trifloxystrobin and acetonitrile

trifloxystrobin has been researched along with acetonitrile* in 2 studies

Other Studies

2 other study(ies) available for trifloxystrobin and acetonitrile

ArticleYear
Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.
    Journal of chromatography. A, 2015, Feb-13, Volume: 1381

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique.

    Topics: Acetates; Acetonitriles; beta-Cyclodextrins; Chromatography, High Pressure Liquid; Fungicides, Industrial; Imines; Ionic Liquids; Liquid Phase Microextraction; Magnesium Compounds; Magnetic Phenomena; Methacrylates; Nitriles; Pyrimidines; Silicon Compounds; Solid Phase Microextraction; Solvents; Strobilurins; Water Pollutants, Chemical

2015
Determination of strobilurin fungicides in cotton seed by combination of acetonitrile extraction and dispersive liquid-liquid microextraction coupled with gas chromatography.
    Journal of separation science, 2014, Volume: 37, Issue:7

    The simultaneous determination of four strobilurin fungicides (picoxystrobin, kresoxim-methyl, trifloxystrobin, and azoxystrobin) in cotton seed by combining acetonitrile extraction and dispersive liquid-liquid microextraction was developed prior to GC with electron capture detection. Several factors, including the type and volume of the extraction and dispersive solvents, extraction condition and time, and salt addition, were optimized. The analytes were extracted with acetonitrile from cotton seed and the clean-up was carried out by primary secondary amine. Afterwards, 60 μL of n-hexane/toluene (1:1, v/v) with a lower density than water was mixed with 1 mL of the acetonitrile extract, then the mixture was injected into 7 mL of distilled water. A 0.1 mL pipette was used to collect a few microliters of n-hexane/toluene from the top of the aqueous solution. The enrichment factors of the analytes ranged from 36 to 67. The LODs were in the range of 0.1 × 10(-3) -2 × 10(-3) mg/kg. The relative recoveries varied from 87.7 to 95.2% with RSDs of 4.1-8.5% for the four fungicides. The good performance of the method, compared with the conventional pretreatments, has demonstrated it is suitable for determining low concentrations of strobilurin fungicide residues in cotton seed.

    Topics: Acetates; Acetonitriles; Acrylates; Chromatography, Gas; Fungicides, Industrial; Gossypium; Imines; Liquid Phase Microextraction; Methacrylates; Phenylacetates; Pyridines; Pyrimidines; Seeds; Strobilurins

2014