trimedlure has been researched along with methyleugenol* in 4 studies
4 other study(ies) available for trimedlure and methyleugenol
Article | Year |
---|---|
Suppression of Mediterranean Fruit Fly (Diptera: Tephritidae) With Trimedlure and Biolure Dispensers in Coffea arabica (Gentianales: Rubiaceae) in Hawaii.
To assess the potential to suppress Mediterranean fruit fly, Ceratitis capitata (Wiedemann; Diptera: Tephritidae), via mass trapping with Trimedlure (TML), we compared fly catch (as catch per trap per time period) provided by either a novel, solid, triple-lure dispenser with TML, methyl eugenol (ME), and raspberry ketone (RK) (TMR) or solid TML plugs, both without insecticides, in addition to Biolure bait stations. Work was done in a coffee plantation that had a dense C. capitata population. Three treatments were compared: 1) TMR or TML (50 traps per ha), 2) Biolure (50 traps per ha), 3) TML (25 per ha) or TMR (25 per ha) + Biolure (25 per ha), and 4) an untreated control. During coffee season, based on C. capitata captures (mean flies per trap per wk) inside plastic McPhail traps, all treatments were significantly different than the control: Biolure (9.57) = TMR (11.28) = Biolure +TMR (13.50) < Control (36.06 flies/trap/wk). During non-coffee season, all treatments were significantly different than the control and TML was significantly lower than Biolure (wax matrix bait stations): TML (0.95) < Biolure (1.43) = Biolure +TML (1.77) < Control (2.81 flies/trap/wk). Surprisingly, captures were not lower in plots treated with combinations of Biolure + TMR or TML, compared to individual plots with Biolure or TML or TMR alone. Mass trapping with either TML or TMR dispensers deserves further study as a component of Integrated Pest Management programs for C. capitata in Hawaii and may have global potential for management of C. capitata. Topics: Animals; Butanones; Ceratitis capitata; Coffea; Cyclohexanecarboxylic Acids; Eugenol; Hawaii; Insect Control; Male | 2018 |
Chemical Degradation of TMR Multilure Dispensers for Fruit Fly Detection Weathered Under California Climatic Conditions.
Degradation models for multilure fruit fly trap dispensers were analyzed to determine their potential for use in large California detection programs. Solid three-component male lure TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) dispensers impregnated with DDVP (2, 2-dichlorovinyl dimethyl phosphate) insecticide placed inside Jackson traps were weathered during summer (8 wk) and winter (12 wk) in five citrus-growing areas. Additionally, TMR wafers without DDVP, but with an insecticidal strip, were compared to TMR dispensers with DDVP. Weathered dispensers were sampled weekly and chemically analyzed. Percent loss of TML, the male lure for Ceratitis capitata (Wiedemann) Mediterranean fruit fly; ME, the male lure for Bactrocera dorsalis (Hendel), oriental fruit fly; RK, the male lure for Bactrocera cucurbitae (Coquillett), melon fly; and DDVP was measured. Based on regression analyses for the male lures, TML degraded the fastest followed by ME. Degradation of the more chemically stable RK was discontinuous, did not fit a regression model, but followed similar seasonal patterns. There were few location differences for all three male lures and DDVP. Dispensers degraded faster during summer than winter. An asymptotic regression model provided a good fit for % loss (ME, TML, and DDVP) for summer data. Degradation of DDVP in TMR dispensers was similar to degradation of DDVP in insecticidal strips. Based on these chemical analyses and prior bioassay results with wild flies, TMR dispensers could potentially be used in place of three individual male lure traps, reducing costs of fruit fly survey programs. Use of an insecticidal tape would not require TMR dispensers without DDVP to be registered with US-EPA. Topics: Animals; Butanones; California; Ceratitis capitata; Cyclohexanecarboxylic Acids; Dichlorvos; Eugenol; Insect Control; Insecticides; Male; Pheromones; Tephritidae | 2017 |
Field Estimates of Attraction of Ceratitis capitata to Trimedlure and Bactrocera dorsalis (Diptera: Tephritidae) to Methyl Eugenol in Varying Environments.
Measuring and modeling the attractiveness of semiochemical-baited traps is of significant importance to detection, delimitation, and control of invasive pests. Here, we describe the results of field mark-release-recapture experiments with Ceratitis capitata (Wiedemann) and Bactrocera dorsalis (Hendel) to estimate the relationship between distance from a trap baited with trimedlure and methyl eugenol, respectively, and probability of capture for a receptive male insect. Experiments were conducted using a grid of traps with a central release point at two sites on Hawaii Island, a Macadamia orchard on the East side of the island and a lava field on the West side. We found that for B. dorsalis and methyl eugenol there is a 65% probability of capture at ∼36 m from a single trap, regardless of habitat. For C. capitata, we found a 65% probability of capture at a distance of ∼14 m from a single trap in the orchard and 7 m in the lava field. We also present results on the spatial and temporal pattern of recaptures. The attraction data are analyzed via a hyperbolic secant-based capture probability model. Topics: Animals; Ceratitis capitata; Chemotaxis; Cyclohexanecarboxylic Acids; Environment; Eugenol; Hawaii; Insect Control; Male; Pheromones; Tephritidae | 2015 |
Evaluation of lure dispensers for fruit fly surveillance in New Zealand.
Fruit flies (Diptera: Tephritidae) represent a major biosecurity threat to the horticulture sector of New Zealand, which is entirely free of these invasive pests. A nationwide surveillance programme is conducted to ensure any incursion is detected as early as possible. A review of the lure dispensers used is reported here.. Lure dispenser emission trials found that the currently used lure plugs release lure more slowly under New Zealand subtropical to temperate climates than wafer dispensers. Subsequent trapping experiments at high altitude in Hawaii (as a mimic of New Zealand meteorological and expected fruit fly ecological conditions) compared Lynfield traps baited with the existing lure plug dispensers and newer wafer dispensers. Catches of wild Oriental fruit flies, Bactrocera dorsalis (Hendel), were 9.5-fold higher with methyl eugenol wafers than with the plugs. Recaptures of sterile melon flies, Bactrocera cucurbitae (Coquillet), were 2.6-fold higher with cuelure wafers than with the plugs. Recaptures of sterile Mediterranean fruit flies, Ceratitis capitata Weid., were not significantly higher with trimedlure wafers than with the plugs.. Release rate and trapping experiments found new lure dispensers differed in release rate characteristics from existing dispensers under temperate and subtropical conditions, and indicated some potential for improvement in surveillance efficacy. Topics: Animals; Butanones; Climate; Cyclohexanecarboxylic Acids; Eugenol; Hawaii; Insect Control; New Zealand; Pheromones; Tephritidae | 2008 |