tryptophan and sb 366791

tryptophan has been researched along with sb 366791 in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's4 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Boudaka, A; Kobayashi, H; Neuhuber, WL; Shiina, T; Shimizu, Y; Takewaki, T; Wörl, J1
Ferrini, F; Merighi, A; Salio, C; Vergnano, AM1

Other Studies

4 other study(ies) available for tryptophan and sb 366791

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
Involvement of TRPV1-dependent and -independent components in the regulation of vagally induced contractions in the mouse esophagus.
    European journal of pharmacology, 2007, Feb-05, Volume: 556, Issue:1-3

    Topics: Alkaloids; Anilides; Animals; Benzodioxoles; Capsaicin; Cinnamates; Cricetinae; Enzyme Inhibitors; Esophagus; Female; Male; Mesocricetus; Mice; Muscle Contraction; Muscle, Smooth; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Tachykinin; Species Specificity; TRPV Cation Channels; Tryptophan; Vagus Nerve

2007
Vanilloid receptor-1 (TRPV1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse.
    Pain, 2007, Volume: 129, Issue:1-2

    Topics: Anilides; Animals; Animals, Newborn; Bicuculline; Capsaicin; Cinnamates; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Immunohistochemistry; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Mice; Neural Inhibition; Neurons; Patch-Clamp Techniques; Substantia Gelatinosa; Synaptic Transmission; Tetrodotoxin; TRPV Cation Channels; Tryptophan

2007