trifloxystrobin and cyprodinil

trifloxystrobin has been researched along with cyprodinil* in 2 studies

Other Studies

2 other study(ies) available for trifloxystrobin and cyprodinil

ArticleYear
Volatilisation of pesticides under field conditions: inverse modelling and pesticide fate models.
    Pest management science, 2016, Volume: 72, Issue:7

    A substantial fraction of the applied crop protection products on crops is lost to the atmosphere. Models describing the prediction of volatility and potential fate of these substances in the environment have become an important tool in the pesticide authorisation procedure at the EU level. The main topic of this research is to assess the rate and extent of volatilisation of ten pesticides after application on field crops.. For eight of the ten pesticides, the volatilisation rates modelled with PEARL (Pesticide Emission Assessment at Regional and Local scales) corresponded well to the calculated rates modelled with ADMS (Atmospheric Dispersion Modelling System). For the other pesticides, large differences were found between the models. Formulation might affect the volatilisation potential of pesticides. Increased leaf wetness increased the volatilisation of propyzamide and trifloxystrobin at the end of the field trial. The reliability of pesticide input parameters, in particular the vapour pressure, is discussed.. Volatilisation of propyzamide, pyrimethanil, chlorothalonil, diflufenican, tolylfluanid, cyprodinil and E- and Z-dimethomorph from crops under realistic environmental conditions can be modelled with the PEARL model, as corroborated against field observations. Suggested improvements to the volatilisation component in PEARL should include formulation attributes and leaf wetness at the time of pesticide application. © 2015 Society of Chemical Industry.

    Topics: Acetates; Air Pollution; Benzamides; Crop Protection; Imines; Methacrylates; Models, Theoretical; Morpholines; Niacinamide; Nitriles; Pesticides; Pyrimidines; Strobilurins; Sulfonamides; Toluidines; Volatilization

2016
Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.
    Journal of chromatography. A, 2015, Feb-13, Volume: 1381

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique.

    Topics: Acetates; Acetonitriles; beta-Cyclodextrins; Chromatography, High Pressure Liquid; Fungicides, Industrial; Imines; Ionic Liquids; Liquid Phase Microextraction; Magnesium Compounds; Magnetic Phenomena; Methacrylates; Nitriles; Pyrimidines; Silicon Compounds; Solid Phase Microextraction; Solvents; Strobilurins; Water Pollutants, Chemical

2015