. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Calcium; Dynorphins; Enkephalin, Leucine; Glutamates; Guinea Pigs; Hippocampus; Kinetics; Naloxone; Naltrexone; Narcotic Antagonists; Nerve Endings; Potassium Chloride; Pyrrolidines; Synaptosomes | 1991 |
Intrathecal administration of dynorphin A and its fragments increase heart rate and arterial pressure in the urethane anesthetized rat: mediation by a nonopioid mechanism.
Intrathecal administration of 6.50 nmol of dynorphin A (dyn A) (1-13) and (1-17) to the ninth thoracic (T9) spinal segment provoked a transient (5-10 min) increased in heart rate (40-60 beats per minute (bpm] and arterial pressure (20-25 mmHg). Intravenous administration and administration to the second thoracic (T2) segment failed to mimic the effect of T9 administration, suggesting that the cardiovascular effects of T9 administration did not occur via diffusion to the periphery or to the brainstem. The cardioacceleratory and hypertensive responses to T9 dyn A (1-13) administration were prevented by pretreatment with the nicotinic ganglion blocker hexamethonium (10 mg/kg), but were unaffected by bilateral adrenalectomy. These results suggest that the cardiovascular effects of dyn A were mediated predominantly via a sympathetic pathway that does not innervate the adrenal glands. The effects were not antagonized by pretreatment with the opiate receptor antagonist naloxone or by the specific kappa opiate receptor antagonist nor-binaltorphimine, suggesting that they were not mediated via activation of kappa opiate receptors. Further support for this conclusion was provided by experiments demonstrating that dyn A (3-13) (30 nmol), a dynorphin fragment which is devoid of kappa activity, mimicked the effect of dyn A (1-13), whereas administration of the synthetic kappa agonist U50, 488H (100 nmol), failed to elicit effects similar to those provoked by dyn A (1-13). It is concluded that the cardiovascular effects of intrathecal dyn A administration are mediated via a nonopioid mechanism. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Anesthesia, General; Animals; Antihypertensive Agents; Blood Pressure; Diastole; Dynorphins; Heart Rate; Hexamethonium; Hexamethonium Compounds; Injections, Intravenous; Injections, Spinal; Male; Naloxone; Naltrexone; Peptide Fragments; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Reference Values; Systole | 1991 |
Nor-binaltorphimine decreases deprivation and opioid-induced feeding.
We evaluated the effect of the kappa antagonist, nor-binaltorphimine (nor-BNI) on deprivation and opioid-induced feeding in rats. Intracerebroventricular administration of nor-BNI (100 nmol) decreased deprivation-induced feeding for as long as 24 h, albeit in a fairly weak manner (maximum decrease of approximately 28%). Nor-BNI (1, 10 and 100 nmol) decreased feeding induced by the kappa ligand U-50,488H by as much as 85% during the first hour of the study. This kappa antagonist also decreased feeding induced by the delta agonist DSLET and the mu agonist DAMGO. Based on previous studies indicating that nor-BNI is a selective kappa antagonist, we conclude that not only U-50,488H (kappa), but also DSLET (delta) and DAMGO (mu)-induced feeding are dependent upon an active kappa receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Feeding Behavior; Food Deprivation; Male; Naltrexone; Oligopeptides; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Reference Values | 1990 |
Effect of nor-binaltorphimine on the behavior of mice and rats receiving multiple injections of U-50,488.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Hypothermia; Male; Mice; Mice, Inbred ICR; Naltrexone; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Yawning | 1990 |
Opioid receptor-mediated inhibition of dopamine and acetylcholine release from slices of rat nucleus accumbens, olfactory tubercle and frontal cortex.
The modulation of the electrically evoked release of [3H]dopamine (DA) and [14C]acetylcholine (ACh) by opioid receptor activation was examined in superfused slices from rat nucleus accumbens, olfactory tubercle, and frontal cortex. In all brain areas examined, [3H]DA release was inhibited by the kappa agonist, U 50,488 (1-100 nM), and this inhibition was fully antagonized by the selective kappa antagonist, norbinaltorphimine (nor-BNI). In the frontal cortex, the mu agonist, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO, 0.01-1 microM), also inhibited the evoked release of tritium. However, further experiments (including the use of the D2-receptor agonist, LY 171555, and the alpha 2-adrenoceptor agonist, oxymetazoline) suggest strongly that in the frontal cortex DAGO only inhibits the release of [3H]catecholamine from noradrenergic nerve terminals, despite the use of desimipramine to prevent the uptake of [3H]DA into these terminals. [14C]ACh release from both the nucleus accumbens and olfactory tubercle, but not from the frontal cortex, was inhibited by DAGO (0.01-1 microM) and the delta agonist, [D-Pen2,D-Pen5]enkephalin (DPDPE, 0.01-1 microM). These inhibitory effects were antagonized by 0.1 microM naloxone but not by 3 nM nor-BNI. The irreversible delta ligand, fentanyl isothiocyanate (FIT, 1 microM), only antagonized the inhibition caused by DPDPE. The results indicate that the inhibitory effects of opioids on the in vitro release of DA from dopaminergic nerve fibres arising from the substantia nigra and the ventral tegmental area are mediated by presynaptic kappa receptors only. In those regions where ACh release is modulated by opioids, the type of opioid receptor involved may depend on the type of neuron, i.e. interneuron or afferent neuron. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetylcholine; Animals; Benzomorphans; Cerebral Cortex; Corpus Striatum; Dopamine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Ergolines; In Vitro Techniques; Male; Naloxone; Naltrexone; Nucleus Accumbens; Olfactory Bulb; Oxymetazoline; Pyrrolidines; Quinpirole; Rats; Rats, Inbred Strains; Receptors, Opioid; Septal Nuclei | 1990 |
Antitussive effects of two specific kappa-opioid agonists, U-50,488H and U-62,066E, in rats.
The effects of highly selective agonists of kappa-opioid receptors, namely U-50,488H and U-62,066E, on the capsaicin-induced cough reflex in rats were studied. Intracisternal (i.cist.) injection of U-50,488H and of U-62,066E significantly decreased the number of coughs in a dose-dependent manner. The antitussive potency of i.cist. injection of these two kappa-opioid agonists was similar to that of morphine. Intraperitoneal (i.p.) injection of U-50,488H and of U-62,066E also decreased the number of coughs, again in a dose-dependent manner. The antitussive effects of U-50,488H and U-62,066E were blocked by norbinaltorphimine, an antagonist of kappa-opioid receptors. Methysergide, administered i.cist. (3 nmol), antagonized the antitussive effects of U-50,488H and U-62,066E. However, ketanserin had no effect on the antitussive effects of these kappa-opioid agonists. These data suggest that U-50,488H and U-62,066E exert their antitussive effect on rats through stimulation of kappa-opioid receptors. Furthermore, with respect to the antitussive effects of kappa-opioid agonists, the system that involves 5-HT1 receptors may be more important than the system that involves 5-HT2 receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Antitussive Agents; Cisterna Magna; Cough; Injections; Ketanserin; Male; Methysergide; Morphine; Naloxone; Naltrexone; Pyrrolidines; Rats; Rats, Inbred Strains; Reflex | 1990 |
Selective kappa antagonist properties of nor-binaltorphimine in the rat MES seizure model.
The opioid antagonist properties of nor-binaltorphimine (nor-BNI; 17,17'-Bis(cyclopropylmethyl)-6,6',7,7'-tetradehydro-4,5:4', 5'-diepoxy-6,6'-(imino) [7,7'-bimorphinan]-3,3',14,14'-tetrol) were evaluated in vivo in the rat maximal electroshock (MES) seizure model. Following s.c. or i.c.v. pretreatment, nor-BNI selectively antagonized the anticonvulsant effects of the kappa opioid U50, 488, significantly increasing its ED50 by 2.3 and 4.5 fold, respectively. In contrast, pretreatment with nor-BNI (s.c. or i.c.v.) failed to antagonize the anticonvulsant effects of the selective mu opioid, DAMGO. At the doses and injection routes used, nor-BNI itself had no apparent effect on overt behavior or MES-induced convulsions. These data support the earlier suggestion that the anticonvulsant effects of U50,488 are mediated by kappa opioid receptors and confirm 1) the selectivity of nor-BNI as a kappa antagonist and 2) its applicability as a pharmacological tool in the differentiation of multiple opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anticonvulsants; Electroshock; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Male; Naltrexone; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Seizures | 1989 |
Role of central opiate receptor subtypes in the circulatory responses of awake rabbits to graded caval occlusions.
1. In unanaesthetized rabbits, haemorrhage was simulated by inflating a cuff placed round the inferior vena cava so that cardiac output fell at a constant rate of approximately 8% of its resting value per minute. The circulatory responses were measured after injections into the fourth ventricle of saline vehicle, selective opioid antagonists, selective opioid agonists, and agonist-antagonist mixtures. Three sets of experiments were done to determine if a specific subtype of opiate receptor within the central nervous system is responsible for the circulatory decompensation that occurs during simulated haemorrhage. 2. In six rabbits the effects of ascending doses of the antagonists naloxone (mu-selective), Mr 2266 (kappa- and mu-selective), ICI 174864 (delta-selective) and nor-binaltorphimine (kappa-selective) were tested. In three rabbits the effects of the antagonist naloxone, the agonists HTyr-D-Ala-Gly-MePhe-NH(CH2)2OH (DAGO, mu-selective), U 50488H (kappa-selective), and [D-Pen2,D-Pen5]-enkephalin (DPDPE, delta-selective), and combinations of these agonists with naloxone were tested. In four rabbits the dose-related effects of DAGO on respiratory, as well as circulatory, functions were examined. 3. After injecting saline vehicle, the circulatory response to simulated haemorrhage had two phases. During the first phase, systemic vascular conductance fell, heart rate rose, and mean arterial pressure fell by only approximately 10 mmHg. A second, decompensatory, phase began when cardiac output had fallen to approximately 50% of its resting level. At this point, there was an abrupt rise in systemic vascular conductance and a fall in mean arterial pressure to less than or equal to 40 mmHg. 4. The lower range of doses of naloxone (3-30 nmol), Mr 2266 (10-100 nmol), ICI 174864 (10-30 nmol), and all doses of nor-binaltorphimine (1-100 nmol), were without effect on the circulatory response to stimulated haemorrhage. Higher doses of naloxone (30-100 nmol), Mr 2266 (100-300 nmol) and ICI 174864 (30-100 nmol) abolished the decompensatory phase. The relative order of antagonist potency was ICI 174864 greater than or equal to naloxone greater than Mr 2266 greater than or equal to nor-binaltorphimine. 5. In the second set of experiments, the critical dose of naloxone necessary to prevent circulatory decompensation during simulated haemorrhage was 30-150 nmol. The delta-agonist DPDPE (50 nmol) did not affect the haemodynamic response to simulated haemorrhage, but it did Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzomorphans; Blood Circulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Hemodynamics; Hemorrhage; Naloxone; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rabbits; Receptors, Opioid; Vena Cava, Inferior | 1989 |
Evidence that the aversive effects of opioid antagonists and kappa-agonists are centrally mediated.
The role of central versus peripheral opioid receptors in mediating the aversive effects of opioids was examined by use of an unbiased place preference conditioning procedure in rats. The non-selective opioid antagonist naloxone (NLX) produced conditioned aversions for the drug-associated place after subcutaneous (SC) as well as intracerebroventricular (ICV) administration. Place aversions were also observed in response to the ICV administration of the selective mu-antagonist CTOP. In contrast, the selective delta-antagonist ICI 174,864 and the selective kappa-antagonist norbinaltorphimine (nor-BNI) (ICV) were without effect. Place aversions were also produced by central applications of the selective kappa-agonist U50,488H and the dynorphin derivative E-2078. For those opioid ligands tested, the doses required to produce place aversions were substantially lower following ICV as compared to SC administration. These data confirm that kappa-agonists and opioid antagonists produce aversive states in the drug-naive animal and demonstrate that this effect is centrally mediated. Furthermore, the ability of NLX and CTOP, in contrast to both ICI 174,864 and nor-BNI, to produce place aversions suggests that the aversive effects of opioid antagonists result from the blockade of mu-receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Brain; Conditioning, Operant; Enkephalin, Leucine; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Somatostatin | 1989 |
Role of mu and kappa opioid receptors in conditional fear-induced analgesia: the antagonistic actions of nor-binaltorphimine and the cyclic somatostatin octapeptide, Cys2Tyr3Orn5Pen7-amide.
When rats are returned to an environment in which they previously received electric shock they show a reduction in sensitivity to painful stimuli. This conditional fear-induced analgesia was measured using the formalin test. The octapeptide Cys2Tyr3Orn5Pen7-amide (CTOP; 0, 10, 40 and 160 ng/rat) dose-dependently reversed conditional analgesia when administered i.c.v. The 40-ng dose partially attenuated fear-induced analgesia, whereas the 160-ng dose reversed it completely. Using similar procedures, CTOP was tested for its ability to reverse the analgesia produced by i.c.v. administered [D-Ala2,-NMPhe4, Glyol5]-enkephalin, [D-Pen2,D-Pen5]-enkephalin and U50488H, which are highly selective opioid agonists at mu, delta and kappa receptors, respectively. At 40 ng/rat, CTOP reversed the analgesia produced by the mu selective ligand but not that produced by the delta ligand or the kappa ligand. At 80 ng CTOP antagonized the analgesia produced both by both enkephalin analogs but not U50488H. Nor-binaltorphimine (0, 1, 3, 10 and 30 micrograms/rat) had no effect on conditional analgesia. However, the 10- and 30-micrograms doses could reverse completely the analgesia produced by U50488H. Therefore, it appears that mu and delta, but not kappa receptors, are involved in this opioid form of stress-induced analgesia. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Fear; Female; Formaldehyde; Naltrexone; Pain; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Somatostatin | 1989 |
Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays.
Previously, we reported on an opioid antagonist, nor-binaltorphimine (nor-BNI), that had high selectivity for kappa opioid receptors in smooth muscle preparations. In this study, nor-BNI administered either s.c. or i.c.v. was shown to antagonize significantly the antinociceptive effects of the kappa opioid agonists, ethylketazocine and U-50,488H at doses that had no effect on the antinociceptive effect of mu agonists, morphine and [D-Ala3, MePhe4, Gly-ol5]enkephalin and the delta agonist, [D-Pen3, D-Pen5]enkephalin. Nor-BNI and U-50,488H were used to demonstrate that kappa opioid receptors in the spinal cord were more important than those located supraspinally for kappa-mediated analgesia. Nor-BNI also possessed high affinity and high selectivity for kappa opioid receptors in the receptor binding assay. However, the comparatively low selectivity of BNI in receptor binding studies did not correlate with the high pharmacologic selectivity for kappa receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Animals; Cyclazocine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Ethylketocyclazocine; Guinea Pigs; Male; Mice; Morphine; Naltrexone; Oligopeptides; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa | 1988 |
Kappa receptor regulation of dopamine release from striatum and cortex of rats and guinea pigs.
The effects of opioid agonists with selectivity for kappa, mu and delta types of opioid receptors on the K+-stimulated release of [3H]dopamine (DA) from striatum and cortex of rat and guinea pig loaded previously with the monoamine have been studied. The kappa agonist U50488H did not affect base-line release of [3H]DA measured in 5 mM K+, but produced a dose-dependent inhibition of the release of [3H]DA stimulated by 20 mM K+ from slices of striatum in rat and guinea pig, with an IC50 of about 0.5 nM in each case. In contrast, the mu-selective agonist, Tyr-D-Ala-Gly-(Me)Phe-Gly-ol, and the delta-selective agonist, [D-Pen2-D-Pen5]enkephalin, did not inhibit stimulated release from the slice preparations at concentrations up to 1 microM. The inhibitory effects of U50488H were antagonized by naloxone, and the potent and selective kappa antagonist, nor-binaltorphimine (nor-BNI). Similar results were obtained when release of [3H]DA from rat and guinea pig cortex slices was examined. In guinea pig cortex, the maximum inhibition of DA release induced by U50488H was 80% of control-stimulated fractional release. In rat cortex and in striatum of both species the maximum release was about 40% of control fractional release. Thus, in the guinea pig, the mesocortical dopaminergic pathway appears more sensitive to the inhibitory effects of U50488H than the nigrostriatal system. The effects of the opioids on the K+ (12.5 mM)-stimulated release of [3H]DA from guinea pig striatal synaptosomes also were determined.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Cerebral Cortex; Corpus Striatum; Dopamine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Guinea Pigs; Male; Naltrexone; Potassium; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa | 1988 |
Suppression by nor-binaltorphimine of kappa opioid-mediated diuresis in rats.
The effects of nor-binaltorphimine (nor-BNI) and beta-funaltrexamine (beta-FNA) were studied on the diuretic activities in rats of several kappa opioid agonists including ethylketazocine, tifluadom, bremazocine and U50,488H. Nor-BNI suppressed the diuretic activity of all kappa agonists, whereas beta-FNA failed to alter the diuresis. On the other hand, beta-FNA treatment completely blocked the morphine-induced antidiuresis, whereas nor-BNI had no effect. The present data add further evidence that nor-BNI is a highly selective antagonist of kappa opioid agonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Diuresis; Dose-Response Relationship, Drug; Male; Morphine; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa | 1988 |
Binaltorphimine and nor-binaltorphimine, potent and selective kappa-opioid receptor antagonists.
The opioid antagonist activities of two bivalent ligands, BNI and nor-BNI, have been evaluated in smooth muscle preparations and in mice. Both ligands are highly potent and selective as kappa opioid receptor antagonists, with relatively feeble blocking activity at mu and delta opioid receptors. BNI and nor-BNI represent the first highly selective kappa opioid receptor antagonists and should be of great utility as molecular probes for identifying the interaction of agonist ligands with kappa opioid receptors in vitro and in vivo. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Chemical Phenomena; Chemistry; Cyclazocine; Dynorphins; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Ethylketocyclazocine; Guinea Pigs; Male; Mice; Morphine; Naloxone; Naltrexone; Pyrrolidines; Rabbits; Receptors, Opioid; Receptors, Opioid, kappa | 1987 |