u-50488 has been researched along with beta-funaltrexamine* in 39 studies
39 other study(ies) available for u-50488 and beta-funaltrexamine
Article | Year |
---|---|
Antidepressant-like effects of dezocine in mice: involvement of 5-HT1A and κ opioid receptors.
Dezocine is an opioid with low efficacy at μ-opioid and κ-opioid receptors. It also inhibits the reuptake of norepinephrine and serotonin. Dezocine is an effective analgesic against various clinical painful conditions and is widely used in many Asian countries. Given the unique pharmacology of dezocine, the drug may also have antidepressant-like properties. However, no published preclinical study has explored this possibility. This study examined the potential antidepressant-like activity of dezocine in mice. Male ICR mice were used in the forced swimming test, the tail suspension test, the warm water tail withdrawal test and locomotor activity test to test the effects of dezocine (0.3-3.0 mg/kg). The 5-HT1A receptor antagonist WAY-100635 (1 mg/kg), the μ-opioid receptor antagonist β-funaltrexamine (2 mg/kg) and the κ-opioid receptor agonist U50488 (1 mg/kg) were also studied in combination with dezocine. Dezocine produced a dose-dependent decrease in the immobility time in the forced swimming test and tail suspension test at doses that did not alter the motoric activity as determined in the locomotion test. WAY-100635 and U50488 but not β-funaltrexamine pretreatment significantly blocked the effects of dezocine. Dezocine dose-dependently increased the latency in the tail withdrawal test which was blocked by WAY-100635 and β-funaltrexamine. Combined, these results suggest that dezocine may have antidepressant-like effects. Considering the well-documented analgesic property of dezocine, it may be useful to treat pain and depression comorbidity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Antidepressive Agents; Behavior, Animal; Bridged Bicyclo Compounds, Heterocyclic; Dose-Response Relationship, Drug; Drug Monitoring; Drug Therapy, Combination; Mice; Naltrexone; Piperazines; Pyridines; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin 5-HT1 Receptor Antagonists; Tetrahydronaphthalenes; Treatment Outcome | 2021 |
Methyl-orvinol-Dual activity opioid receptor ligand inhibits gastrointestinal transit and alleviates abdominal pain in the mouse models mimicking diarrhea-predominant irritable bowel syndrome.
Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional disorder of the gastrointestinal (GI) tract. The major IBS-D symptoms include diarrhea, abdominal pain and discomfort. High density of opioid receptors (ORs) in the GI tract and their participation in the maintenance of GI homeostasis make ORs ligands an attractive option for developing new anti-IBS-D treatments. The aim of this study was to characterize the effect of methyl-orvinol on the GI motility and secretion and in mouse models mimicking symptoms of IBS-D.. In vitro, the effects of methyl-orvinol on electrical field stimulated smooth muscle contractility and epithelial ion transport were characterized in the mouse colon. In vivo, the following tests were used to determine methyl-orvinol effect on mouse GI motility: colonic bead expulsion, whole GI transit and fecal pellet output. An antinociceptive action of methyl-orvinol was assessed in the mouse model of visceral pain induced by mustard oil.. Methyl-orvinol (10. Methyl-orvinol could become a promising drug candidate in chronic therapy of functional GI diseases such as IBS-D. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Abdominal Pain; Analgesics; Analgesics, Opioid; Animals; Colon; Diarrhea; Disease Models, Animal; Gastrointestinal Motility; Gastrointestinal Transit; Irritable Bowel Syndrome; Male; Mice; Mice, Inbred BALB C; Muscle Contraction; Muscle, Smooth; Naloxone; Naltrexone; Receptors, Opioid; Thebaine | 2017 |
Antagonism of phosphoramidon-induced antinociception in mice by mu- but not kappa-opioid receptor blockers.
Intracerebroventricular (i.c.v.) administration of the neutral endopeptidase 24.11-inhibitor phosphoramidon evoked a dose-dependent antinociceptive effect in the mouse acetic acid abdominal constriction test. The present study was conducted to identify the opioid receptor subtype(s) that mediate phosphoramidon antinociception in this paradigm. Mice were pretreated with different opioid antagonists prior to being challenged with phosphoramidon, i.c.v., the mu-opioid agonist sufentanil, s.c., or the kappa-opioid agonist U-50,488H, s.c. Naltrexone significantly attenuated phosphoramidon-induced antinociception at an i.c.v. dose that also blocked both sufentanil and U-50,488H. The mu-opioid antagonist beta-funaltrexamine (beta-FNA) blocked phosphoramidon and sufentanil at an i.c.v. dose that did not block U-50,488H. The kappa-opioid antagonist nor-binaltorphimine (nor-BNI) produced dose-related effects. A low dose (10 microg) of nor-BNI had no effect on either phosphoramidon or sufentanil but did reduce U-50,488H antinociception. A higher dose (30 microg) of nor-BNI blocked phosphoramidon, sufentanil, and U-50,488H, suggesting a loss of kappa-opioid receptor selectivity at this dose. These findings suggest that mu- but not kappa-opioid receptors mediate phosphoramidon-induced antinociception in the abdominal constriction test. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Animals; Glycopeptides; Male; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2007 |
Chronic prevention of mu-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food.
Acute pharmacological studies implicate mu-opioid receptors (MORs) in the parabrachial nucleus (PBN) of the brainstem in modulating eating. The long-term effects of preventing the cellular function of parabrachial MORs on food consumption remain to be elucidated.. To determine whether (1) chronic inhibition of MOR-mediated G-protein coupling in the PBN of rats would persistently reduce eating and (2) food properties dictate the effects of MOR blockade.. We microinfused the irreversible MOR antagonist, beta-funaltrexamine (beta-FNA) into the lateral PBN and measured the intake of standard and calorically dense palatable chow for 1 week. First, rats were given standard chow for 20 h daily and a calorically dense palatable chow for 4 h during the day. We infused the agonist, [D: -Ala(2), N-Me-Phe(4), Glycinol(5)]-Enkephalin (DAMGO), 1 week after beta-FNA to probe the acute effects of exogenous stimulation of MORs on palatable food intake. [(35)S]GTPgammaS autoradiography quantified regional loss of MOR cellular function. Next, we measured the actions of beta-FNA on food intake in rats given only standard or palatable chow for 1 week.. One infusion of beta-FNA persistently decreased consumption of standard but not palatable chow, regardless of feeding regimen. beta-FNA also blocked DAMGO-stimulated palatable chow intake, prevented DAMGO-stimulated G-protein coupling in the central and external lateral subnuclei of the PBN, and decreased coupling in the medial PBN. beta-FNA did not affect kappa-opioid receptors.. MORs in the lateral PBN serve a physiological role in stimulating consumption of standard food. Properties of the diet, such as high palatability or caloric density, may override the influence of inhibiting MOR function. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Behavior, Animal; Circadian Rhythm; Eating; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Feeding Behavior; Food Preferences; GTP-Binding Proteins; Male; Naltrexone; Narcotic Antagonists; Pons; Rats; Rats, Sprague-Dawley; Receptors, G-Protein-Coupled; Receptors, Opioid, mu; Time Factors | 2006 |
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. Pretreatment i.t. with various doses of naloxonazine, a mu(1)-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID(50) values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than those of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2005 |
Buprenorphine blocks epsilon- and micro-opioid receptor-mediated antinociception in the mouse.
Antagonistic properties of buprenorphine for epsilon- and micro -opioid receptors were characterized in beta-endorphin- and [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO)-induced antinociception, respectively, with the tail-flick test in male ICR mice. epsilon-Opioid receptor agonist beta-endorphin (0.1-1 micro g), micro -opioid receptor agonist DAMGO (0.5-20 ng), or buprenorphine (0.1-20 micro g) administered i.c.v. dose dependently produced antinociception. The antinociception induced by 10 micro g of buprenorphine given i.c.v. was completely blocked by the pretreatment with beta-funaltrexamine (beta-FNA) (0.3 micro g i.c.v.), indicating that the buprenophine-induced antinociception is mediated by the stimulation of the micro -opioid receptor. The antinociceptive effects induced by beta-endorphin (1 micro g i.c.v.) and DAMGO (16 ng i.c.v.) were dose dependently blocked by pretreatment with smaller doses of buprenorphine (0.001-1 micro g i.c.v.), but not by a higher dose of buprenorphine (10 micro g i.c.v.). beta-FNA at a dose (0.3 micro g i.c.v.) that strongly attenuated DAMGO-induced antinociception had no effect on the antinociception produced by beta-endorphin (1 micro g i.c.v.). However, pretreatment with buprenorphine (0.1-10 micro g) in mice pretreated with this same dose of beta-FNA was effective in blocking beta-endorphin-induced antinociception. beta-FNA was 226-fold more effective at antagonizing the antinociception induced by DAMGO (16 ng i.c.v.) than by beta-endorphin (1 micro g i.c.v.). The antinociception induced by delta-opioid receptor agonist [d-Ala2]deltorphin II (10 micro g i.c.v.) or kappa1-opioid receptor agonist trans-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl)benzeneacetamine methanesulfonate salt [(-)-U50,488H] (75 micro g i.c.v.) was not affected by pretreatment with buprenorphine (0.1-1.0 micro g i.c.v.). It is concluded that buprenorphine, at small doses, blocks epsilon-opioid receptor-mediated beta-endorphin-induced antinociception and micro -opioid receptor-mediated DAMGO-induced antinociception, and at high doses produces a micro -opioid receptor-mediated antinociception. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; beta-Endorphin; Buprenorphine; Disease Models, Animal; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Time Factors | 2003 |
Opioid receptor subtypes differentially modulate serotonin efflux in the rat central nervous system.
Opioid receptor subtypes may have site-specific effects and play different roles in modulating serotonergic neurotransmission in the mammalian central nervous system. To test this hypothesis, we used in vivo microdialysis to measure changes in extracellular serotonin (5-hydroxytryptamine; 5-HT) in response to local infusion of mu-, delta-, and kappa-opioid receptor ligands into the dorsal raphe nucleus (DRN), median raphe nucleus (MRN), and nucleus accumbens (NAcc) of freely behaving rats. The mu-opioids [D-Ala(2)-N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), endomorphin-1, and endomorphin-2 were administered by reverse dialysis infusion into the DRN. In response, extracellular 5-HT was increased in the DRN, an effect that was blocked by the selective mu-receptor antagonist beta-funaltrexamine, but not by the delta-receptor antagonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI-174,864). Infusion of delta-receptor agonists, [D-Ala(2),D-Len(5)]enkephalin (DADLE), [D-Pen(2,5)]enkephalin (DPDPE), and deltophin-II into the DRN also increased extracellular 5-HT, an effect that was blocked by selective delta-receptor antagonists. In contrast to the DRN, local infusion of mu- and delta-opioids had no effect on 5-HT in the MRN or NAcc. These data indicate that mu- and delta-opioid ligands have a selective influence on serotonergic neurons in the DRN. Finally, the kappa-receptor agonist U-50,488 [trans-(+/-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide] produced similar decreases in 5-HT during local infusion into the DRN, MRN, and NAcc. These results provide evidence of differential regulation of 5-HT release by opioid receptor subtypes in the midbrain raphe and forebrain. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Central Nervous System; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine-2-Alanine; Male; Microdialysis; Microinjections; Naltrexone; Nucleus Accumbens; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin | 2002 |
Effects of differential modulation of mu-, delta- and kappa-opioid systems on bicuculline-induced convulsions in the mouse.
The present study investigated the effects of micro-, delta- and kappa-opioid receptor agonists on seizures produced by blockade of gamma-aminobutyric acid (GABA)-mediated synaptic transmission in the mouse. The selective GABA(A) receptor antagonist bicuculline (1.25-3 mg/kg) given subcutaneously caused dose-dependent clonic-tonic convulsions. These convulsions were potentiated by the prototypic mu-opioid receptor agonist morphine given subcutaneously 20 min prior to a subconvulsive dose of bicuculline. The potentiation by morphine was completely reversed by pretreatment intraventricularly with the selective mu-opioid receptor antagonist beta-funaltrexamine (0.5 microgram/mouse). Pretreatment intraventricularly with the selective delta-opioid receptor agonists 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12abeta-octahydro-quinolino[2,3,3-g]isoquinoline ((-)TAN-67) or [D-Pen(2,5)]-enkephalin (DPDPE) showed a dose-dependent increase in the incidence of convulsions. Pretreatment with naltrindole (2 mg/kg, s.c.), a selective delta-opioid receptor antagonist, abolished the enhancement of the bicuculline-induced convulsions by DPDPE. In contrast, pretreatment with the selective kappa-opioid receptor agonist U-50,488H (0.6-80 mg/kg, subcutaneously or 25-100 microgram/mouse, intraventricularly) produced a dose-dependent suppression of the bicuculline-induced convulsions. The inhibitory effect of U-50,488H was completely blocked by pretreatment subcutaneously with nor-binaltorphimine (5 mg/kg), a selective kappa-opioid receptor antagonist. This study demonstrates that activation of both mu- and delta-opioid receptors increases the incidence of convulsions produced by blockade of GABA-mediated synaptic transmission, while stimulation of kappa-opioid receptors has an anticonvulsive effect. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Bicuculline; Brain Chemistry; Convulsants; Enkephalin, D-Penicillamine (2,5)-; Epilepsy, Tonic-Clonic; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Morphine; Naltrexone; Narcotic Antagonists; Quinolines; Receptors, GABA-A; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Seizures; Synaptic Transmission | 2000 |
Dose- and time-dependent bimodal effects of kappa-opioid agonists on locomotor activity in mice.
The kappa-opioid agonists U50488H, bremazocine, and BRL52537, and the mu-opioid agonist morphine were compared in their ability to modify spontaneous motor activity in male NMRI mice. Higher, analgesic doses of the kappa-agonists reduced rearing, motility, and locomotion in nonhabituated mice. These effects, as well as the analgesic action of U50488H, were blocked by the selective kappa-opioid antagonists nor-binaltorphimine and DIPPA. In contrast, lower, subanalgesic doses (1.25 and 2.5 mg/kg for U50488H; 0.15 and 0.075 mg/kg for bremazocine, and 0.1 mg/kg for BRL52537) time dependently increased motor activity. The stimulatory effects of U50488H and bremazocine were not observed in habituated animals and were reduced by dopamine depletion. Surprisingly, the stimulatory effects of U50488H and bremazocine were not blocked by nor-binaltorphimine and DIPPA but they were completely eliminated by naloxone (0.1 mg/kg). The effects of morphine were dose-dependent; an initial limited suppression was followed by increased motility and locomotion (but not rearing) with a peak effect at 20 mg/kg both in habituated and nonhabituated mice. The selective mu-opioid antagonist beta-funaltrexamine blocked morphine-induced motor stimulation and analgesia but failed to affect the analgesic and motor stimulatory effects of U50488H. The results indicate that kappa-opioid agonists interact with different functional subtypes of opioid receptors. A stimulatory, naloxone-sensitive but nor-binaltorphimine- and DIPPA-insensitive subtype of opioid receptor appears to operate only when the dopamine system is tonically active in nonhabituated animals. At higher doses, kappa-agonists produce analgesia and motor suppression, effects mediated by a "classic" (inhibitory) kappa-opioid receptor. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Acetamides; Animals; Benzomorphans; Dose-Response Relationship, Drug; Isothiocyanates; Male; Mice; Morphine; Motor Activity; Naloxone; Naltrexone; Receptors, Opioid, kappa; Time Factors | 2000 |
Different roles of mu-, delta- and kappa-opioid receptors in ethanol-associated place preference in rats exposed to conditioned fear stress.
The present study was designed to investigate the role of the endogenous opioid system in the development of ethanol-induced place preference in rats exposed to conditioned fear stress (exposure to an environment paired previously with electric foot shock), using the conditioned place preference paradigm. The administration of ethanol (300 mg/kg, i.p.) with conditioned fear stress induced significant place preference. Naloxone (1 and 3 mg/kg, s.c.), a non-selective opioid receptor antagonist, significantly attenuated this ethanol-induced place preference. Moreover, the selective mu-opioid receptor antagonist beta-funaltrexamine (3 and 10 mg/kg, i.p.) and the selective delta-opioid receptor antagonist naltrindole (1 and 3 mg/kg, s.c.) significantly attenuated ethanol-induced place preference. In contrast, the selective kappa-opioid receptor antagonist nor-binaltorphimine (3 mg/kg, i.p.) significantly enhanced ethanol-induced place preference. Furthermore, 75 mg/kg ethanol (which tended to produce place preference) combined with the mu-opioid receptor agonist morphine (0.1 mg/kg, s.c.) or the selective delta-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12,12aalpha- octahydroquinolino [2,3,3,-g] isoquinoline (TAN-67; 20 mg/kg, s.c.), at doses which alone did not produce place preference, produced significant place preference. However, co-administration of the selective kappa-opioid receptor agonist trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide methanesulfonate (U50,488H; 0.3 and 1 mg/kg, s.c.) with ethanol (300 mg/kg, i.p.) dose dependently attenuated ethanol-induced place preference. Moreover, conditioned fear stress shifted the response curve for the aversive effect of U50,488H to the left. These results suggest that mu- and delta-opioid receptors may play critical roles in the rewarding mechanism of ethanol, and that kappa-opioid receptors may modulate the development of the rewarding effect of ethanol under psychological stress. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Behavior, Animal; Central Nervous System Depressants; Conditioning, Psychological; Ethanol; Fear; Male; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Quinolines; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Stress, Psychological | 1999 |
Analgesia-producing mechanism of processed Aconiti tuber: role of dynorphin, an endogenous kappa-opioid ligand, in the rodent spinal cord.
The analgesia-producing mechanism of processed Aconiti tuber was examined using rodents whose nociceptive threshold was decreased by loading repeated cold stress (RCS). The antinociceptive effect of processed Aconiti tuber (0.3 g/kg, p.o.) in RCS-loaded mice was antagonized by pretreatment with a kappa-opioid antagonist, nor-binaltorphimine (10 mg/kg, s.c.), and was abolished by an intrathecal injection of anti-dynorphin antiserum (5 microg). The Aconiti tuber-induced antinociception was inhibited by both dexamethasone (0.4 mg/kg, i.p.) and a dopamine D2 antagonist, sulpiride (10 mg/kg, i.p.), in RCS-loaded mice, and it was eliminated by both an electric lesion of the hypothalamic arcuate nucleus (HARN) and a highly selective dopamine D2 antagonist, eticlopride (0.05 microg), administered into the HARN in RCS-loaded rats. These results suggest that the analgesic effect of processed Aconiti tuber was produced via the stimulation of kappa-opioid receptors by dynorphin released in the spinal cord. It was also shown that dopamine D2 receptors in the HARN were involved in the expression of the analgesic activity of processed Aconiti tuber. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Administration, Topical; Analgesics; Animals; Arcuate Nucleus of Hypothalamus; Cold Temperature; Dexamethasone; Dopamine Antagonists; Drugs, Chinese Herbal; Dynorphins; Glucocorticoids; Hypothalamus; Immune Sera; Ligands; Male; Mice; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Pain Threshold; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Salicylamides; Spinal Cord; Sulpiride | 1999 |
Involvement of mu- and delta-opioid receptors in the ethanol-associated place preference in rats exposed to foot shock stress.
The purpose of this study was to establish the ethanol-induced place preference in rats exposed to foot shock stress using the conditioned place preference paradigm. We also investigated the role of the endogenous opioid system in the development of the ethanol-induced place preference. The administration of ethanol (300 mg/kg, i.p.) with foot shock stress, but not without such stress, induced a marked and significant place preference. Naloxone (1 and 3 mg/kg, s.c.), a non-selective opioid receptor antagonist, significantly attenuated the ethanol-induced place preference. Moreover, the selective mu-opioid receptor antagonist beta-funaltrexamine (3 and 10 mg/kg, i.p.) and selective delta-opioid receptor antagonist naltrindole (1 and 3 mg/kg, s.c.), but not the selective kappa-opioid receptor antagonist nor-binaltorphimine (1 and 3 mg/kg, i.p.), significantly attenuated the ethanol-induced place preference. Furthermore, 150 mg/kg ethanol (which tended to produce a place preference, although not significantly) combined with each dose (that did not produce a place preference) of the mu-opioid receptor agonist morphine (0.1 mg/kg, s.c.) or selective delta-opioid receptor agonist 2-methyl-4aalpha-(3-hydroxyphenyl)-1,2,3,4,4a,5,12, 12aalpha-octahydroquinolino [2,3,3-g] isoquinoline (TAN-67; 20 mg/kg, s.c.), but not the selective kappa-opioid receptor agonist trans-3, 4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide methanesulfonate (U50,488H; 1 mg/kg, s.c.), produced a significant place preference. These data indicate that stress may be important for development of the rewarding effect of ethanol, and that mu- and delta-opioid receptors may be involved in the rewarding mechanism of ethanol under stressful conditions. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Behavior, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Ethanol; Exploratory Behavior; Foot; Injections, Intraperitoneal; Injections, Subcutaneous; Male; Morphine; Naloxone; Naltrexone; Narcotics; Quinolines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu | 1998 |
Immunomodulatory action of class mu-, delta- and kappa-opioid receptor agonists in mice.
Endogenous opioids exert a variety of functions outwith the central nervous system, including modulation of some murine lymphocyte functions. The results of this study indicate that mu-, delta- and kappa-receptor selective agonists are potent in vitro stimulators of mitogen-induced proliferation of murine T-lymphocytes. Moreover, the observed enhancement of mitogen-induced proliferation was reversed by mu-, delta- and kappa-receptor class selective antagonists, beta-funaltrexamine, ICI 174,864 and nor-binaltorphimine, respectively. An additional study has revealed that repeated administration (four injections) of the opioid receptor selective agonists DAGO, DPDPE and U-50488 also enhanced the concanavalin A-induced proliferation of lymphocytes. These results suggest that there are three classes of opioid receptors on T-lymphocytes and that all these receptor classes are involved in the stimulation of concanavalin A-induced proliferation. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Immunity; Lymphocyte Activation; Male; Mice; Mice, Inbred C57BL; Mitogens; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; T-Lymphocytes | 1998 |
Nalbuphine coadministered with morphine prevents tolerance and dependence.
Nalbuphine, an opioid mixed agonist-antagonist, prevents many morphine-related side effects. In this study, we compared the effects of nalbuphine versus naloxone on the prevention of morphine tolerance and dependence in Sprague-Dawley rats. Group 1 received a morphine 5 mg/kg intraperitoneal (I.P.) injection. Groups 2 and 3 received single doses of nalbuphine (0.01 to 5 mg/kg I.P.) or naloxone (1 to 500 microg/kg I.P.) coadministered with morphine (5 mg/kg I.P.), respectively. Group 4 received a saline I.P. injection. Treatments were continued for 4 days. The occurrence of tolerance was estimated by comparing the antinociceptive effect of morphine on Day 1 (Group 1) and Day 5 (each group). The severity of dependence was determined by precipitated withdrawal signs (incidence of diarrhea and teeth chattering) induced by naloxone (10 mg/kg I.P.). We found that coadministration of nalbuphine or naloxone with morphine dose-dependently blocked the development of morphine tolerance and dependence. However, unlike naloxone, nalbuphine did not attenuate the antinociceptive effect of morphine. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Drug Therapy, Combination; Drug Tolerance; Male; Morphine; Nalbuphine; Naloxone; Naltrexone; Narcotic Antagonists; Opioid-Related Disorders; Pyrrolidines; Rats; Rats, Sprague-Dawley | 1997 |
Butorphanol-mediated antinociception in mice: partial agonist effects and mu receptor involvement.
In the present experiments, we characterized the agonist and antagonist effects of butorphanol in mice. In the mouse radiant-heat tail-flick test, the mu agonists morphine and fentanyl and the kappa agonist U50,488H were fully effective as analgesics, whereas butorphanol was partially effective (producing 82% of maximal possible analgesic effect). Naltrexone was approximately equipotent in antagonizing the effects of morphine, fentanyl and butorphanol; in vivo apparent pA2 values for these naltrexone/agonist interactions were 7.5 (unconstrained). Naltrexone was approximately 10 times less potent in antagonizing the effect of U50,488H (average apparent pK(B) = 6.7). The selective mu antagonist beta-funaltrexamine (0.1-1.0 mg/kg) antagonized the effects of butorphanol in a dose-dependent insurmountable manner. Pretreatment with nor-binaltorphimine (32 mg/kg), a kappa-selective antagonist, did not reliably antagonize butorphanol, and naltrindole (20 and 32 mg/kg), a delta-selective antagonist, failed to antagonize the effects of butorphanol. Low doses of butorphanol (1.0, 1.8 or 3.2 mg/kg) caused parallel, rightward shifts in the dose-effect curve for morphine and parallel leftward shifts in the dose-effect curve for U50,488H. Taken together, the results of the present study suggest that butorphanol is a partial agonist in the mouse radiant-heat tail-flick test and that activity at mu receptors accounts for the majority of its antinociceptive effects. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Butorphanol; Male; Mice; Morphine; Naltrexone; Pyrrolidines; Receptors, Opioid, mu | 1997 |
Characterization of irreversible binding of beta-funaltrexamine to the cloned rat mu opioid receptor.
Binding of beta-funaltrexamine (beta-FNA) to the cloned rat mu opioid receptor expressed in COS-1 cells or Chinese hamster ovary cells was examined. beta-FNA bound to the mu receptor with high affinity. Irreversible binding of [3H]beta-FNA was defined as the binding that could not be dissociated by trichloroacetic acid. Na+ greatly enhanced the specific irreversible binding of [3H]beta-FNA to the mu receptor, which was concentration- and time-dependent. Specific irreversible binding of [3H]beta-FNA was potently inhibited by CTAP (a mu ligand), but not by ICI174,864 (a delta ligand) or U50,488H (a kappa ligand). These results indicate that [3H]beta-FNA binds irreversibly to the cloned mu opioid receptor. SDS-polyacrylamide gel electrophoresis and fluorography showed that [3H]beta-FNA-labeled receptors migrated as one broad and diffuse band with a mass of 80 kDa in Chinese hamster ovary or COS cells and as one band with a mass of 67 kDa in the rat brain preparation. Upon removal of N-linked carbohydrates, labeled receptors became a sharper band with a mass of approximately 40 kDa. [3H]beta-FNA did not bind irreversibly to the cloned rat kappa receptor. [3H]beta-FNA binding to four chimeric mu/kappa receptors was examined. The region from the middle of the third intracellular loop to the C terminus of the mu receptor is necessary for irreversible binding of beta-FNA. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Cell Line; Cloning, Molecular; Diprenorphine; Electrophoresis, Polyacrylamide Gel; Enkephalin, Leucine; Glycosylation; Molecular Sequence Data; Naltrexone; Oligopeptides; Protein Binding; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Proteins; Sodium; Tritium | 1995 |
Antagonism of the morphine-induced Straub tail reaction by kappa-opioid receptor activation in mice.
The Straub tail reaction (STR) induced by intracerebroventricular injection (ICV) of morphine was significantly antagonized by beta-funaltrexamine (beta-FNA, mu antagonist), given intracerebroventricularly (ICV), but not naltrindole given ICV (NTI, delta antagonist) or SC norbinaltorphimine given subcutaneously (SC) (nor-BNI, kappa antagonist). When given either SC or ICV the kappa-agonist, U-50,488 H markedly suppressed the STR elicited by ICV morphine; these effects were reversed by nor-BNI. These results suggest that the activation of supraspinal kappa receptors can inhibit the ICV morphine-induced STR which results from activation of supraspinal mu receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred Strains; Morphine; Naltrexone; Narcotic Antagonists; Pain Measurement; Pyrrolidines; Receptors, Opioid, kappa | 1993 |
The use of specific opioid agonists and antagonists to delineate the vagally mediated antinociceptive and cardiovascular effects of intravenous morphine.
Intravenous (i.v.) administration of morphine produces a dose-dependent inhibition of the tail-flick (TF) reflex, depressor response, and bradycardia in the rat. Some of these effects depend on interactions of i.v. morphine with peripheral opioid receptors and the integrity of cervical vagal afferents. The present studies used the relatively specific mu, delta, and kappa opioid receptor agonists (DAGO, DPDPE or U-50,488H) and the relatively specific mu, delta, and kappa opioid receptor antagonists (beta-FNA, naloxonazine, naltrindole or nor-BNI) in either intact rats or rats with bilateral cervical vagotomy (CVAG) to delineate the vagal afferent/opioid-mediated components of these effects. I.v. administration of DAGO in intact rats produced a dose-dependent inhibition of the TF reflex, depressor response, and bradycardia virtually identical to those produced by i.v. morphine. All of these effects of either i.v. DAGO or i.v. morphine were significantly attenuated by either bilateral CVAG or pre-treatment with the mu 2 opioid receptor antagonist beta-FNA. Pre-treatment with the mu 1 opioid receptor antagonist naloxonazine affected i.v. DAGO-induced inhibition of the TF reflex and bradycardia, but had no significant effects on i.v. morphine-produced responses. I.v. administration of DPDPE produced a dose-dependent pressor response, but had no marked effects on the either the TF reflex or heart rate (HR). The pressor response was unaffected by either bilateral CVAG or pre-treatment with naltrindole, naloxone, hexamethonium, or bertylium. i.v. administration of U-50,488H produced a depressor response and bradycardia, but had no significant effect on the TF reflex. The depressor response and bradycardia produced by i.v. U-50,488H were unaffected by bilateral CVAG, but could be antagonized by pre-treatment with either nor-BNI or naloxone. These studies suggest that the vagal afferent-mediated antinociceptive and cardiovascular effects of i.v. morphine are primarily mediated by interactions with low affinity mu 2 opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Blood Pressure; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Heart Rate; Hexamethonium; Hexamethonium Compounds; Indoles; Injections, Intravenous; Male; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reference Values; Time Factors; Vagotomy; Vagus Nerve | 1993 |
Central kappa opioid receptor-evoked changes in renal function in conscious rats: participation of renal nerves.
The present investigations examined the cardiovascular and renal responses produced by central nervous system stimulation of kappa opioid receptors by the selective kappa opioid receptor agonist, U-50488H, in conscious Sprague-Dawley rats. Administration of U-50488H (1 microgram total) into the lateral cerebroventricle produced a profound diuretic and antinatriuretic response. In addition, concurrent with the decrease in urinary sodium excretion, i.c.v. U-50488H elicited an increase in renal sympathetic nerve activity. The increases in urine flow rate and renal sympathetic nerve activity and the decrease in urinary sodium excretion produced by U-50488H were completely prevented in rats that had undergone pretreatment with the selective kappa opioid receptor antagonist, nor-binaltorphimine. In contrast, in animals that had undergone irreversible mu opioid receptor blockade with the selective mu opioid receptor antagonist, beta-funaltrexamine, central U-50488H administration elicited similar diuretic and antinatriuretic responses as observed in intact naive animals. In further studies, the antinatriuretic response produced by i.c.v. U-50488H was completely abolished in rats that had undergone chronic bilateral renal denervation, a technique used to remove the influence of the renal sympathetic nerves. Glomerular filtration rates and effective renal plasma flows were not altered by i.c.v. administration of U-50488H in intact or renal denervated animals. Together, these studies provide evidence for the role of central kappa opioid receptor mechanisms in the regulation of urinary sodium and water excretion. Moreover, these studies indicate that the changes in renal sodium handling produced by central kappa opioid agonists result from an action of these compounds to modulate sympathetic neural outflow to the kidneys. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Diuresis; Glomerular Filtration Rate; Heart Rate; Kidney; Male; Naltrexone; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sympathetic Nervous System | 1993 |
Effects of kappa-agonist on the antinociception and locomotor enhancing action induced by morphine in mice.
The antinociception of intracerebroventricular injection (i.c.v.) of morphine was markedly abolished by pretreatment with naloxonazine (micro 1-antagonist), s.c.; beta-funaltrexamine (micro 1/micro 2-antagonist), i.c.v.; DSP-4 (noradrenaline neurotoxin), s.c.; or p-chlorophenylalanine (serotonin synthesis inhibitor), s.c. in the mouse 55 degrees C hot-plate assay. Pretreatment with nor-binaltorphimine (kappa-antagonist), i.c.v. or PCPA, s.c. drastically blocked the kappa-agonist U-50,488H-induced supraspinal antinociception. These findings indicate either noradrenergic or serotonergic involvement in the mediation of the antinociceptio of i.c.v.-morphine through mu-receptors. On the contrary, the antinociception of i.c.v.- U-50,488H through kappa-receptors appears to depend on the serotonergic but not noradrenergic systems. The antinociceptive interaction between the i.c.v.-morphine and -U-50,488H was an additive effect. On the other hand, i.c.v.-morphine dose-dependently increased the locomotion in mice, and this hyperlocomotion of morphine was drastically blocked by pretreatment with either beta-funaltrexamine, i.c.v. or 6-hydroxydopamine (dopamine depletor), i.c.v. I.c.v.-U-50,488H dose-dependently reduced the increasing locomotion of i.c.v.-morphine, but not that of s.c.-apomorphine (dopamine receptor agonist), and this effect of U-50,488H was completely reversed by pretreatment with nor-binaltorphimine, i.c.v. These results suggest that coadministration of kappa-agonists can suppress the dopamine-related hyperlocomotion of mu-agonists without decreasing the anti-nociception of mu-agonists in mice. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzylamines; Dopamine; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred Strains; Morphine; Motor Activity; Naltrexone; Narcotic Antagonists; Narcotics; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Sympathomimetics | 1993 |
Selective and interactive down-regulation of mu- and delta-opioid receptors in human neuroblastoma SK-N-SH cells.
Human neuroblastoma SK-N-SH cells, which contain both mu- and delta-opioid receptors, were grown under conditions that provided a mu:delta ratio of 1.5:1. Both receptors were down-regulated after 72 hr of exposure to 100 nM etorphine. Selective down-regulation was demonstrated using selective opioid agonists; the mu agonist Tyr-D-Ala2-Gly-(Me)Phe4-Gly-ol down-regulated mu- but not delta-opioid receptors, whereas prolonged exposure to the selective delta agonist D-Pen2,D-Pen5-enkephalin resulted in delta- but not mu-opioid receptor down-regulation. Morphine, which binds mu- as well as delta-opioid receptors, down-regulated both receptor subtypes. NG108-15 cells, which contain delta receptors exclusively, were also tested. NG108-15 cells did not exhibit delta-opioid receptor down-regulation when exposed to morphine. The discrepancy between the effect of chronic morphine treatment on delta receptors in SK-N-SH cells and in NG108-15 cells raised the question of whether the coexistence of mu receptors in the former allowed morphine to down-regulate delta receptors. The role of mu-opioid receptors in morphine-induced delta receptor down-regulation was studied by using the irreversible mu antagonist beta-funaltrexamine. Pretreatment of SK-N-SH cells with beta-funaltrexamine prevented down-regulation of delta receptors in response to chronic exposure to morphine but did not affect down-regulation of delta receptors in response to D-Pen2,D-Pen5-enkephalin. The experimental data indicate that morphine-induced delta-opioid receptor down-regulation is dependent on the presence of functional mu receptors in the same cell. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Down-Regulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Humans; Morphine; Naltrexone; Neuroblastoma; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, mu; Tumor Cells, Cultured | 1993 |
Mu- and kappa-opiate receptor control of prolactin secretion in rats: ontogeny and interaction with serotonin.
The present study explores developmental changes in mu- and kappa-opiate receptor control of PRL secretion. The ontogeny of mu- and kappa-receptor function was determined by assessing the PRL response to the mu-agonist sufentanil (SUF) and the kappa-agonist U50488 in 5-, 10-, 15-, 20-, and 60-day-old rats. Both mu- and kappa-agonists stimulated PRL secretion at all ages. The selectivity of the mu- and kappa-agonists was confirmed by selective blockade with their respective antagonists (beta-funaltrexamine and nor-binaltorphimine). Serotonin mediation of opiate-induced changes in PRL secretion was explored across ontogeny by testing cyproheptadine (CYPRO) blockade of agonist responses in 5-, 10-, 20-, and 60-day-old rats. CYPRO attenuated the PRL response to the mu-agonist SUF in 20- and 60-day-old rats, but not in the 5- or 10-day-old pups. CYPRO did not block the kappa-agonist U50488 at any age. Similarly, pretreatment with parachlorophenylalaine lowered the PRL response to SUF in 60-day-old rats, but not in 10-day-old rats. These results support previous reports of a serotonin-mediated mu control of PRL secretion that develops by day 20 and a kappa control of PRL secretion that is independent of serotonin at all ages. These findings also suggest that a previously reported serotonin-independent mu-receptor-mediated control of PRL secretion can be stimulated early in ontogeny. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Aging; Animals; Cyproheptadine; Female; Kinetics; Male; Naltrexone; Prolactin; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin; Sufentanil | 1992 |
Pentazocine-induced biphasic analgesia in mice.
Pentazocine (PZ) is well known to act as an opioid mixed agonist-antagonist analgesic. In the present study, we selected the mouse warm plate test condition of 51 +/- 0.5 degrees C instead of 55 +/- 0.5 degrees C to determine the analgesic action of PZ. As a result, i.c.v. PZ produced a biphasic antinociceptive response, while U-50,488H (U-50) and morphine (MRP) showed a monophasic response. Pretreatment with i.c.v. beta-FNA (mu antagonist) antagonized the initial response, whereas the delayed one was antagonized by pretreatment with nor-BNI (kappa antagonist). In addition, pretreatment with NTI (delta antagonist) significantly attenuated the initial response but not the delayed one. These results suggest that the initial and delayed responses may be mediated mainly by mu/delta and kappa receptors, respectively. With regards to the interaction between MRP and PZ, a low dose of PZ antagonized the analgesic action of MRP, while a high dose PZ plus MRP showed the additive effect. Furthermore, tolerance developed almost equally to both initial and delayed responses, indicating that tolerance to the kappa component of PZ may be developed as well as the mu component of action of PZ. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Drug Administration Schedule; Drug Interactions; Drug Tolerance; Indoles; Injections, Intraventricular; Male; Mice; Morphinans; Morphine; Naltrexone; Narcotic Antagonists; Pentazocine; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Time Factors | 1991 |
Ontogeny of mu- and kappa-opiate receptor control of the hypothalamo-pituitary-adrenal axis in rats.
The purpose of the present study was to determine the relative ontogeny of mu- and kappa-opiate receptor control of the hypothalamo-pituitary-adrenal (HPA) axis in rats. The ability of the mu-agonist morphine and the kappa-agonist U-50,488 to stimulate the HPA axis was determined by evaluating ACTH and corticosterone (CS) secretion in developing rat pups. Morphine elicited marked rises in both ACTH and CS secretion in 10-day-old rats, and these increases were maximal from 30-60 min after drug administration. Both morphine and U50,488H caused a dose-related rise in CS secretion that was blocked by the synthetic glucocorticoid dexamethasone. The mu-opiate antagonist beta-funaltrexamine blocked the morphine-induced rise in CS secretion, and the kappa-antagonist norbinaltorphimine blocked the action of U50,488H. While a maximal dose of U50,488H (1 mg/kg) elicited a significant rise in CS secretion as early as postnatal day 2, significant effects of a maximal dose of morphine (5 mg/kg) were not observed until day 5. The effects of both drugs were significantly blunted during the stress-hyporesponsive period from days 5-15. The results of this study demonstrate that significant opiate receptor control of HPA function can be demonstrated early in postnatal development, even before the onset of the stress-hyporesponsive period. In addition, these data suggest that kappa-receptor control is functional before mu-receptor control of HPA function. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adrenal Glands; Adrenocorticotropic Hormone; Animals; Corticosterone; Dexamethasone; Female; Hypothalamus; Kinetics; Morphine; Naltrexone; Pituitary Gland; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1991 |
Beta-funaltrexamine (beta-FNA) decreases deprivation and opioid-induced feeding.
We studied the effect of the mu antagonist, beta-funaltrexamine (beta-FNA) on deprivation and opioid-induced feeding. Intracerebroventricular pre-treatment of 20 h deprived rats with 0.1, 1, 10 and 20 nmol of beta-FNA decreased feeding by 24%, 50%, 50% and 38% during the first hour. Central administration of beta-FNA (0.1, 1 and 10 nmol) also decreased feeding induced by the mu opioid agonist, DAMGO by 57%, 60% and 71%. Feeding induced by the delta agonist, DSLET, was decreased by pre-treatment with beta-FNA; but only during the 1-2 h time points, a time when relatively little food was ingested. Intraventricular injection of beta-FNA failed to alter feeding stimulated by the kappa opioid agonist, U-50,488H. These data further substantiate a role for the opioid receptor in deprivation and opioid-induced feeding. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Feeding Behavior; Food Deprivation; Injections, Intraventricular; Male; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, kappa | 1991 |
Activation of mu opioid receptors inhibits transient high- and low-threshold Ca2+ currents, but spares a sustained current.
Opioids and opiates decrease the duration of action potentials and the amount of neurotransmitter released from sensory neurons. The mu-type opioid receptor, the binding site for morphine, is thought to act exclusively on K+ channels. Here, we show that activation of the mu receptor inhibits Ca2+ channels in rat sensory neurons; the effect is blocked by a mu antagonist and is not mimicked by kappa or delta receptor agonists. Both low-threshold (T-type) and high-threshold Ca2+ currents are partially suppressed. omega-Conotoxin-sensitive and omega-conotoxin-insensitive, high-threshold Ca2+ currents are inhibited. The kinetic effect on high-threshold current is like that caused by diminished rest potential: the transient component is selectively lost, whereas the sustained component is spared. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Calcium Channels; Cells, Cultured; Electric Conductivity; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Molecular Sequence Data; Mollusk Venoms; Naltrexone; Narcotic Antagonists; omega-Conotoxin GVIA; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1991 |
Chronic selective blockade of mu opioid receptors produces analgesia and augmentation of the effects of a kappa agonist.
We have previously demonstrated that, when administered chronically, naloxone and naltrexone have the paradoxical effect of producing analgesia in rats. In this study, rats treated chronically with intracerebroventricular (i.c.v.) microinjections, and mice treated chronically with subcutaneous (s.c.) injections of naloxone or beta-funaltrexamine (beta-FNA) developed analgesia on daily hot plate tests. There was not drug effect on the first day of hot plate testing, but significant increases in paw lick latency developed over subsequent acquisition sessions for animals treated with beta-FNA or naloxone. An augmented analgesic response to a 5 mg/kg s.c. injection of the kappa opioid agonist, U50-488H, was observed in mice previously treated with naloxone or beta-FNA. The primary findings of the present study were: (1) chronic blockade of mu opioid receptors is sufficient to produce analgesia on repeated hot plate tests in both rats and mice; (2) chronic blockade of mu receptors in the presence of stressful stimuli results in augmentation of kappa agonist-induced analgesia; and (3) the phenomenon of opioid blockade-induced analgesia (OBA) occurs in mice as well as rats. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Mice, Inbred Strains; Naloxone; Naltrexone; Narcotic Antagonists; Pain Measurement; Pyrrolidines; Rats; Rats, Inbred Strains; Reaction Time; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu; Stereotaxic Techniques | 1991 |
beta-Funaltrexamine antagonizes the analgesic effects of mu and kappa agonists in the formalin test.
The formalin test assesses the behavioral response of an animal to minor tissue injury-induced pain. Opioid antinociception in this test has been suggested to depend largely on activation of kappa receptors but mu agonists are also potent in reducing pain behavior. The present study used the irreversible mu antagonist, beta-funaltrexamine (beta-FNA), to examine the role of mu receptor activation in this test. beta-FNA given intracranially 4 h before testing fully blocked the effects of morphine and attenuated the effects of ethylketocyclazocine and U50,488H. The results do not support a role for kappa receptors in antinociception in the formalin test. Instead, mu and, possibly, delta receptors are involved. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Dose-Response Relationship, Drug; Ethylketocyclazocine; Formaldehyde; Male; Morphine; Naltrexone; Narcotic Antagonists; Pain; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu; Urination | 1990 |
Mu antagonist and kappa agonist properties of beta-funaltrexamine (beta-FNA) in vivo: long-lasting spinal analgesia in mice.
It is now well established that compounds classified as kappa opioids can, in circumstances where they produce no measurable agonist effects, antagonize the actions of mu opioids. Largely on the basis of studies in vitro, beta-funaltrexamine (beta-FNA) has been classified as a reversible kappa agonist and long acting mu antagonist. The present study investigated the possibility that the mu antagonist profile of this compound could be related to its kappa agonist actions. We used two tests of analgesia (the acetic acid writhing test and the hot-water tail-flick test) and selective kappa agonists and antagonists given at supraspinal and spinal sites in mice. Intrathecal (i.t.) administration of beta-FNA, but not the selective kappa agonist U50,488H, produced long-lasting and dose-related analgesia in the writhing test for periods up to 48 hr after a single dose. In contrast, i.t. beta-FNA had no agonist actions in the tail-flick test. The kappa antagonist, nor-binaltorphimine (nor-BNI) produced no agonist effects in either analgesic test when given i.t. In the writhing test, nor-BNI produced a rightward displacement of the beta-FNA dose-response line regardless of whether beta-FNA was given 10 min or 4 hr before testing, indicating that i.t. beta-FNA was acting as a kappa agonist in this test. As both i.t. morphine and beta-FNA are active in the writhing test, the antagonist actions of i.t. beta-FNA could be evaluated only in the tail-flick test. beta-FNA, but not nor-BNI, blocked the effects of i.t. morphine in the tail-flick test.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Analgesics; Animals; Injections, Intraventricular; Injections, Spinal; Male; Mice; Mice, Inbred ICR; Morphine; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1990 |
Evidence of single dose opioid dependence in 12- to 14-day-old chicken embryos.
We have previously reported that chicken embryos injected with a single dose of methadone (Meth) on day 3, 7 or 11 of embryogenesis fail to show dependence on day 14, measured as a significant overshoot in motility above baseline after challenge with the opioid antagonist naloxone (Nx). Constant infusion of Meth from day 7 to 14 also failed to produce evidence of dependence on day 14. To address the question of whether the 14-day-old embryo is capable of expressing withdrawal, isobutylmethylxanthine (IBMX), a compound that produces quasi-opioid withdrawal, was injected directly into the embryo, resulting in a significant increase in motility. To determine whether the 14-day-old embryo could also express true opioid withdrawal, the embryos were injected with various doses of Meth or morphine (Morph), followed at different time intervals by injections of varying doses of Nx. A high dose of Morph followed 24 hours later by a low dose of Nx produced evidence of withdrawal, as did a low dose of Meth followed 1 hour later by a higher dose of Nx, U50488H, a selective kappa agonist, had no effect on motility in the 14-day-old embryo, suggesting that the decrease in motility seen after Meth was not mediated by a kappa receptor. Pretreatment with the irreversible mu antagonist, beta-funaltrexamine (B-FNA), blocked the decrease in motility seen after Meth and also prevented the overshoot in motility when Nx was given 1 hour post-Meth. We were also able to demonstrate dependence/withdrawal in the 12-day-old embryo, but higher doses of both Meth and Nx were required.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 1-Methyl-3-isobutylxanthine; 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Chick Embryo; Methadone; Morphine Dependence; Motor Activity; Naltrexone; Narcotic Antagonists; Opioid-Related Disorders; Pyrrolidines; Receptors, Opioid; Substance Withdrawal Syndrome | 1989 |
Suppression by nor-binaltorphimine of kappa opioid-mediated diuresis in rats.
The effects of nor-binaltorphimine (nor-BNI) and beta-funaltrexamine (beta-FNA) were studied on the diuretic activities in rats of several kappa opioid agonists including ethylketazocine, tifluadom, bremazocine and U50,488H. Nor-BNI suppressed the diuretic activity of all kappa agonists, whereas beta-FNA failed to alter the diuresis. On the other hand, beta-FNA treatment completely blocked the morphine-induced antidiuresis, whereas nor-BNI had no effect. The present data add further evidence that nor-BNI is a highly selective antagonist of kappa opioid agonists. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Diuresis; Dose-Response Relationship, Drug; Male; Morphine; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa | 1988 |
Kappa antagonist properties of buprenorphine in the shock titration procedure.
Buprenorphine produced a dose-dependent antagonism of the selective kappa opioid agonist U50,488 in squirrel monkeys responding under the shock titration procedure. In one group of four monkeys, 0.003-0.01 mg/kg buprenorphine produced dose-dependent rightward shifts in the individual U50,488 dose-effect curves and increased the A50 value for U50,488 more than 2-fold in each monkey. Furthermore, 0.01 mg/kg buprenorphine antagonized a maximally effective dose of U50,488 in these monkeys. Buprenorphine (0.01-0.1 mg/kg) also produced rightward shifts in the group U50,488 dose-effect curve for a second group of three monkeys. Buprenorphine's antagonism of U50,488 was probably not a consequence of any mu opioid antagonist properties of buprenorphine in this procedure since (1) buprenorphine produced an inconsistent antagonism of the selective mu agonist fentanyl, and (2) the selective mu antagonist beta-funaltrexamine did not antagonize U50,488. These results support the hypothesis that buprenorphine has kappa antagonist activity in the shock titration procedure. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Buprenorphine; Electroshock; Fentanyl; Male; Naltrexone; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Saimiri | 1988 |
Buprenorphine is a potent kappa-opioid receptor antagonist in pigeons and mice.
Buprenorphine was studied for its antagonist activity against the specific kappa-opioid agonist U-50,488H in pigeons responding under a multiple schedule of grain presentation and in mice in an antinociception test. U-50,488H decreased rates of responding of pigeons over the dose range (2.5-20 mg/kg i.m.). In the presence of 0.32 mg/kg of buprenorphine, the U-50,488H dose-effect curve was shifted to the right approximately two-fold. Buprenorphine alone (0.01-0.08 mg/kg s.c.) inhibited in mice the abdominal stretching induced by i.p. acetic acid. beta-Funaltrexamine pretreatment blocked the mu-like agonist analgesic effect of buprenorphine and revealed an antagonist action of buprenorphine against 2.5 mg/kg of U-50,488H over the same dose range that it produced antinociception at the mu-receptor. Thus, buprenorphine is a potent kappa-opioid receptor antagonist, producing the kappa-antagonist activity over the same dose range that it produces its mu-mediated partial agonist activity. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Buprenorphine; Columbidae; Male; Mice; Muscle Contraction; Naltrexone; Narcotic Antagonists; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, kappa; Reinforcement Schedule | 1988 |
New approaches to the evaluation of opioid agonists and antagonists upon the isolated, electrically stimulated mouse vas deferens preparation.
Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzodiazepines; Benzomorphans; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Male; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Oligopeptides; Pyrrolidines; Receptors, Opioid; Vas Deferens | 1987 |
Use of beta-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands.
Systemic administration of beta-funaltrexamine (beta-FNA) 24 hr before analgesic testing produced approximately a 10-fold parallel shift in the dose-response curves of the prototypic mu agonists morphine, I-methadone, fentanyl and etorphine in the mouse abdominal constriction test. In contrast, prior administration of beta-FNA produced no appreciable shift in the analgesic dose-response curve of the selective kappa agonist, U-50, 488H. These results suggest that beta-FNA is selective for mu over kappa receptors under the conditions used in this study. The dose-response curves for ethylketazocine and proxorphan were affected only to a small extent by beta-FNA pretreatment, suggesting that these compounds have analgesic actions mediated primarily through nonmu, probably kappa receptors. The dose-response curves for cyclazocine, buprenorphine, butorphanol, nalorphine and nalbuphine were shifted markedly to the right and frequently not in a parallel fashion by the prior administration of beta-FNA. These results seem to indicate a major role for the mu receptor in the analgesic actions of these compounds. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesia; Animals; Biological Assay; Buprenorphine; Butorphanol; Cyclazocine; Dose-Response Relationship, Drug; Ethylketocyclazocine; Etorphine; Fentanyl; Methadone; Mice; Morphine; Muscle Contraction; Nalbuphine; Nalorphine; Naltrexone; Pyrrolidines; Receptors, Opioid; Receptors, Opioid, mu | 1987 |
Kappa opioids in rhesus monkeys. II. Analysis of the antagonistic actions of quadazocine and beta-funaltrexamine.
In rhesus monkeys, kappa opioid agonists have been shown to increase urinary output, increase tail-withdrawal latencies from warm water and produce distinct discriminative stimulus effects. In order to explore further the relation between these effects and activity at the kappa opioid receptor type, the antagonist activity of quadazocine against several kappa opioid agonists was examined with the tail-withdrawal and drug-discrimination procedures. Quadazocine dose dependently antagonized the increases in tail-withdrawal latency produced by the kappa agonists bremazocine, ethylketazocine and U-50, 488, as well as the discriminative stimulus effects of these drugs. The dose-ratio analysis of Schild revealed apparent pA2 values for quadazocine in combination with bremazocine, ethylketazocine and U-50, 488 of 6.1, 6.4 and 6.4, respectively, with the tail-withdrawal procedure and 6.3, 6.4 and 6.1, respectively, with the drug-discrimination procedure. Quadazocine also antagonized the effects of a mu agonist (morphine) in the tail-withdrawal procedure, and the apparent pA2 value for these data was 8.2. The activity of the mu-selective alkylating agent, beta-funaltrexamine (beta-FNA), was examined alone and in combination with the kappa agonist ethylketazocine in the urinary-output, tail-withdrawal and drug-discrimination procedures. At about 30 to 60 min postinjection, beta-FNA alone produced ethylketazocine-appropriate responding under the drug-discrimination procedure and increased urine output but did not increase tail-withdrawal latencies. At 24 to 48 hr postinjection, beta-FNA did not antagonize effects of ethylketazocine in any of the three procedures.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Azocines; Benzomorphans; Cyclazocine; Diuresis; Endorphins; Ethylketocyclazocine; Female; Hot Temperature; Macaca mulatta; Male; Morphine; Naltrexone; Narcotic Antagonists; Pyrrolidines; Reaction Time; Tail | 1987 |
Reversal by beta-funaltrexamine of the antinociceptive effect of opioid agonists in the rat.
The effect of the irreversible opioid receptor antagonist, beta-funaltrexamine (beta-FNA), on antinociception produced by mu- and kappa-receptor agonists was studied in the rat. beta-FNA, 20 to 80 mg kg-1, s.c., given 24 h before testing, produced a dose-related antagonism of the effects of morphine in the paw pressure, hotplate and tail-flick tests. Following the 80 mg kg-1 dose, the degree of antagonism of morphine was stable for up to 48 h after dosing, but was reduced by 5 days and had disappeared by 8 days. In the paw pressure test, beta-FNA, 40 mg kg-1, s.c., antagonized the effects of fentanyl, buprenorphine, tifluadom, ethylketocyclazocine and proxorphan; it was without effect against the highly selective kappa-agonist, U-50,488. In light of these results, the possible opioid receptor selectivities of both the agonists and beta-FNA are reassessed. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzodiazepines; Buprenorphine; Cyclazocine; Ethylketocyclazocine; Fentanyl; Male; Naltrexone; Pain; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1986 |
Effect of beta-funaltrexamine on opioid side-effects produced by morphine and U-50, 488H.
Pretreatment of rats with the irreversible mu-opioid receptor antagonist, beta-funaltrexamine (beta-FNA), 20-40 mg kg-1 s.c., produced a dose-related antagonism of the reduction in respiratory rate, gastrointestinal (GI) propulsion, rotarod reaction latencies and body temperature produced by morphine administration 24 h later, suggesting that these effects are mediated via mu-opioid receptors. The kappa-receptor agonist, U-50,488H, was without effect on respiratory rate at the doses tested, but produced hypothermia, sedation and low maximum inhibition of GI propulsion. These effects of U-50,488H were not blocked by beta-FNA suggesting that they are mediated via kappa-receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Body Temperature; Depression, Chemical; Dose-Response Relationship, Drug; Gastrointestinal Motility; Hypnotics and Sedatives; Male; Morphine; Naltrexone; Narcotic Antagonists; Pyrrolidines; Rats; Rats, Inbred Strains; Respiration | 1985 |
Effect of mu and kappa opioid receptor agonists on rat plasma corticosterone levels.
The effect of several mu and kappa opioid receptor agonists on rat plasma corticosterone levels, measured using radioimmunoassay, was investigated. The mu agonists, morphine and fentanyl, and the kappa agonists, U-50,488, tifluadom and bremazocine, all produced dose-related increases in rat plasma corticosterone levels. The effects of both fentanyl and U-50,488 were reversed by naloxone, indicating an action at opioid receptors. Pretreatment of the rats with the irreversible, mu-selective antagonist, beta-funaltrexamine, reduced the effect of fentanyl, but not that of U-50,488, indicating that both mu and kappa opioid receptors are involved in mediating this effect. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Benzodiazepines; Benzomorphans; Corticosterone; Dose-Response Relationship, Drug; Fentanyl; Male; Morphine; Naloxone; Naltrexone; Pyrrolidines; Rats; Receptors, Opioid; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1985 |