u-0126 has been researched along with nobiletin* in 3 studies
3 other study(ies) available for u-0126 and nobiletin
Article | Year |
---|---|
Nobiletin attenuates VLDL overproduction, dyslipidemia, and atherosclerosis in mice with diet-induced insulin resistance.
Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.. Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor-deficient mice (Ldlr(-/-)) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis.. In HepG2 cells, activation of mitogen-activated protein kinase-extracellular signal-related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr(-/-) mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid β-oxidation. Nobiletin did not activate any peroxisome proliferator-activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus.. Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states. Topics: Animals; Atherosclerosis; Butadienes; Diet; Dyslipidemias; Electrophoresis, Polyacrylamide Gel; Energy Metabolism; Enzyme Inhibitors; Flavones; Hep G2 Cells; Humans; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Lipoproteins, VLDL; Male; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Mice; Mice, Mutant Strains; Nitriles; Phosphorylation; Receptor, Insulin; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Triglycerides | 2011 |
Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus.
Nobiletin isolated from citrus peels prevents bulbectomy- and amyloid-beta protein-induced memory impairment in rodents. In the present study, using combined methods of biochemistry and electrophysiology, we examined the effects of nobiletin on phosphorylation of GluR1 receptor, the subunit of alpha-amino-3-hydroxy-5-methyl-D-aspartate (AMPA) receptors, and the receptor-mediated synaptic transmission in the hippocampus, a region implicated in memory formation, in culture and/or in slices. Western blot analysis showed that nobiletin-stimulated phosphorylation of multiple protein kinase A (PKA) substrates at 10 min following the treatment in cultured hippocampal neurons. In the cultured neurons, this natural compound also increased not only PKA activity, but also phosphorylation of GluR1 receptor at a PKA phosphorylation site, Ser 845, which has been demonstrated to be critical for synaptic plasticity, including enhancement of postsynaptic glutamate response, and important for spatial memory in vivo. The increased phosphorylation of GluR1 receptor at Ser 845 was abolished by H89 (N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide hydrochloride), the PKA inhibitor, but not U0126 (1,4-diamino-2,3-dicyano-1,4-bis (2-aminophenylthio) butadiene), the mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, in the cultured neurons. An increment of the phosphorylation of GluR1 receptor at Ser 845 was induced by nobiletin in the hippocampal slices as well. Furthermore, our electrophysiological analysis showed that nobiletin potentiated the AMPA receptor-mediated synaptic transmission at Schaffer collateral-CA1 pyramidal cell synapses in the hippocampal slices. This potentiation induced by the natural compound was not accompanied by the changes in paired-pulse ratio, and partially occluded the long-term potentiation, indicating the possible involvement of the postsynaptic mechanism. These findings suggest that nobiletin probably up-regulates synaptic transmission via the postsynaptic AMPA receptors at least partially by stimulation of PKA-mediated phosphorylation of GluR1 receptor in the hippocampus. Topics: Action Potentials; Animals; Butadienes; Cells, Cultured; Citrus; Cyclic AMP-Dependent Protein Kinases; Flavones; Fruit; Glutamic Acid; Hippocampus; Isoquinolines; MAP Kinase Kinase Kinases; Mice; Neurons; Nitriles; Nootropic Agents; Phosphorylation; Protein Kinase Inhibitors; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Serine; Sulfonamides; Synaptic Transmission; Time Factors; Tissue Culture Techniques | 2008 |
Activation of protein kinase C betaII/epsilon-c-Jun NH2-terminal kinase pathway and inhibition of mitogen-activated protein/extracellular signal-regulated kinase 1/2 phosphorylation in antitumor invasive activity induced by the polymethoxy flavonoid, nobi
Flavonoids from medicinal plants have been therapeutically administered for cancer therapy. We recently reported that nobiletin (5,6,7,8,3',4'-hexamethoxy flavone) exhibits novel antitumor invasive activities by suppressing the production of pro-matrix metalloproteinases (proMMPs) and augmenting the expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) in vivo and in vitro. In the present study, intracellular target molecules associated with the actions of nobiletin against tumor invasion were identified. Nobiletin inhibited the phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase (MEK) 1/2, but not the activity of Ras or the phosphorylation of Raf. Moreover, a MEK1/2 inhibitor, U0126, mimicked nobiletin's ability to decrease the production of proMMPs-1 and 9 in human fibrosarcoma HT-1080 cells stimulated by 12-O-tetradecanoyl phorbol-13-acetate (TPA). In addition, neither the activity of phosphatidylinositol 3-kinase (PI3K) nor the phosphorylation of Akt was influenced by nobiletin. However, nobiletin was found to augment the phosphorylation of c-Jun NH2-terminal kinase (JNK), a downstream signal factor of the PI3K-Akt pathway, in TPA-treated HT-1080 cells. A similar augmentation of JNK phosphorylation was observed on treatment with a PI3K inhibitor, LY-294002. Furthermore, nobiletin enhancement of TIMP-1 production in TPA-stimulated HT-1080 cells was found to be diminished by adding a JNK inhibitor, SP600125. Moreover, protein kinase C (PKC) inhibitor experiments showed that PKCbetaII/epsilon were associated with the nobiletin-mediated augmentation of JNK phosphorylation. Therefore, these results introduce novel evidence that the antitumor effects of nobiletin are finely regulated by the following intracellular mechanisms: (1) the inhibition of MEK1/2 activity is involved in the suppression of MMP expression and (2) the activation of the novel PKCbetaII/epsilon-JNK pathway is associated with the augmentation of TIMP-1 expression. Topics: Anthracenes; Antineoplastic Agents; Butadienes; Cell Line, Tumor; Collagenases; Enzyme Activation; Enzyme Precursors; Flavones; Humans; JNK Mitogen-Activated Protein Kinases; MAP Kinase Kinase 1; MAP Kinase Kinase 2; Matrix Metalloproteinase 9; Mitogen-Activated Protein Kinase Kinases; Neoplasm Invasiveness; Nitriles; Phosphatidylinositol 3-Kinases; Phosphorylation; Protein Kinase C; Protein Kinase C beta; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; raf Kinases; ras Proteins; Tetradecanoylphorbol Acetate; Tissue Inhibitor of Metalloproteinase-1 | 2004 |