troleandomycin has been researched along with tretinoin in 7 studies
Studies (troleandomycin) | Trials (troleandomycin) | Recent Studies (post-2010) (troleandomycin) | Studies (tretinoin) | Trials (tretinoin) | Recent Studies (post-2010) (tretinoin) |
---|---|---|---|---|---|
569 | 26 | 23 | 23,654 | 1,083 | 6,085 |
Protein | Taxonomy | troleandomycin (IC50) | tretinoin (IC50) |
---|---|---|---|
Bile salt export pump | Homo sapiens (human) | 10 | |
Amyloid-beta precursor protein | Homo sapiens (human) | 0.18 | |
Adenosine receptor A3 | Homo sapiens (human) | 5.275 | |
Retinoic acid receptor alpha | Homo sapiens (human) | 2.2542 | |
60 kDa heat shock protein, mitochondrial | Homo sapiens (human) | 5.3 | |
Retinoic acid receptor beta | Homo sapiens (human) | 0.7537 | |
Retinoic acid receptor alpha | Mus musculus (house mouse) | 0.0057 | |
Retinoic acid receptor gamma | Homo sapiens (human) | 0.0064 | |
Alpha-1B adrenergic receptor | Rattus norvegicus (Norway rat) | 5.275 | |
Retinoic acid receptor gamma | Mus musculus (house mouse) | 0.004 | |
Retinoic acid receptor beta | Mus musculus (house mouse) | 0.005 | |
Mitogen-activated protein kinase 1 | Homo sapiens (human) | 0.576 | |
Nuclear receptor ROR-alpha | Homo sapiens (human) | 0.1995 | |
Alpha-synuclein | Homo sapiens (human) | 3 | |
Cellular retinoic acid-binding protein 1 | Gallus gallus (chicken) | 0.5233 | |
5-hydroxytryptamine receptor 2B | Homo sapiens (human) | 0.358 | |
Alpha-1A adrenergic receptor | Rattus norvegicus (Norway rat) | 5.275 | |
Retinoic acid receptor RXR-gamma | Homo sapiens (human) | 0.35 | |
Nuclear receptor ROR-gamma | Homo sapiens (human) | 0.1995 | |
10 kDa heat shock protein, mitochondrial | Homo sapiens (human) | 5.3 | |
Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 | Homo sapiens (human) | 0.82 | |
60 kDa chaperonin | Escherichia coli | 6.7 | |
10 kDa chaperonin | Escherichia coli | 6.7 | |
Nuclear receptor ROR-beta | Homo sapiens (human) | 0.1259 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (14.29) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 5 (71.43) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Ambroso, JL; Ayrton, AD; Baines, IA; Bloomer, JC; Chen, L; Clarke, SE; Ellens, HM; Harrell, AW; Lovatt, CA; Reese, MJ; Sakatis, MZ; Taylor, MA; Yang, EY | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Martini, R; Murray, M | 1 |
Chen, H; Fantel, AG; Juchau, MR | 1 |
7 other study(ies) available for troleandomycin and tretinoin
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Preclinical strategy to reduce clinical hepatotoxicity using in vitro bioactivation data for >200 compounds.
Topics: Chemical and Drug Induced Liver Injury; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Decision Trees; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Glutathione; Humans; Liver; Pharmaceutical Preparations; Protein Binding | 2012 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation.
Topics: Age Factors; Androstenedione; Animals; Aryl Hydrocarbon Hydroxylases; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Female; Hydroxylation; Male; Microsomes, Liver; Oxidoreductases, N-Demethylating; Rats; Rats, Wistar; Tretinoin; Troleandomycin | 1993 |
Catalysis of the 4-hydroxylation of retinoic acids by cyp3a7 in human fetal hepatic tissues.
Topics: Animals; Aryl Hydrocarbon Hydroxylases; Catalysis; Cell Line, Transformed; Chromatography, High Pressure Liquid; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Fetus; Gestational Age; Humans; Hydroxylation; Isoenzymes; Kinetics; Microsomes, Liver; Tretinoin; Troleandomycin | 2000 |