triolein and trilaurin

triolein has been researched along with trilaurin* in 2 studies

Other Studies

2 other study(ies) available for triolein and trilaurin

ArticleYear
Pressure-induced phase transitions in triacylglycerides.
    Annals of the New York Academy of Sciences, 2010, Volume: 1189

    The melting point of triacylglycerides (TAGs) under atmospheric pressure depends on both the fatty acid composition and crystalline structure of the polymorphic state, which are influenced by the temperature treatment history of the TAG. In this contribution, the additional effect of high hydrostatic pressure is described. Samples were placed in a temperature-controlled cell and pressurized up to 450 MPa. The phase transition was investigated either by perpendicular light scattering and transmission or with a polarized-light microscope. The high-pressure polarized-light microscope allows a precise determination of the melting point. The investigated TAGs showed a significant nonlinear increase of the melting point with pressure. Light scattering and transmission were used to observe the phase change in the high-pressure cell. Similar to supercooling in temperature-induced phase transition, we found a dramatic increase of the delay time in our pressure-induced solidification. Even the dependency of this induction time on the control parameter pressure was similar to that in temperature-driven crystallization. We propose that different crystalline structures may be obtained by superpressuring instead of supercooling.

    Topics: Crystallization; Fatty Acids; Food Technology; Hydrostatic Pressure; Microscopy, Polarization; Phase Transition; Triglycerides; Triolein

2010
Myristate is selectively incorporated into surfactant and decreases dipalmitoylphosphatidylcholine without functional impairment.
    American journal of physiology. Regulatory, integrative and comparative physiology, 2010, Volume: 299, Issue:5

    Lung surfactant mainly comprises phosphatidylcholines (PC), together with phosphatidylglycerols and surfactant proteins SP-A to SP-D. Dipalmitoyl-PC (PC16:0/16:0), palmitoylmyristoyl-PC (PC16:0/14:0), and palmitoylpalmitoleoyl-PC (PC16:0/16:1) together comprise 75-80% of surfactant PC. During alveolarization, which occurs postnatally in the rat, PC16:0/14:0 reversibly increases at the expense of PC16:0/16:0. As lipoproteins modify surfactant metabolism, we postulated an extrapulmonary origin of PC16:0/14:0 enrichment in surfactant. We, therefore, fed rats (d19-26) with trilaurin (C12:0(3)), trimyristin (C14:0(3)), tripalmitin (C16:0(3)), triolein (C18:1(3)) or trilinolein (C18:2(3)) vs. carbohydrate diet to assess their effects on surfactant PC composition and surface tension function using a captive bubble surfactometer. Metabolism was assessed with deuterated C12:0 (ω-d(3)-C12:0) and ω-d(3)-C14:0. C14:0(3) increased PC16:0/14:0 in surfactant from 12 ± 1 to 45 ± 3% and decreased PC16:0/16:0 from 47 ± 1 to 29 ± 2%, with no impairment of surface tension function. Combined phospholipase A(2) assay and mass spectrometry revealed that 50% of the PC16:0/14:0 peak comprised its isomer 1-myristoyl-2-palmitoyl-PC (PC14:0/16:0). While C12:0(3) was excluded from incorporation into PC, it increased PC16:0/14:0 as well. C16:0(3), C18:1(3), and C18:2(3) had no significant effect on PC16:0/16:0 or PC16:0/14:0. d(3)-C14:0 was enriched in lung PC, either via direct supply or via d(3)-C12:0 elongation. Enrichment of d(3)-C14:0 in surfactant PC contrasted its rapid turnover in plasma and liver PC, where its elongation product d(3)-C16:0 surmounted d(3)-C14:0. In summary, high surfactant PC16:0/14:0 during lung development correlates with C14:0 and C12:0 supply via specific C14:0 enrichment into lung PC. Surfactant that is high in PC16:0/14:0 but low in PC16:0/16:0 is compatible with normal respiration and surfactant function in vitro.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Animals; Chromatography, Gas; Chromatography, High Pressure Liquid; Deuterium; Dietary Carbohydrates; Dietary Fats; Female; Lung; Male; Myristic Acid; Phospholipases A2; Pulmonary Surfactants; Rats; Rats, Sprague-Dawley; Respiration; Spectrometry, Mass, Electrospray Ionization; Surface Tension; Tandem Mass Spectrometry; Time Factors; Triglycerides; Triolein

2010