tyrosine has been researched along with n-acetylglucosaminono-1,5-lactone o-(phenylcarbamoyl)oxime in 1 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Hart, GW; Lane, MD; Vosseller, K; Wells, L | 1 |
1 other study(ies) available for tyrosine and n-acetylglucosaminono-1,5-lactone o-(phenylcarbamoyl)oxime
Article | Year |
---|---|
Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes.
Topics: 3T3 Cells; Acetylglucosamine; Adipocytes; Animals; beta Catenin; Blotting, Western; Calcium-Calmodulin-Dependent Protein Kinases; Catalysis; Cell Line; Cell Nucleus; Cytoplasm; Cytoskeletal Proteins; Dose-Response Relationship, Drug; Enzyme Activation; Glucosamine; Glucose; Glycogen Synthase Kinase 3; Glycogen Synthase Kinases; Glycosylation; Insulin; Insulin Receptor Substrate Proteins; Insulin Resistance; Mice; Oximes; Phenylcarbamates; Phosphoproteins; Phosphorylation; Precipitin Tests; Protein Binding; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Signal Transduction; Time Factors; Trans-Activators; Tyrosine | 2002 |