u-0126 and nedaplatin

u-0126 has been researched along with nedaplatin* in 1 studies

Other Studies

1 other study(ies) available for u-0126 and nedaplatin

ArticleYear
Inhibition of Autophagy Potentiated the Antitumor Effect of Nedaplatin in Cisplatin-Resistant Nasopharyngeal Carcinoma Cells.
    PloS one, 2015, Volume: 10, Issue:8

    Nedaplatin, a cisplatin analog, was developed to reduce the toxicity of cisplatin, whereas it can be cross-resistant with cisplatin in some circumstances. This study aimed to investigate the role of autophagy in nedaplatin induced cell death in cisplatin-resistant nasopharyngeal carcinoma cells. Here, we showed that HNE1/DDP and CNE2/DDP cells were resistant to nedaplatin-induced cell death with reduced apoptotic activity. Nedaplatin treatment resulted in autophagosome accumulation and increased expression of LC3-II, indicating the induction of autophagy by nedaplatin in HNE1/DDP and CNE2/DDP cells. Inhibition of autophagy by Bafilomycin A1 (Baf A1) and 3-Methyladenine (3-MA) remarkably enhanced the antitumor efficacy of nedaplatin in HNE1/DDP and CNE2/DDP cells, suggesting that the resistance to nedaplatin-induced cell death was caused by enhanced autophagy in nedaplatin-resistant NPC cells. Additionally, Baf A1 enhanced reactive oxygen species (ROS) generation and apoptosis induced by nedaplatin in HNE1/DDP cells. Mechanistically, nedaplatin treatment caused activation of ERK1/2 and suppression of Akt/mTOR signaling pathways. While inhibition of ERK1/2 by MEK1/2 inhibitor, U0126, could reduce the expression of LC3-II in nedaplatin-resistant NPC cells. Furthermore, suppression of ROS could inhibit nedaplatin-induced ERK activation in HNE1/DDP cells, indicating that ROS and ERK were involved in nedaplatin-induced autophagy. Together, these findings suggested that autophagy played a cytoprotective role in nedaplatin-induced cytotoxicity of HNE1/DDP and CNE2/DDP cells. Furthermore, our results highlighted a potential approach to restore the sensitivity of cisplatin-resistant nasopharyngeal cancer cells to nedaplatin in combination with autophagy inhibitors.

    Topics: Adenine; Antineoplastic Agents; Apoptosis; Autophagy; Butadienes; Carcinoma; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cisplatin; Drug Resistance, Neoplasm; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Humans; Macrolides; Microtubule-Associated Proteins; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Nitriles; Organoplatinum Compounds; Proto-Oncogene Proteins c-akt; Reactive Oxygen Species; Signal Transduction; TOR Serine-Threonine Kinases

2015