u-18666a has been researched along with mevalonolactone* in 3 studies
3 other study(ies) available for u-18666a and mevalonolactone
Article | Year |
---|---|
Calmodulin antagonists stimulate LDL receptor synthesis in human skin fibroblasts.
The LDL receptor synthesis of human skin fibroblasts in the presence of the specific calmodulin antagonists trifluoperazine, condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde (compound 48/80) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide) (W-7) was studied. Labelling of cells with [35S]methionine followed by immunoprecipitation of radioactive LDL receptor protein with monospecific antibodies revealed that calmodulin antagonists caused a 3-fold increase in the radioactivity of the LDL receptor protein as compared with values found in control cells. A corresponding increase of high-affinity binding and internalization of 125I-labelled LDL was observed. The drugs did not influence the overall protein synthesis or the half-life of the LDL receptor. A concomitant suppression of cholesterol synthesis from [14C]mevalonolactone was found to be an independent effect. The calmodulin antagonist-produced stimulation of LDL receptor synthesis could not be simulated by preincubation of cells with cyclic nucleotide analogues, cholera toxin or 3-isobutyl-1-methylxanthine, known as specific effectors of adenylate cyclase and cyclic nucleotide phosphodiesterase, respectively. Modulation of calcium concentration in the incubation medium had no reproducible effect on the rate of LDL receptor synthesis. The results implicate calmodulin as an intracellular suppressor of LDL receptor synthesis in human skin fibroblasts. Topics: 1-Methyl-3-isobutylxanthine; Acetates; Acetic Acid; Androstenes; Calcium Chloride; Calmodulin; Cholera Toxin; Cholesterol; Cyclic AMP; Fibroblasts; Humans; Hydroxycholesterols; Lovastatin; Methionine; Mevalonic Acid; Molecular Weight; Naphthalenes; p-Methoxy-N-methylphenethylamine; Receptors, LDL; Skin; Sulfonamides; Trifluoperazine | 1986 |
Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by oxysterol by-products of cholesterol biosynthesis. Possible mediators of low density lipoprotein action.
Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34, reductase) activity was studied in cultured rat intestinal epithelial cells using 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one ( U18666A ), an inhibitor of 2,3- oxidosqualene cyclase (EC 5.4.99.7, cyclase) that causes cellular accumulation of squalene 2,3:22,23-dioxide ( Sexton , R. C., Panini , S.R., Azran , F., and Rudney , H. (1983) Biochemistry 22, 5687-5692). Treatment of cells with U18666A (5-50 ng/ml) caused a progressive inhibition of reductase activity. Further increases in the level of the drug paradoxically lessened the inhibition such that at a level of 1 microgram/ml, no inhibition of enzyme activity was observed. Cellular metabolism of squalene 2,3:22,23-dioxide to compounds with the chromatographic properties of polar sterols led to an inhibition of reductase activity that could be prevented by U18666A (1 microgram/ml). The drug was unable to prevent the inhibition of enzyme activity by 25-hydroxycholesterol or mevalonolactone, but totally abolished the inhibitory action of low density lipoproteins. Pretreatment with U18666A did not affect the ability of cells to degrade either the apoprotein or the cholesteryl ester component of low density lipoproteins. These results suggest that oxysterols derived from squalene 2,3:22,23-dioxide may act as physiological regulators of reductase and raise the possibility that the suppressive action of low density lipoproteins on reductase may be partially or wholly mediated by such endogenous oxysterols generated through incomplete inhibition of the cyclase. Topics: Androstenes; Animals; Cholesterol; Epithelium; Hydroxycholesterols; Hydroxymethylglutaryl CoA Reductases; Intestinal Mucosa; Intramolecular Transferases; Isomerases; Lipoproteins, LDL; Mevalonic Acid; Rats | 1984 |
Interrelationships of ubiquinone and sterol syntheses in cultured cells of neural origin.
Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-beta-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. THe data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway. Topics: Acetates; Androstenes; Animals; Anticholesteremic Agents; Carbon Radioisotopes; Cell Line; Glioma; Kinetics; Mevalonic Acid; Neuroblastoma; Rats; Sterols; Ubiquinone | 1982 |