troglitazone has been researched along with valinomycin in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (25.00) | 29.6817 |
2010's | 3 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Casciano, CN; Clement, RP; Johnson, WW; Wang, EJ | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Balogun, EO; Bruggeman, V; Dardonville, C; de Koning, HP; Donachie, A; Ebiloma, GU; Fueyo González, FJ; Harada, S; Inaoka, DK; Izquierdo García, C; Kita, K; Sánchez Villamañán, JM; Shiba, T | 1 |
4 other study(ies) available for troglitazone and valinomycin
Article | Year |
---|---|
Fluorescent substrates of sister-P-glycoprotein (BSEP) evaluated as markers of active transport and inhibition: evidence for contingent unequal binding sites.
Topics: ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Binding Sites; Biological Transport, Active; Biomarkers; Cells, Cultured; Drug Interactions; Fluorescent Dyes; Humans | 2003 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Conjugates of 2,4-Dihydroxybenzoate and Salicylhydroxamate and Lipocations Display Potent Antiparasite Effects by Efficiently Targeting the Trypanosoma brucei and Trypanosoma congolense Mitochondrion.
Topics: Cell Line; Drug Discovery; Humans; Hydroxybenzoates; Membrane Potential, Mitochondrial; Mitochondria; Salicylamides; Trypanocidal Agents; Trypanosoma brucei brucei; Trypanosoma congolense; Trypanosomiasis, African | 2017 |