u-50488 and enadoline

u-50488 has been researched along with enadoline* in 12 studies

Other Studies

12 other study(ies) available for u-50488 and enadoline

ArticleYear
Sex and rat strain determine sensitivity to kappa opioid-induced antinociception.
    Psychopharmacology, 2002, Volume: 160, Issue:2

    Recent studies indicate that sex and rodent strain are determinants of sensitivity to opioid-induced antinociception.. The present study examined the influence of sex and rat strain on kappa opioid-induced antinociception using a series of kappa opioids that vary in their relative effectiveness.. In a warm-water (50, 52 and 55C) tail-withdrawal procedure, the antinociceptive effects of kappa opioids were determined in male and female rats of the F344, Lewis and Sprague-Dawley (SD) strains.. In both males and females of each strain, spiradoline produced high levels of antinociception across all nociceptive stimulus intensities, whereas U50,488 produced high levels only at the low and moderate nociceptive stimulus intensities. Sex differences in the potency and effectiveness of these kappa opioids were relatively small and not consistently obtained. Enadoline, bremazocine and nalorphine were less effective than spiradoline in producing antinociception, and at low and moderate nociceptive stimulus intensities these opioids were both more potent and effective in F344 and SD males than their female counterparts. In contrast, in Lewis rats, only bremazocine was more potent and effective in males. In combination tests, bremazocine shifted the spiradoline dose-effect curve leftward and/or upward in males and rightward in females (i.e., antagonized spiradoline). In contrast, in both males and females enadoline shifted the spiradoline dose-effect curve leftward and/or upward.. These data indicate that kappa opioids were generally more potent and effective as antinociceptive agents in males than females. Similar to data obtained with micro opioids, the magnitude of these sex differences was generally larger with the less effective kappa opioids and determined, in part, by rat strain and nociceptive stimulus intensity.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzofurans; Benzomorphans; Female; Male; Nalorphine; Narcotics; Pyrrolidines; Rats; Rats, Inbred F344; Rats, Inbred Lew; Rats, Inbred Strains; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Sex Characteristics

2002
Kappa-opioid receptor modulation of nicotine-induced behaviour.
    Neuropharmacology, 2000, Volume: 39, Issue:13

    The ability of kappa-opioid receptor ligands to modulate dependence-related behavioural effects of drugs like morphine and cocaine is well documented. The present study examined the effects of kappa-opioid agonists on nicotine-induced locomotor stimulation in rats chronically pre-exposed to nicotine (0.4 mg/kg/day). U50,488 [0.5-3 mg/kg subcutaneously (s.c.)], U69,593 [0.08-0.32 mg/kg intraperitoneally (i.p.)] and CI-977 (0.005-0.02 mg/kg s.c.) administered 30 min prior to nicotine (0.06, 0.2 and 0.4 mg/kg s.c.) dose-dependently antagonised its acute locomotor-activating effect, which was completely prevented by the highest tested dose of each agonist. Baseline activity was unaffected by the largest doses of U50,488 and U69,593, but it was reduced by 0.01 and 0.02 mg/kg of CI-977. The selective kappa-opioid receptor antagonist nor-BNI [30 microg intracerebroventricularly (i.c.v.)] blocked the effects of U69,593 on nicotine-induced behaviour, thus supporting the involvement of kappa-opioid receptors in this effect. In conclusion, the activation of kappa-opioid receptors clearly prevented nicotine-induced locomotor stimulation. The effects of at least two of the kappa-opioid agonists were not due to a general motor suppression. It is suggested that the mechanism entails a depression of nicotine-induced increases in accumbal dopamine by these compounds. The results should encourage further research on the role of the kappa-opioid system in the behavioural and neurochemical effects of nicotine, including those related to nicotine dependence.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Benzeneacetamides; Benzofurans; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Motor Activity; Naltrexone; Nicotine; Nicotinic Agonists; Pyrrolidines; Rats; Receptors, Opioid, kappa

2000
Differential antagonism of the rate-decreasing effects of kappa-opioid receptor agonists by naltrexone and norbinaltorphimine.
    European journal of pharmacology, 1999, Jul-14, Volume: 377, Issue:1

    Eight kappa-opioid receptor agonists were examined for their effects in squirrel monkeys responding under a fixed interval 3-min schedule of stimulus termination. Six of these kappa-opioid receptor agonists decreased dose-dependently the total number of responses and with an order of potency consistent with kappa-opioid receptor interaction. Three of these kappa-opioid receptor agonists, bremazocine, U69,593 [[(5a,7a,8b)-(+)-N-[7-(1-pyrrolidinyl)-1-oxaspiro(4,5)dec-8-yl)] benzeneacetamide] and enadoline, were evaluated following pretreatment with 1.0 mg/kg of naltrexone or 3.0 mg/kg of norbinaltorphimine. The effects of the three agonists were antagonized significantly by naltrexone, but only those of bremazocine and U69,593 were antagonized significantly by norbinaltorphimine. Statistical analysis of the data averaged over six monkeys revealed that naltrexone was significantly more potent than norbinaltorphimine at antagonizing enadoline and U69,593, but naltrexone and norbinaltorphimine were equipotent at antagonizing bremazocine. Moreover, naltrexone was 8-fold more potent at antagonizing U69,593 and enadoline than at antagonizing bremazocine. These results suggest that under these conditions the effects of U69,593 and enadoline may be mediated, in part, by a different receptor population, perhaps a subtype of kappa-opioid receptors, from the one that mediates the effects of bremazocine.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Behavior, Animal; Benzeneacetamides; Benzofurans; Benzomorphans; Conditioning, Operant; Dose-Response Relationship, Drug; Ethylketocyclazocine; Nalorphine; Naltrexone; Narcotic Antagonists; Pyrroles; Pyrrolidines; Receptors, Opioid, kappa; Reinforcement Schedule; Saimiri; Thiophenes

1999
Activity of the delta-opioid receptor is partially reduced, whereas activity of the kappa-receptor is maintained in mice lacking the mu-receptor.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1998, Sep-15, Volume: 18, Issue:18

    Previous pharmacological studies have indicated the possible existence of functional interactions between mu-, delta- and kappa-opioid receptors in the CNS. We have investigated this issue using a genetic approach. Here we describe in vitro and in vivo functional activity of delta- and kappa-opioid receptors in mice lacking the mu-opioid receptor (MOR). Measurements of agonist-induced [35S]GTPgammaS binding and adenylyl cyclase inhibition showed that functional coupling of delta- and kappa-receptors to G-proteins is preserved in the brain of mutant mice. In the mouse vas deferens bioassay, deltorphin II and cyclic[D-penicillamine2, D-penicillamine5] enkephalin exhibited similar potency to inhibit smooth muscle contraction in both wild-type and MOR -/- mice. delta-Analgesia induced by deltorphin II was slightly diminished in mutant mice, when the tail flick test was used. Deltorphin II strongly reduced the respiratory frequency in wild-type mice but not in MOR -/- mice. Analgesic and respiratory responses produced by the selective kappa-agonist U-50,488H were unchanged in MOR-deficient mice. In conclusion, the preservation of delta- and kappa-receptor signaling properties in mice lacking mu-receptors provides no evidence for opioid receptor cross-talk at the cellular level. Intact antinociceptive and respiratory responses to the kappa-agonist further suggest that the kappa-receptor mainly acts independently from the mu-receptor in vivo. Reduced delta-analgesia and the absence of delta-respiratory depression in MOR-deficient mice together indicate that functional interactions may take place between mu-receptors and central delta-receptors in specific neuronal pathways.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Anti-Arrhythmia Agents; Benzofurans; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Female; GTP-Binding Proteins; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurons; Oligopeptides; Pain Measurement; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Respiration; Signal Transduction; Vas Deferens

1998
The kappa opioid receptor is associated with the perception of visceral pain.
    Gut, 1998, Volume: 43, Issue:3

    mu-, delta- and kappa-opioid receptors are widely expressed in the central nervous system where they mediate the strong analgesic and mood-altering actions of opioids, and modulate numerous endogenous functions. To investigate the contribution of the kappa-opioid receptor (KOR) to opioid function in vivo, we have generated KOR-deficient mice by gene targeting. We show that absence of KOR does not modify expression of the other components of the opioid system, and behavioural tests indicate that spontaneous activity is not altered in mutant mice. The analysis of responses to various nociceptive stimuli suggests that the KOR gene product is implicated in the perception of visceral chemical pain. We further demonstrate that KOR is critical to mediate the hypolocomotor, analgesic and aversive actions of the prototypic kappa-agonist U-50,488H. Finally, our results indicate that this receptor does not contribute to morphine analgesia and reward, but participates in the expression of morphine abstinence. Together, our data demonstrate that the KOR-encoded receptor plays a modulatory role in specific aspects of opioid function.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics, Opioid; Animals; Benzofurans; Humans; Mice; Mice, Knockout; Morphine; Nociceptors; Pyrrolidines; Receptors, Opioid, kappa

1998
The discriminative stimulus properties of U50,488 and morphine are not shared by fedotozine.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 1998, Volume: 8, Issue:4

    Fedotozine is a kappa opioid receptor agonist having antinociceptive properties but devoid of diuretic effects. The aim of the study was to evaluate the discriminative stimulus effects of fedotozine at doses previously reported to produce maximal effects in in vivo assays measuring kappa-mediated analgesia. By using a two-lever drug discrimination task, two groups of rats were trained to discriminate either a 3 mg/kg i.p. dose of the kappa opioid agonist, U50,488, or a 5 mg/kg i.p. dose of the mu opioid agonist, morphine, from saline. Once trained, rats were used to conduct tests of stimulus generalization with morphine, U50,488 and fedotozine along with another kappa agonist, CI-977, and another mu agonist, fentanyl. The stimulus effect of U50,488 was shared by CI-977 but not by morphine. Conversely, the stimulus effect of morphine was shared by fentanyl but not by U50,488. Fedotozine (1-10 mg/kg) failed to substitute to either U50,488 or morphine. These results indicate that, when administered at doses fully effective in producing antinociception, the interoceptive stimulus effects of fedotozine, if any, can be distinguished from those produced by U50,488 and morphine.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Benzofurans; Benzyl Compounds; Discrimination, Psychological; Dose-Response Relationship, Drug; Generalization, Stimulus; Male; Morphine; Propylamines; Pyrrolidines; Rats; Rats, Long-Evans; Receptors, Opioid, kappa

1998
Reversal by kappa-agonists of peritoneal irritation-induced ileus and visceral pain in rats.
    Life sciences, 1997, Volume: 60, Issue:9

    Peritoneal irritation in rats induced by i.p. administration of acetic acid produces abdominal contractions reflecting visceral pain, and gastrointestinal ileus characterized by inhibition of gastric emptying and small intestine transit. In this study, gastric emptying (GE) and intestinal transit, calculated by the geometric center (GC) method, were estimated using a test meal labeled with 51Cr-EDTA. Visceral pain was assessed by counting abdominal contractions. Acetic acid produced abdominal contractions (80.8 +/- 3.3) and inhibition of GE (-54%) and GC (-63%) during the test-period. The kappa-opioid receptor agonists, CI-977 (+/-)-U-50,488H, (+/-)-bremazocine, PD-117,302, (-)-cyclazocine, and U-69,583, reversed abdominal contractions and inhibitions of gastrointestinal transit in a dose-related manner. The mu-opioid receptor agonists and potent analgesics, morphine and fentanyl did not restore normal gastric emptying and intestinal transit. These data suggest that selective kappa-opioid receptor agonists might be used to treat abdominal pain associated with motility and transit impairment during postoperative ileus.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetic Acid; Analgesics; Animals; Benzofurans; Benzomorphans; Cyclazocine; Fentanyl; Gastric Emptying; Intestinal Pseudo-Obstruction; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Pain; Peritoneum; Pyrroles; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Thiophenes

1997
Supraspinal administration of opioids with selectivity for mu-, delta- and kappa-opioid receptors produces analgesia in amphibians.
    European journal of pharmacology, 1997, Jul-16, Volume: 331, Issue:1

    Previous results using an amphibian model showed that systemic and spinal administration of opioids selective for mu, delta and kappa-opioid receptors produce analgesia. It is not known whether non-mammalian vertebrates also contain supraspinal sites mediating opioid analgesia. Thus, opioid agonists selective for mu (morphine; fentanyl), delta (DADLE, [D-Ala2, D-Leu5]-enkephalin; DPDPE, [D-Pen2, D-Pen5]-enkephalin) and kappa (U50488, trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methanesulfonate; CI977, (5R)-(544alpha,744alpha,845beta)-N-methyl-N-[7-(1-p yrr olidinyl)-1-oxaspiro[4,5]dec-8yl]-4-benzofuranaceta mide++ + monohydrochloride) opioid receptors were tested for analgesia following i.c.v. administration in the Northern grass frog, Rana pipiens. Morphine, administered at 0.3, 1, 3 and 10 nmol/frog, produced a dose-dependent and long-lasting analgesic effect. Concurrent naltrexone (10 nmol) significantly blocked analgesia produced by i.c.v. morphine (10 nmol). ED50 values for the six opioids ranged from 2.0 for morphine to 63.9 nmol for U50488. The rank order of analgesic potency was morphine > DADLE > DPDPE > CI977 > fentanyl > U50488. These results show that supraspinal sites mediate opioid analgesia in amphibians and suggest that mechanisms of supraspinal opioid analgesia may be common to all vertebrates.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Benzofurans; Dose-Response Relationship, Drug; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; Female; Fentanyl; Injections, Intraventricular; Male; Morphine; Naltrexone; Narcotics; Pyrrolidines; Rana pipiens; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

1997
Distinct neuroprotective profiles for sigma ligands against N-methyl-D-aspartate (NMDA), and hypoxia-mediated neurotoxicity in neuronal culture toxicity studies.
    Brain research, 1995, Mar-27, Volume: 675, Issue:1-2

    Substantiating evidence has raised the possibility that sigma ligands may have therapeutic potential as neuroprotective agents in brain ischemia. It has been suggested that the neuroprotective capacity of sigma ligands is related primarily to their affinity for the NMDA receptor complex and not to any selective action at the sigma binding site. However, sigma specific ligands, devoid of significant affinity for the NMDA receptor, are also neuroprotective via an inhibition of the ischemic-induced presynaptic release of excitotoxic amino acids. In the present study, we have investigated the potential neuroprotective effect of a comprehensive series of sigma ligands, with either significant (sigma/PCP) or negligible (sigma) affinity for the PCP site of the NMDA receptor, in order to delineate a selective sigma site-dependent neuroprotective effect. For this aim, we have employed two different neuronal culture toxicity paradigms implicating either postsynaptic-mediated neurotoxicity, (brief exposure of cultures to a low concentration of NMDA or Kainate) or pre- and postsynaptic mechanisms (exposure to hypoxic/hypoglycemic conditions). Only sigma ligands with affinity for the NMDA receptor [(+) and (-) cyclazocine, (+) pentazocine, (+) SKF-10047, ifenprodil and haloperidol] were capable of attenuating NMDA-induced toxicity whereas the sigma [(+)BMY-14802, DTG, JO1784, JO1783, and (+)3-PPP] and kappa-opioid [CI-977, U-50488H] ligands, with very low affinity for the NMDA receptor, were inactive. The rank order of potency, based on the 50% protective concentration (PC50) value, of sigma/PCP ligands against NMDA-mediated neurotoxicity correlates with their affinity for the PCP site of the NMDA receptor, and not with their affinity for the sigma site. In addition sigma/PCP, sigma or kappa-opioid ligands failed to attenuate kainate-mediated neurotoxicity. On the other hand, sigma/PCP, sigma and kappa-opioid ligands were potent inhibitors of hypoxia/hypoglycemia-induced neurotoxicity, although their neuroprotective potency did not correlate with their affinity for either the sigma or PCP binding sites. In conclusion, the ability of sigma and kappa-opioid ligands to attenuate hypoxia/hypoglycemia, but not NMDA or kainate-induced toxicity, suggests that these drugs exert their neuroprotective role by a predominantly presynaptic mechanism possibly by inhibiting ischemic-mediated glutamate release.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Anti-Arrhythmia Agents; Antihypertensive Agents; Benzofurans; Brain Ischemia; Cell Death; Cells, Cultured; Dizocilpine Maleate; Hypoxia; Kainic Acid; Ligands; N-Methylaspartate; Neurons; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Phencyclidine; Receptors, sigma

1995
Interactions between delta 9-tetrahydrocannabinol and kappa opioids in mice.
    The Journal of pharmacology and experimental therapeutics, 1994, Volume: 268, Issue:3

    The selective kappa opioid receptor antagonist nor-binaltorphimine (nor-BNI) has been shown to modulate cannabinoid-induced antinociception by delta 9-tetrahydrocannabinol (delta 9-THC). However, it is not known whether nor-BNI blocks other pharmacological effects of delta 9-THC or if this is a specific action of nor-BNI. Studies were conducted in which pretreatment with nor-BNI (2, 10 and 20 micrograms i.t.) selectively blocked delta 9-THC-induced antinociception while not significantly affecting other commonly observed cannabinoid actions, which included hypothermia, hypoactivity and catalepsy. Chronic administration studies were performed to determine if cross tolerance could be established between delta 9-THC and the highly specific kappa opioid receptor agonists, U-50,488H and CI-977. The chronic delta 9-THC-treated groups were significantly tolerant, not only to i.t. delta 9-THC-induced antinociception in the tail-flick test, but also to i.t. U-50,488 and CI-977 compared with those treated chronically with vehicle. They were not cross tolerant to either DAMGO or DPDPE. Dose-response curves were generated for both delta 9-THC (i.t.) and CI-977 (i.t.) in mice tolerant to delta 9-THC and CI-977. Parallel shifts to the right of the delta 9-THC dose-response curves were observed in animals tolerant to delta 9-THC and also in animals tolerant to CI-977. Animals tolerant to CI-977 also demonstrated parallel shifts of the dose-response curves of both delta 9-THC and CI-977. This study demonstrated that cannabinoid actions can be distinguished from each other. The pharmacological separation of antinociception from the other cannabinoid-induced actions implies that it may have a mechanism distinct from other effects. In addition, this study indicates that delta 9-THC and the kappa opioid agonists may share a common mechanism of action in the production of antinociception and that a possible interaction exists between i.t. administered cannabinoid compounds and the kappa opioid receptor.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzofurans; Dronabinol; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Male; Mice; Mice, Inbred ICR; Naltrexone; Pyrrolidines; Receptors, Opioid, kappa

1994
Discriminative stimulus and response rate-decreasing effects of kappa opioids: antagonism by naloxone.
    Life sciences, 1994, Volume: 54, Issue:23

    The present study examined the discriminative stimulus and response rate-decreasing effects of kappa opioids in pigeons trained to discriminate a 0.017 mg/kg dose of bremazocine from saline. Bremazocine, spiradoline, CI977, U69,593 and U50,488 substituted completely for the bremazocine stimulus in a dose-dependent and naloxone-reversible manner. Apparent pA2 values (range, 6.01-6.81) of naloxone against the discriminative stimulus effects of these kappa opioids were smaller than those reported previously in the pigeon for naloxone against the discriminative stimulus effects of various mu opioids. Bremazocine, CI977, spiradoline and U69,593 also decreased rate of responding in a dose-dependent and naloxone-reversible manner. The apparent pA2 values (range, 6.25-6.44) for naloxone against the rate-decreasing effects of bremazocine, CI977 and U69,593 were not different from the apparent pA2 values for naloxone against their discriminative stimulus effects. An apparent pA2 for naloxone against the rate-decreasing effects of spiradoline could not be determined due to the shallow slope of the Schild plot. Although the rate-decreasing effects of U50,488 were antagonized by naloxone, the degree of antagonism was small and not dose-dependent. These findings indicate that the discriminative stimulus and rate-decreasing effects of some kappa opioids are mediated by similar mechanisms and that a non-opioid mechanism may contribute to the rate-decreasing effects of spiradoline and U50,488.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzofurans; Columbidae; Discrimination Learning; Dose-Response Relationship, Drug; Female; Naloxone; Narcotics; Pyrrolidines; Receptors, Opioid, kappa

1994
Functional evidence for multiple receptor activation by kappa-ligands in the inhibition of spinal nociceptive reflexes in the rat.
    British journal of pharmacology, 1993, Volume: 110, Issue:1

    1. The evidence for kappa-receptor heterogeneity is equivocal. We have now investigated this question by comparing the effects of five putatively selective kappa-agonists. The parameters examined were: the relative potencies in depressing hindlimb flexor muscle reflexes to noxious pinch stimuli in both spinalized and sham-spinalized rats; the reversibility of these effects by naloxone; and the effects on blood pressure. 2. Two types of drug effect was discriminated. One drug group, represented by U-50,488, U-69,593 and PD-117,302, had a potency ratio between sham and spinalized rats approximately 10 fold lower than the other group, which comprised GR103545 and CI-977. 3. Under sham-spinalized conditions, CI-977 and GR103545 at high doses caused only sub-maximal reductions of spinal reflexes. U-50,488 was still active when superimposed on these high doses of GR103545. 4. Naloxone reversed all effects, but different doses were required between compounds, with GR103545 taking some 20 times higher doses of naloxone to cause reversal than did U-50,488. 5. The effects on mean arterial pressure were opposite between groups. 6. The results imply that more than one type of naloxone-sensitive non-mu opioid receptor must be involved in mediating these complex actions of ligands that have been claimed to be selective for kappa-receptors.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Anticonvulsants; Benzeneacetamides; Benzofurans; Blood Pressure; Decerebrate State; Male; Naloxone; Nociceptors; Piperazines; Pyrroles; Pyrrolidines; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reflex; Spinal Cord; Thiophenes

1993