tropisetron has been researched along with 1-(3-chlorophenyl)piperazine* in 3 studies
3 other study(ies) available for tropisetron and 1-(3-chlorophenyl)piperazine
Article | Year |
---|---|
Meta-chlorophenylpiperazine attenuates formalin-induced nociceptive responses through 5-HT1/2 receptors in both normal and diabetic mice.
1. This study was designed to investigate the effect of meta-chlorophenylpiperazine (m-CPP; a 5-hydroxytryptamine (5-HT) receptor agonist) on the formalin-induced nociceptive responses in normal, insulin-dependent streptozotocin (STZ) diabetic and non-insulin dependent genetically diabetic (db/db) mice. 2. A subcutaneous injection of diluted formalin (1% formaldehyde in 0.9% saline, 10 microliters) under the plantar surface of the left hindpaw induced biphasic nociceptive responses, the first and second phases considered to represent acute and chronic pain, respectively. The former response in db/db mice was significantly lower than those in normal mice, and the latter responses in STZ and db/db mice were significantly lower than those in normal mice. 3. In normal mice, m-CPP (0.32-3.2 mg ml-1, p.o.) exhibited potent antinociceptive activity, dose-dependently attenuating the first and second phase; the ID50 value of the second phase was 0.4 mg kg-1. m-CPP (0.32-3.2 mg kg-1, p.o.) also dose-dependently attenuated the formalin-induced nociceptive responses in STZ-induced diabetic mice and genetically diabetic db/db mice, and the activities were comparable to those in normal mice. 4. The antinociceptive activities of m-CPP (1 mg kg-1, p.o.) were significantly inhibited by pretreatment with pindolol (a 5-HT1-receptor antagonist, 1 mg kg-1, i.p.) or ketanserin (a 5-HT2 receptor antagonist, 1 mg kg-1, i.p.) but were hardly affected by ICS205-930 (a 5-HT3 receptor antagonist, 1 mg kg-1, i.p.). 5. These results suggest that m-CPP inhibits not only acute but also chronic pain transmission through 5-HT1 and 5-HT2 receptors, and that the 5-hydroxytryptaminergic antinociceptive pathways are little affected by diabetes. Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Formaldehyde; Indoles; Ketanserin; Male; Mice; Pain Measurement; Piperazines; Receptors, Serotonin; Serotonin Receptor Agonists; Tropisetron | 1995 |
Anxiogenic-like effects of mCPP and TFMPP in animal models are opposed by 5-HT1C receptor antagonists.
1-(3-chlorophenyl)piperazine (mCPP) and 1-[3-(trifluoromethyl)phenyl]piperazine (TFMPP) (0.1-1.0 mg/kg) reduce total interaction time in a rat social interaction test under low light familiar conditions and its following components; grooming, following, crawling over, fighting, sniffing. Locomotion was only reduced by the highest dose of mCPP. mCPP also reduced activity in the light but not total locomotion in a light/dark transition test. These results suggest that mCPP (and TFMPP) are anxiogenic but not sedative in these tests. The effect of mCPP on social interaction was blocked by three antagonists which share a high affinity for 5-HT1C and 5-HT2 receptors: mianserin, cyproheptadine and metergoline but not by the 5-HT2 antagonists ketanserin or ritanserin or the 5-HT1A and 5-HT1B antagonists cyanopindolol and (-)-propranolol. It was prevented by a low (0.05 mg/kg) but not by a high (1.0 mg/kg) dose of ICS 205,930 a specific 5-HT3 antagonist reported to be anxiolytic at low doses. It was also prevented by chronic pretreatment with the anxiolytic drug chlordiazepoxide. These results argue for an anxiogenic action of mCPP mediated by 5-HT1C receptors. Since the chronic chlordiazepoxide pretreatment did not prevent the hypolocomotion or hypophagia induced by mCPP at high dosage (5 mg/kg) these latter effects are unlikely to be secondary to anxiety. Topics: Animals; Anxiety; Drug Interactions; Feeding Behavior; Indoles; Interpersonal Relations; Male; Motor Activity; Piperazines; Rats; Rats, Inbred Strains; Receptors, Serotonin; Serotonin Antagonists; Tropisetron | 1989 |
Evidence that hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU 24969 only requires 5-HT1B receptors.
Male Sprague-Dawley rats deprived of food for 18 h were injected with the 5-HT agonists RU 24969, 1-(3-chlorophenyl)piperazine (mCPP) or 1-[3-(trifluoromethyl)phenyl)]piperazine (TFMPP) and 20 min later presented with their normal diet. Food intake was determined 1, 2 and 4 h later. All three drugs reduced intake over 1 and 2 h. Three out of four drugs with high affinity for 5-HT1C receptors (metergoline, mianserin, and mesulergine but not cyproheptadine) opposed hypophagia caused by mCPP. Another drug reported to have high affinity for the 5-HT1C site, 1-naphthyl-piperazine (1-NP), also blocked the hypophagic response to mCPP at doses which attenuated mCPP-induced hypolocomotion. Only one of the above drugs (metergoline) which also has high affinity for other 5-HT sites opposed hypophagia caused by RU 24969. Two out of three 5-HT1B receptor antagonists [(+/-) cyanopindolol, (-) propranolol, but not (-) pindolol)] which oppose hypophagia caused by RU 24969 (Kennett et al. 1987) also opposed hypophagia caused by mCPP. The 5-HT2 antagonists ketanserin and ritanserin, the 5-HT3 antagonist ICS 205-930 and the alpha 2 adrenoceptor antagonist idazoxan did not oppose the hypophagic effect of mCPP. In agreement with results for mCPP, hypophagia caused by TFMPP was opposed by both, mianserin and (+/-) cyanopindolol. Given alone, mianserin 1-NP and cyproheptadine but not ICS 205-930 increased food consumption of normally fed rats. The results suggest that RU 24969-induced hypophagia depends on 5-HT1B receptors but not on 5-HT1C receptors, while mCPP (and TFMPP)-induced hypophagia may depend on both receptors.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Adrenergic alpha-Antagonists; Animals; Ergolines; Feeding Behavior; Food Deprivation; Indoles; Male; Mianserin; Motor Activity; Pindolol; Piperazines; Rats; Rats, Inbred Strains; Receptors, Serotonin; Serotonin Antagonists; Tropisetron | 1988 |