u-0126 has been researched along with 6-methyl-2-(phenylethynyl)pyridine* in 2 studies
2 other study(ies) available for u-0126 and 6-methyl-2-(phenylethynyl)pyridine
Article | Year |
---|---|
Extracellular cysteine (Cys)/cystine (CySS) redox regulates metabotropic glutamate receptor 5 activity.
Extracellular cysteine (Cys)/cystine (CySS) redox potential (E(h)) has been shown to regulate diverse biological processes, including enzyme catalysis, gene expression, and signaling pathways for cell proliferation and apoptosis, and is sensitive to aging, smoking, and other host factors. However, the effects of extracellular Cys/CySS redox on the nervous system remain unknown. In this study, we explored the role of extracellular Cys/CySS E(h) in metabotropic glutamate receptor 5 (mGlu5) activation to understand the mechanism of its regulation of nerve cell growth and activation. We showed that the oxidized Cys/CySS redox state (0 mV) in C6 glial cells induced a significant increase in mGlu5-mediated phosphorylation of extracellular signal-regulated kinase (ERK), blocked by an inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (MEK), U0126, a nonpermeant alkylating agent, 4-acetamide-4'-maleimidylstilbene-2,2'-disulfonic acid (AMS), and a specific mGlu5 antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), respectively. ERK phosphorylation under oxidized extracellular Cys/CySS E(h) was confirmed in mGlu5-overexpressed human embryonic kidney 293 (HEK293) cells. Oxidized extracellular Cys/CySS E(h) also stimulated the generation of intracellular reactive oxygen species (ROS) involved in the phosphorylation of ERK by mGlu5. Moreover, activation of mGlu5 by oxidized extracellular Cys/CySS E(h) was found to affect expression of NF-κB and inducible nitric oxide synthase (iNOS). The results also showed that extracellular Cys/CySS E(h) involved in the activation of mGlu5 controlled cell death and cell activation in neurotoxicity. In addition, plasma Cys/CySS E(h) was found to be associated with the process of Parkinson's disease (PD) in a rotenone-induced rat model of PD together with dietary deficiency and supplementation of sulfur amino acid (SAA). The effects of extracellular Cys/CySS E(h) on SAA dietary deficiency in the rotenone-induced rat model of PD was almost blocked by MPEP pretreatment, further indicating that oxidized extracellular Cys/CySS E(h) plays a role in mGlu5 activity. Taken together, the results indicate that mGlu5 can be activated by extracellular Cys/CySS redox in nerve cells, which possibly contributes to the process of PD. These in vitro and in vivo findings may aid in the development of potential new nutritional strategies that could assist in slowing the degeneration of PD. Topics: Amino Acids, Sulfur; Animals; Butadienes; Cell Line; Cell Line, Tumor; Cysteine; Cystine; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Humans; Male; Nitriles; Oxidation-Reduction; Oxidative Stress; Parkinson Disease; Phosphorylation; Pyridines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate | 2012 |
Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior.
The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA. Topics: Amygdala; Analysis of Variance; Animals; Butadienes; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Formaldehyde; Functional Laterality; Gene Expression Regulation; Green Fluorescent Proteins; Hyperalgesia; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinase 3; Nitriles; Pain; Pain Measurement; Pyridines; Receptors, Glucocorticoid; Receptors, Kainic Acid | 2010 |