triiodothyronine--reverse and estradiol-17-beta-glucuronide

triiodothyronine--reverse has been researched along with estradiol-17-beta-glucuronide* in 2 studies

Other Studies

2 other study(ies) available for triiodothyronine--reverse and estradiol-17-beta-glucuronide

ArticleYear
Involvement of multispecific organic anion transporter, Oatp14 (Slc21a14), in the transport of thyroxine across the blood-brain barrier.
    Endocrinology, 2004, Volume: 145, Issue:9

    The present study was aimed at investigating the involvement of mouse organic anion transporting polypeptide 14 (mOatp14) in the uptake of T4 across the blood-brain barrier. Functional expression of mOatp14 in HEK293 cells revealed that T4 and rT3 are high affinity substrates of mOatp14 (Michaelis constant, 0.34 and 0.46 microm, respectively), and the specific uptake of T3 was 4-fold less than that of T4 and rT3. Taurocholate, probenecid, and estrone-3-sulfate were moderate inhibitors for mOatp14, whereas digoxin (substrate of Oatp2), benzylpenicillin (substrate of Oat3), and large neutral amino acids had no effect. mOatp14 is widely expressed throughout the brain, except for the cerebellum. The expression of mOatp14 in the isolated brain capillaries and the choroid plexus was shown by Western blot. The uptake clearance of T4 by the cerebral cortex determined using the in situ brain perfusion technique in mice was 580 microl/min.g tissue, 3-fold greater than that by the cerebellum, and a saturable component (Michaelis constant, 1.0 microm) accounts for the major fraction of the total uptake. Taurocholate inhibited the uptake of T4 by the cerebral cortex completely, but the inhibition by estrone-3-sulfate was partial (50%). These results suggest that transporters play a predominant role in the delivery of T4 to the brain, and mOatp14 accounts for estrone-3-sulfate inhibitable fraction, at least partly. The absence of inhibition by digoxin, benzylpenicillin, leucine, and 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid for the uptake of T4 by the cerebral cortex suggests the presence of other unknown transporter for T4 uptake by the brain. Immunohistochemical staining revealed basolateral localization of mOatp14 in the choroid plexus in which it may also play a role in T4 uptake.

    Topics: Animals; Biological Transport; Blood-Brain Barrier; Cerebellum; Cerebral Cortex; Choroid Plexus; Estradiol; Iodine Radioisotopes; Male; Mice; Organic Cation Transport Proteins; Thyroxine; Triiodothyronine

2004
Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter.
    Molecular endocrinology (Baltimore, Md.), 2002, Volume: 16, Issue:10

    Transport of various amphipathic organic compounds is mediated by organic anion transporting polypeptides (OATPs in humans, Oatps in rodents), which belong to the solute carrier family 21A (SLC21A/Slc21a). Several of these transporters exhibit a broad and overlapping substrate specificity and are expressed in a variety of different tissues. We have isolated and functionally characterized OATP-F (SLC21A14), a novel member of the OATP family. The cDNA (3059 bp) contains an open reading frame of 2136 bp encoding a protein of 712 amino acids. Its gene containing 15 exons is located on chromosome 12p12. OATP-F exhibits 47-48% amino acid identity with OATP-A, OATP-C, and OATP8, the genes of which are clustered on chromosome 12p12. OATP-F is predominantly expressed in multiple brain regions and Leydig cells of the testis. OATP-F mediates high affinity transport of T(4) and reverse T(3) with apparent K(m) values of approximately 90 nM and 128 nM, respectively. Substrates less well transported by OATP-F include T(3), bromosulfophthalein, estrone-3-sulfate, and estradiol-17beta-glucuronide. Furthermore, OATP-F-mediated T(4) uptake could be cis-inhibited by L-T(4) and D-T(4), but not by 3,5-diiodothyronine, indicating that T(4) transport is not stereospecific, but that 3',5'-iodination is important for efficient transport by OATP-F. Thus, in contrast to most other family members, OATP-F has a more selective substrate preference and may play an important role in the disposition of thyroid hormones in brain and testis.

    Topics: Amino Acid Sequence; Animals; Brain; CHO Cells; Chromosomes, Human, Pair 12; Cloning, Molecular; Cricetinae; Diiodothyronines; Estradiol; Estrone; Female; Humans; Leydig Cells; Male; Membrane Proteins; Molecular Sequence Data; Oocytes; Organ Specificity; Organic Anion Transporters; Sequence Homology, Amino Acid; Sulfobromophthalein; Testis; Thyroxine; Triiodothyronine; Xenopus

2002