Page last updated: 2024-09-05

troleandomycin and silybin

troleandomycin has been researched along with silybin in 3 studies

Compound Research Comparison

Studies
(troleandomycin)
Trials
(troleandomycin)
Recent Studies (post-2010)
(troleandomycin)
Studies
(silybin)
Trials
(silybin)
Recent Studies (post-2010) (silybin)
569262349025

Protein Interaction Comparison

ProteinTaxonomytroleandomycin (IC50)silybin (IC50)
Polyphenol oxidase 2Agaricus bisporus1.7
Trypsin-1Homo sapiens (human)3.7
Trypsin-2Homo sapiens (human)3.7
Trypsin-3Homo sapiens (human)3.7
Solute carrier organic anion transporter family member 1B3Homo sapiens (human)4.2658
Solute carrier organic anion transporter family member 1B1Homo sapiens (human)6.1659

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (33.33)29.6817
2010's2 (66.67)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Dansette, PM; Fontana, E; Poli, SM1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1

Reviews

1 review(s) available for troleandomycin and silybin

ArticleYear
Cytochrome p450 enzymes mechanism based inhibitors: common sub-structures and reactivity.
    Current drug metabolism, 2005, Volume: 6, Issue:5

    Topics: Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Interactions; Enzyme Inhibitors; Humans; Isoenzymes; Structure-Activity Relationship; Terminology as Topic

2005

Other Studies

2 other study(ies) available for troleandomycin and silybin

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012