trypsinogen and taurolithocholic-acid-3-sulfate

trypsinogen has been researched along with taurolithocholic-acid-3-sulfate* in 3 studies

Other Studies

3 other study(ies) available for trypsinogen and taurolithocholic-acid-3-sulfate

ArticleYear
LAP-like non-canonical autophagy and evolution of endocytic vacuoles in pancreatic acinar cells.
    Autophagy, 2020, Volume: 16, Issue:7

    Activation of trypsinogen (formation of trypsin) inside the pancreas is an early pathological event in the development of acute pancreatitis. In our previous studies we identified the activation of trypsinogen within endocytic vacuoles (EVs), cellular organelles that appear in pancreatic acinar cells treated with the inducers of acute pancreatitis. EVs are formed as a result of aberrant compound exocytosis and subsequent internalization of post-exocytic structures. These organelles can be up to 12 μm in diameter and can be actinated (i.e. coated with F-actin). Notably, EVs can undergo intracellular rupture and fusion with the plasma membrane, providing trypsin with access to cytoplasmic and extracellular targets. Unraveling the mechanisms involved in cellular processing of EVs is an interesting cell biological challenge with potential benefits for understanding acute pancreatitis. In this study we have investigated autophagy of EVs and discovered that it involves a non-canonical LC3-conjugation mechanism, reminiscent in its properties to LC3-associated phagocytosis (LAP); in both processes LC3 was recruited to single, outer organellar membranes. Trypsinogen activation peptide was observed in approximately 55% of LC3-coated EVs indicating the relevance of the described process to the early cellular events of acute pancreatitis. We also investigated relationships between actination and non-canonical autophagy of EVs and concluded that these processes represent sequential steps in the evolution of EVs. Our study expands the known roles of LAP and indicates that, in addition to its well-established functions in phagocytosis and macropinocytosis, LAP is also involved in the processing of post-exocytic organelles in exocrine secretory cells.. AP: acute pancreatitis; CCK: cholecystokinin; CLEM: correlative light and electron microscopy; DPI: diphenyleneiodonium; EV: endocytic vacuole; LAP: LC3-associate phagocytosis; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; PACs: pancreatic acinar cells; PFA: paraformaldehyde; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; Res: resveratrol; TAP: trypsinogen activation peptide; TEM: transmission electron microscopy; TLC-S: taurolithocholic acid 3-sulfate; TRD: Dextran Texas Red 3000 MW Neutral; ZGs: zymogen granules.

    Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Acinar Cells; Actins; Animals; Autophagy; Autophagy-Related Protein-1 Homolog; Autophagy-Related Proteins; Chloroquine; Cholecystokinin; Endocytosis; Mice, Inbred C57BL; Microtubule-Associated Proteins; Onium Compounds; Pancreas; Phagocytosis; Phosphatidylinositol 3-Kinases; Protein Domains; Protein Kinase Inhibitors; Reactive Oxygen Species; Resveratrol; Taurolithocholic Acid; Trypsinogen; Vacuolar Proton-Translocating ATPases; Vacuoles

2020
Effects of Egr1 on pancreatic acinar intracellular trypsinogen activation and the associated ceRNA network.
    Molecular medicine reports, 2020, Volume: 22, Issue:3

    Acute pancreatitis (AP) is a common digestive disorder with high morbidity and mortality. The present study aimed to investigate the expression of early growth response protein 1 (Egr1), and the effect of competing endogenous (ce)RNA network on trypsinogen activation. Pancreatic acinar intracellular trypsinogen activation (PAITA) is an important event in the early stage of AP; however, the underlying mechanisms remain unclear. The present study used taurolithocholic acid 3‑sulfate (TLC‑S)‑treated AR42J cells (pancreatic cell line) to establish a PAITA model. A gene microarray and bioinformatics analysis was performed to identify the potential key targets in PAITA. The results demonstrated that Egr1, an important transcription factor, was significantly overexpressed in PAITA. In Egr1 small interfering (si)RNA‑transfected cells, Egr1 expression was decreased and trypsinogen activation was significantly decreased compared with negative control siRNA‑transfected cells, indicating that in TLC‑S‑induced PAITA, overexpression of Egr1 enhanced trypsinogen activation. A ceRNA network [mRNA‑microRNA (miRNA/miR)‑long non‑coding (lnc)RNA] generated using the PAITA model revealed that the effects of Egr1 on PAITA may be regulated by multiple ceRNA pairs, and the lncRNAs (including NONRATT022624 and NONRATT031002) and miRNAs [including Rattus norvegicus (rno)‑miR‑214‑3p and rno‑miR‑764‑5p] included in the ceRNA pairs may serve roles in PAITA by regulating the expression of Egr1. The results of the present study may provide novel targets for researching the underlying mechanisms of, and developing treatments for AP.

    Topics: Animals; Cell Line; Computational Biology; Early Growth Response Protein 1; Enzyme Activation; Gene Expression Profiling; Gene Regulatory Networks; MicroRNAs; Models, Biological; Oligonucleotide Array Sequence Analysis; Pancreatitis; Rats; RNA, Long Noncoding; RNA, Small Interfering; Taurolithocholic Acid; Trypsinogen; Up-Regulation

2020
Differentially expressed kinase genes associated with trypsinogen activation in rat pancreatic acinar cells treated with taurolithocholic acid 3-sulfate.
    Molecular medicine reports, 2013, Volume: 7, Issue:5

    Trypsinogen activation is the initial factor involved in the development of all types of acute pancreatitis (AP) and has been suggested to be regulated by protein kinases. In the present study, AR42J rat pancreatic acinar cells were treated with taurolithocholic acid 3-sulfate (TLC-S), and trypsinogen activation was detected with bis-(CBZ-L-isoleucyl-L-prolyl-L-arginine amide) dihydrochloride (BZiPAR) staining and flow cytometry. Differentially expressed protein kinase genes were screened by Gene Chip analysis, and the functions of these kinases were analyzed. A significantly increased activation of trypsinogen in AR42J cells following treatment with TLC-S was observed. A total of 22 differentially expressed protein kinase genes were found in the TLC-S group, among which 19 genes were upregulated and 3 were downregulated. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, kinase genes of the same KEGG pathways were connected to create a network through signaling pathways, and 10 nodes of kinases were identified, which were mitogen-activated protein kinase (Mapk)8, Mapk14, Map2k4, interleukin-1 receptor-associated kinase 3 (Irak3), ribosomal protein S6 kinase, 90 kDa, polypeptide 2 (Rps6ka2), protein kinase C, alpha (Prkca), v-yes-1 Yamaguchi sarcoma viral related oncogene homolog (Lyn), protein tyrosine kinase 2 beta (Ptk2b), p21 protein (Cdc42/Rac)-activated kinase 4 (Pak4) and FYN oncogene related to SRC, FGR, YES (Fyn). The interactions between signaling pathways were further analyzed and a network was created. MAPK and calcium signaling pathways were found to be located at the center of the network. Thus, protein kinases constitute potential drug targets for AP treatment.

    Topics: Acinar Cells; Animals; Cell Line; Enzyme Activation; Gene Expression Profiling; Gene Regulatory Networks; Pancreas; Protein Kinases; Rats; Signal Transduction; Taurolithocholic Acid; Trypsinogen

2013