trimedoxime-bromide and cyclohexyl-methylphosphonofluoridate
trimedoxime-bromide has been researched along with cyclohexyl-methylphosphonofluoridate* in 3 studies
Other Studies
3 other study(ies) available for trimedoxime-bromide and cyclohexyl-methylphosphonofluoridate
Article | Year |
---|---|
The ability of oxime mixtures to increase the reactivating and therapeutic efficacy of antidotal treatment of cyclosarin poisoning in rats and mice.
The reactivating and therapeutic efficacy of two combinations ofoximes (HI-6 + trimedoxime and HI-6 + K203) was compared with the effectiveness of antidotal treatment involving single oxime (HI-6, trimedoxime, K203) using in vivo methods. In vivo determined percentage of reactivation of cyclosarin-inhibited blood and tissue acetylcholinesterase in poisoned rats showed that the reactivating efficacy of both combinations of oximes is slightly higher than the reactivating efficacy of the most effective individual oxime in blood, diaphragm as well as in brain. Moreover, both combinations of oximes were found to be slightly more efficacious in the reduction of acute lethal toxic effects in cyclosarin-poisoned mice than the antidotal treatment involving single oxime. Based on the obtained data, we can conclude that the antidotal treatment involving chosen combinations of oximes brings a beneficial effect for its ability to counteract the acute poisoning with cyclosarin. Topics: Animals; Antidotes; Cholinesterase Reactivators; Mice; Mice, Inbred Strains; Organophosphorus Compounds; Oximes; Pyridinium Compounds; Rats; Rats, Wistar; Trimedoxime | 2012 |
A comparison of the potency of newly developed oximes (K074, K075) and currently available oximes (obidoxime, trimedoxime, HI-6) to counteract acute toxic effects of tabun and cyclosarin in mice.
The potency of newly developed oximes (K074, K075) and commonly used oximes (obidoxime, trimedoxime, and HI-6) to counteract tabun or cyclosarin-induced acute toxic effects was studied in mice. The therapeutic efficacy of trimedoxime and both newly developed oximes (K074, K075) was significantly higher than the potency of obidoxime and the oxime HI-6 in the case of acute tabun poisonings. On the other hand, the oxime HI-6 was significantly more efficacious than other studied oximes when mice were intoxicated with cyclosarin. The findings support the hypothesis that the therapeutic efficacy of oximes depends on the type of nerve agent. Due to their therapeutic efficacy, both newly developed K oximes can be considered to be promising oximes for the antidotal treatment of acute tabun poisonings, while the oxime HI-6 is still the most promising oxime for the treatment of acute cyclosarin poisonings due to its high potency to counteract cyclosarin-induced acute toxic effects. Topics: Animals; Antidotes; Atropine; Butanes; Cholinesterase Inhibitors; Cholinesterase Reactivators; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Lethal Dose 50; Male; Mice; Muscarinic Antagonists; Obidoxime Chloride; Organophosphate Poisoning; Organophosphates; Organophosphorus Compounds; Oximes; Poisoning; Pyridinium Compounds; Trimedoxime | 2008 |
Currently used cholinesterase reactivators against nerve agent intoxication: comparison of their effectivity in vitro.
In vitro comparison of reactivation efficacy of five currently used oximes - pralidoxime, obidoxime, trimedoxime, methoxime, and HI-6 (at two concentrations: 10-5 and 10-3 M) - against acetylcholinesterase (AChE; E.C. 3.1.1.7) inhibited by six different nerve agents (VX, Russian VX, sarin, cyclosarin, tabun, soman) and organophosphorus insecticide chlorpyrifos was the aim of this study. As a source of AChE in the experiments, rat brain homogenate was used. According to the results obtained, no AChE reactivator was able to reach sufficient potency for AChE inhibited by all nerve agents used. Moreover, oxime HI-6 (the most effective one) was not able to reactivate tabun- and soman-inhibited AChE. Due to this fact, it could be designated as a partially broad-spectrum reactivator. Topics: Animals; Brain; Chemical Warfare Agents; Chlorpyrifos; Cholinesterase Inhibitors; Cholinesterase Reactivators; Dose-Response Relationship, Drug; Obidoxime Chloride; Organophosphates; Organophosphorus Compounds; Organothiophosphorus Compounds; Oximes; Pralidoxime Compounds; Pyridinium Compounds; Rats; Rats, Wistar; Sarin; Soman; Tissue Extracts; Trimedoxime | 2007 |