u-0126 has been researched along with 3-4-dihydroxyphenylglycol* in 2 studies
2 other study(ies) available for u-0126 and 3-4-dihydroxyphenylglycol
Article | Year |
---|---|
Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior.
The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA. Topics: Amygdala; Analysis of Variance; Animals; Butadienes; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Formaldehyde; Functional Laterality; Gene Expression Regulation; Green Fluorescent Proteins; Hyperalgesia; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitogen-Activated Protein Kinase 3; Nitriles; Pain; Pain Measurement; Pyridines; Receptors, Glucocorticoid; Receptors, Kainic Acid | 2010 |
Inflammation persistently enhances nocifensive behaviors mediated by spinal group I mGluRs through sustained ERK activation.
Group I metabotropic glutamate receptors (mGluRs) and their downstream signaling pathways, which involve the extracellular signal-regulated kinases (ERKs), have been implicated as mediators of plasticity in several pain models. In this study, we report that inflammation leads to a long-lasting enhancement of behavioral responses induced by activation of spinal group I mGluRs. Thus, the nocifensive response to intrathecal injection of the group I mGluR agonist (RS)-3,5-Dihydroxyphenylglycine (DHPG) is significantly potentiated seven days following Complete Freund's Adjuvant (CFA)-induced inflammation of the hind paw. This potentiation is not associated with increased mGlu1 or mGlu5 receptor expression but is associated with increased levels of phosphorylated ERK in dorsal horn neurons. We also tested whether the increased behavioral response to DHPG following inflammation may be explained by enhanced coupling of the group I mGluRs to ERK activation. DHPG-induced ERK phosphorylation in the dorsal horn is not potentiated following inflammation. However, inhibiting ERK activation using a MEK inhibitor, U0126, following inflammation attenuates the intrathecal DHPG-induced behavioral responses to a greater extent than in control animals. The results from this study indicate that persistent ERK activation is required for the enhanced behavioral responses to spinal group I mGluR activation following inflammation and suggest that tonic modulation of ERK activity may underlie a component of central sensitization in dorsal horn neurons. Topics: Animals; Animals, Outbred Strains; Behavior, Animal; Butadienes; Enzyme Inhibitors; Freund's Adjuvant; Inflammation; Male; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred ICR; Mitogen-Activated Protein Kinases; Nitriles; Nociceptors; Pain; Posterior Horn Cells; Receptors, Metabotropic Glutamate | 2004 |