trypsinogen and benzamidine

trypsinogen has been researched along with benzamidine* in 2 studies

Other Studies

2 other study(ies) available for trypsinogen and benzamidine

ArticleYear
Allostery in Coagulation Factor VIIa Revealed by Ensemble Refinement of Crystallographic Structures.
    Biophysical journal, 2019, 05-21, Volume: 116, Issue:10

    A critical step in injury-induced initiation of blood coagulation is the formation of the complex between the trypsin-like protease coagulation factor VIIa (FVIIa) and its cofactor tissue factor (TF), which converts FVIIa from an intrinsically poor enzyme to an active protease capable of activating zymogens of downstream coagulation proteases. Unlike its constitutively active ancestor trypsin, FVIIa is allosterically activated (by TF). Here, ensemble refinement of crystallographic structures, which uses multiple copies of the entire structure as a means of representing structural flexibility, is applied to explore the impacts of inhibitor binding to trypsin and FVIIa, as well as cofactor binding to FVIIa. To assess the conformational flexibility and its role in allosteric pathways in these proteases, main-chain hydrogen bond networks are analyzed by calculating the hydrogen-bond propensity. Mapping pairwise propensity differences between relevant structures shows that binding of the inhibitor benzamidine to trypsin has a minor influence on the protease flexibility. For FVIIa, in contrast, the protease domain is "locked" into the catalytically competent trypsin-like configuration upon benzamidine binding as indicated by the stabilization of key structural features: the nonprime binding cleft and the oxyanion hole are stabilized, and the effect propagates from the active site region to the calcium-binding site and to the vicinity of the disulphide bridge connecting with the light chain. TF binding to FVIIa furthermore results in stabilization of the 170 loop, which in turn propagates an allosteric signal from the TF-binding region to the active site. Analyses of disulphide bridge energy and flexibility reflect the striking stability difference between the unregulated enzyme and the allosterically activated form after inhibitor or cofactor binding. The ensemble refinement analyses show directly, for the first time to our knowledge, whole-domain structural footprints of TF-induced allosteric networks present in x-ray crystallographic structures of FVIIa, which previously only have been hypothesized or indirectly inferred.

    Topics: Allosteric Regulation; Apoenzymes; Benzamidines; Crystallography, X-Ray; Disulfides; Enzyme Activation; Factor VIIa; Models, Molecular; Protein Domains; Protein Folding; Trypsin; Trypsinogen

2019
Catalytic and ligand binding properties of bovine trypsinogen and its complex with the effector dipeptide Ile-Val. A comparative study.
    Molecular and cellular biochemistry, 1984, Volume: 60, Issue:2

    Steady-state and pre-steady-state kinetic data for the trypsinogen catalyzed hydrolysis of a series of synthetic substrates (i.e. p-nitrophenyl esters of N-alpha-carbobenzoxy-L-amino acids) have been obtained as a function of pH (3.4-8). Moreover, the effect of ethylamine on the hydrolysis of a neutral substrate and benzamidine binding have been extensively studied. In order to obtain direct information on the transition of trypsinogen to a beta-trypsin-like structure, the role of the effector dipeptide Ile-Val on the catalytic and ligand binding properties of the zymogen has been investigated. Kinetic and thermodynamic data for beta-trypsin and alpha-chymotrypsin are also reported for the purpose of an homogeneous comparison of the various (pro)enzymes. Under all the experimental conditions, kinetic data for (pro)enzyme catalysis are consistent with the minimum three-step mechanism: (formula; see text) involving the acyl intermediate E X P. In the presence of Ile-Val dipeptide, trypsinogen assumes catalytic and ligand binding properties that are reminiscent of activated beta-trypsin. This is at variance with free trypsinogen, which shows a alpha-chymotrypsin-like behavior. The large differences in the results of kinetic and thermodynamic measurements for free trypsinogen, as compared to its binary adduct with Ile-Val, can be ascribed to the substantial differences in the two molecular species, which include the spatial orientation of Asp189.

    Topics: Animals; Benzamidines; Cattle; Dipeptides; Enzyme Activation; Ethylamines; Hydrogen-Ion Concentration; In Vitro Techniques; Kinetics; Protein Conformation; Substrate Specificity; Thermodynamics; Trypsinogen

1984