u-0126 and lactacystin

u-0126 has been researched along with lactacystin* in 3 studies

Other Studies

3 other study(ies) available for u-0126 and lactacystin

ArticleYear
Neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors on lactacystin-induced cell damage in primary cortical neurons.
    Neurotoxicology, 2011, Volume: 32, Issue:6

    The dysfunction of the proteasome system is implicated in the pathomechanism of several chronic neurodegenerative diseases. Lactacystin (LC), an irreversible proteasome inhibitor, induces cell death in primary cortical neurons, however, the molecular mechanisms of its neurotoxic action has been only partially unraveled. In this study we aimed to elucidate an involvement of the key enzymatic pathways responsible for LC-induced neuronal cell death. Incubation of primary cortical neurons with LC (0.25-50 μg/ml) evoked neuronal cell death in concentration- and time-dependent manner. Lactacystin (2.5 μg/ml; 6.6μM) enhanced caspase-3 activity, but caspase-3 inhibitor, Ac-DEVD-CHO did not attenuate the LC-evoked cell damage. Western blot analysis showed a time-dependent, prolonged activation of MAPK/ERK1/2 pathway after LC exposure. Moreover, inhibitors of MAPK/ERK1/2 signaling, U0126 and PD98052 attenuated the LC-evoked cell death. We also found that LC-treatment resulted in the induction of calpains and calpain inhibitors (MDL28170 and calpeptin) protected neurons against the LC-induced cell damage. Neuroprotective action of MAPK/ERK1/2 and calpain inhibitors were connected with attenuation of LC-induced DNA fragmentation measured by Hoechst 33342 staining and TUNEL assay. However, only MAPK/ERK1/2 but not calpain inhibitors, attenuated the LC-induced AIF (apoptosis inducing factor) release. Further studies showed no synergy between neuroprotective effects of MAPK/ERK1/2 and calpain inhibitors given in combination when compared to their effects alone. The obtained data provided evidence for neuroprotective potency of MAPK/ERK1/2 and calpain, but not caspase-3 inhibition against the neurotoxic effects of LC in primary cortical neurons and give rationale for using these inhibitors in the treatment of neurodegenerative diseases connected with proteasome dysfunction.

    Topics: Acetylcysteine; Animals; Apoptosis; Blotting, Western; Butadienes; Calpain; Caspase 3; Caspase Inhibitors; Cells, Cultured; Cerebral Cortex; Cysteine Proteinase Inhibitors; Cytoprotection; Dipeptides; Dose-Response Relationship, Drug; Enzyme Activation; Gestational Age; In Situ Nick-End Labeling; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neurons; Neuroprotective Agents; Nitriles; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Protein Kinase Inhibitors; Signal Transduction; Spectrin; Time Factors

2011
Mitogen-activated protein kinase regulates nuclear association of human progesterone receptors.
    Molecular endocrinology (Baltimore, Md.), 2003, Volume: 17, Issue:4

    Breast cancers often have increased MAPK activity; this pathway may drive breast cancer cell growth by targeting steroid hormone receptors. MAPK phosphorylates human progesterone receptors (PRs) on Ser294, thus regulating several aspects of PR activity. To study the role of PR Ser294 phosphorylation on subcellular distribution, we stably expressed wild-type (wt) or S294A (Ser294 to Ala) PR-B in several cell types. PRs phosphorylated on Ser294 were nuclear. Activation of MAPK induced Ser294 phosphorylation and rapid nuclear translocation of wt, but not S294A, PR-B; both receptors concentrated in the nucleus after progestin treatment. The MAPK kinase inhibitor, U0126, blocked epidermal growth factor but not progestin-induced Ser294 phosphorylation and translocation of wt PR, indicating a novel mechanism for nuclear localization. After progestin treatment, wt PR-B underwent ligand-dependent down-regulation, while S294A PR-B persisted in nuclei. Prolonged treatment with U0126 or the nuclear export inhibitor, leptomycin B, promoted nuclear accumulation of wt PR-B and blocked ligand-dependent PR down-regulation, suggesting that PR degradation occurs in the cytoplasm and requires MAPK-dependent nuclear export. Stabilization of PRs by leptomycin B also blocked PR transcriptional activity, indicating a link between nucleocytoplasmic shuttling, receptor stability, and function. These results support a regulatory role for MAPK in nuclear steroid hormone receptor subcellular localization and coupling to multiple PR functions.

    Topics: Acetylcysteine; Active Transport, Cell Nucleus; Breast Neoplasms; Butadienes; Cell Nucleus; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cytoplasm; Epidermal Growth Factor; Fatty Acids, Unsaturated; Humans; Ligands; Mitogen-Activated Protein Kinase Kinases; Multienzyme Complexes; Mutation; Nitriles; Phosphorylation; Promegestone; Proteasome Endopeptidase Complex; Receptors, Progesterone; Serine; Transcription, Genetic; Tumor Cells, Cultured

2003
Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin 1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade.
    Blood, 2001, Apr-01, Volume: 97, Issue:7

    Cotreatment with a minimally toxic concentration of the protein kinase C (PKC) activator (and down-regulator) bryostatin 1 (BRY) induced a marked increase in mitochondrial dysfunction and apoptosis in U937 monocytic leukemia cells exposed to the proteasome inhibitor lactacystin (LC). This effect was blocked by cycloheximide, but not by alpha-amanitin or actinomycin D. Qualitatively similar interactions were observed with other PKC activators (eg, phorbol 12-myristate 13-acetate and mezerein), but not phospholipase C, which does not down-regulate the enzyme. These events were examined in relationship to functional alterations in stress (eg, SAPK, JNK) and survival (eg, MAPK, ERK) signaling pathways. The observations that LC/BRY treatment failed to trigger JNK activation and that cell death was unaffected by a dominant-interfering form of c-JUN (TAM67) or by pretreatment with either curcumin or the p38/RK inhibitor, SB203580, suggested that the SAPK pathway was not involved in potentiation of apoptosis. In marked contrast, perturbations in the PKC/Raf/MAPK pathway played an integral role in LC/BRY-mediated cell death based on evidence that pretreatment of cells with bisindolylmaleimide I, a selective PKC inhibitor, or geldanamycin, a benzoquinone ansamycin, which destabilizes and depletes Raf-1, markedly suppressed apoptosis. Furthermore, ERK phosphorylation was substantially prolonged in LC/BRY-treated cells compared to those exposed to BRY alone, and pretreatment with the highly specific MEK inhibitors, PD98059, U0126, and SL327, opposed ERK activation while protecting cells from LC/BRY-induced lethality. Together, these findings suggest a role for activation and/or dysregulation of the PKC/MAPK cascade in modulation of leukemic cell apoptosis following exposure to the proteasome inhibitor LC. (Blood. 2001;97:2105-2114)

    Topics: Acetylcysteine; Amanitins; Aminoacetonitrile; Apoptosis; Benzoquinones; Bryostatins; Butadienes; Curcumin; Cysteine Endopeptidases; Dactinomycin; Diterpenes; Drug Synergism; Enzyme Activation; Flavonoids; Humans; Imidazoles; Indoles; JNK Mitogen-Activated Protein Kinases; Lactams, Macrocyclic; Lactones; Macrolides; Maleimides; MAP Kinase Kinase 4; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Multienzyme Complexes; Neoplasm Proteins; Nitriles; Nucleic Acid Synthesis Inhibitors; p38 Mitogen-Activated Protein Kinases; Protease Inhibitors; Proteasome Endopeptidase Complex; Protein Kinase C; Protein Synthesis Inhibitors; Proto-Oncogene Proteins c-raf; Pyridines; Quinones; Terpenes; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Type C Phospholipases; U937 Cells; Ubiquitins

2001