trichostatin-a has been researched along with sulforaphane* in 8 studies
8 other study(ies) available for trichostatin-a and sulforaphane
Article | Year |
---|---|
Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells.
In differentiated Caco-2 cells, none of the genes had significant changes from D alone group. D + SFN (P = 0.99) demonstrated an opposing effect from D alone and decreased VDR expression. However, in proliferating Caco-2 cells, D + SFN (P < 0.04) increased VDR expression and decreased CYP27B1 (P < 0.01) more than D alone (P = 0.38 and 0.07, respectively). Although statistically significant, D + SFN (P = 0.01) effect on HDAC inhibitor activity was less than trichostatin A alone group (P < 0.0004) or SFN alone group (P < 0.0014).. The data suggest that colon cancer cells respond to dietary components differently under different conditions. The effect of vitamin D and SFN is selective and gene-specific in the complex multistep process of colorectal carcinogenesis in vitro. © 2020 Society of Chemical Industry. Topics: Acetylation; Caco-2 Cells; Calcium Channels; Colonic Neoplasms; Gene Expression Regulation, Neoplastic; Histone Deacetylases; Humans; Hydroxamic Acids; Isothiocyanates; Receptors, Calcitriol; Sulfoxides; TRPV Cation Channels; Vitamin D; Vitamin D3 24-Hydroxylase | 2021 |
Investigation of molecular mechanisms of experimental compounds in murine models of chronic allergic airways disease using synchrotron Fourier-transform infrared microspectroscopy.
The ovalbumin-induced (OVA) chronic allergic airways murine model is a well-established model for investigating pre-clinical therapies for chronic allergic airways diseases, such as asthma. Here, we examined the effects of several experimental compounds with potential anti-asthmatic effects including resveratrol (RV), relaxin (RLN), L-sulforaphane (LSF), valproic acid (VPA), and trichostatin A (TSA) using both a prevention and reversal model of chronic allergic airways disease. We undertook a novel analytical approach using focal plane array (FPA) and synchrotron Fourier-transform infrared (S-FTIR) microspectroscopic techniques to provide new insights into the mechanisms of action of these experimental compounds. Apart from the typical biological effects, S-FTIR microspectroscopy was able to detect changes in nucleic acids and protein acetylation. Further, we validated the reduction in collagen deposition induced by each experimental compound evaluated. Although this has previously been observed with conventional histological methods, the S-FTIR technique has the advantage of allowing identification of the type of collagen present. More generally, our findings highlight the potential utility of S-FTIR and FPA-FTIR imaging techniques in enabling a better mechanistic understanding of novel asthma therapeutics. Topics: Animals; Anti-Asthmatic Agents; Asthma; Chronic Disease; Disease Models, Animal; Drug Evaluation, Preclinical; Female; Hydroxamic Acids; Isothiocyanates; Mice; Mice, Inbred BALB C; Ovalbumin; Relaxin; Resveratrol; Spectroscopy, Fourier Transform Infrared; Sulfoxides; Synchrotrons; Treatment Outcome; Valproic Acid | 2020 |
Trichostatin A inhibits transforming growth factor-β-induced reactive oxygen species accumulation and myofibroblast differentiation via enhanced NF-E2-related factor 2-antioxidant response element signaling.
Trichostatin A (TSA) has been shown to prevent fibrosis in vitro and in vivo. The present study aimed at investigating the role of reactive oxygen species (ROS) scavenging by TSA on transforming growth factor-β (TGF-β)-induced myofibroblast differentiation of corneal fibroblasts in vitro. Human immortalized corneal fibroblasts were treated with TGF-β in the presence of TSA, the NAD(P)H oxidase inhibitor diphenyleneiodonium (DPI), the antioxidant N-acetyl-cysteine (NAC), the NF-E2-related factor 2-antioxidant response element (Nrf2-ARE) activator sulforaphane, or small interfering RNA. Myofibroblast differentiation was assessed by α-smooth muscle actin (α-SMA) expression, F-actin bundle formation, and collagen gel contraction. ROS, H(2)O(2), intracellular glutathione (GSH) level, cellular total antioxidant capacity, and the activation of Nrf2-ARE signaling were determined with various assays. Treatment with TSA and the Nrf2-ARE activator resulted in increased inhibition of the TGF-β-induced myofibroblast differentiation as compared with treatment with DPI or NAC. Furthermore, TSA also decreased cellular ROS and H(2)O(2) accumulation induced by TGF-β, whereas it elevated intracellular GSH level and cellular total antioxidant capacity. In addition, TSA induced Nrf2 nuclear translocation and up-regulated the expression of Nrf2-ARE downstream antioxidant genes, whereas Nrf2 knockdown by RNA interference blocked the inhibition of TSA on myofibroblast differentiation. In conclusion, this study provides the first evidence implicating that TSA inhibits TGF-β-induced ROS accumulation and myofibroblast differentiation via enhanced Nrf2-ARE signaling. Topics: Actins; Antioxidant Response Elements; Antioxidants; Cell Differentiation; Cell Line; Collagen; Cornea; Glutathione; Humans; Hydrogen Peroxide; Hydroxamic Acids; Isothiocyanates; Myofibroblasts; NADPH Oxidases; NF-E2-Related Factor 2; Onium Compounds; Reactive Oxygen Species; Signal Transduction; Sulfoxides; Thiocyanates; Transforming Growth Factor beta | 2013 |
Activation of the stress proteome as a mechanism for small molecule therapeutics.
Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. Topics: Adrenoleukodystrophy; Cell Line; Drug Therapy; Humans; Hydroxamic Acids; Hydroxyurea; Isothiocyanates; Mitochondrial Turnover; Phenylbutyrates; Proteome; Small Molecule Libraries; Sulfoxides; Thiocyanates | 2012 |
Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells.
Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2'-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement. Topics: 3' Untranslated Regions; Animals; Azacitidine; Base Sequence; Cells, Cultured; Decitabine; DNA (Cytosine-5-)-Methyltransferases; Epigenesis, Genetic; Follistatin; Gene Expression Regulation; Histone Deacetylase Inhibitors; Hydroxamic Acids; Isothiocyanates; MicroRNAs; Molecular Sequence Data; MyoD Protein; Myostatin; Promoter Regions, Genetic; Satellite Cells, Skeletal Muscle; Signal Transduction; Sulfoxides; Swine; Thiocyanates | 2012 |
Synergistic effects of a combination of dietary factors sulforaphane and (-) epigallocatechin-3-gallate in HT-29 AP-1 human colon carcinoma cells.
The objective of this study was to investigate combinations of two chemopreventive dietary factors: EGCG 20 microM (or 100 microM) and SFN (25 microM) in HT-29 AP-1 human colon carcinoma cells.. After exposure of HT-29 AP-1 cells to SFN and EGCG, individually or in combination, we performed AP-1 luciferase reporter assays, cell viability assays, isobologram analyses, senescence staining, quantitative real-time PCR (qRT-PCR) assays, Western blotting, and assays for HDAC activity and hydrogen peroxide. In some experiments, we exposed cells to superoxide dismutase (SOD) or Trichostatin A (TSA) in addition to the treatment with dietary factors.. The combinations of SFN and EGCG dramatically enhanced transcriptional activation of AP-1 reporter in HT-29 cells (46-fold with 25 microM SFN and 20 microM EGCG; and 175-fold with 25 microM SFN and 100 microM EGCG). Isobologram analysis showed synergistic activation for the combinations with combination index, CI < 1. Interestingly, co-treatment with 20units/ml of SOD, a free radical scavenger, attenuated the synergism elicited by the combinations (2-fold with 25 muM SFN and 20 muM EGCG; and 15-fold with 25 microM SFN and 100 microM EGCG). Cell viability assays showed that the low-dose combination decreased cell viability to 70% whereas the high-dose combination decreased cell viability to 40% at 48 h, with no significant change in cell viability at 24 h as compared to control cells. In addition, 20 microM and 100 microM EGCG, but not 25 microM SFN, showed induction of senescence in the HT-29 AP-1 cells subjected to senescence staining. However, both low- and high-dose combinations of SFN and EGCG attenuated the cellular senescence induced by EGCG alone. There was no significant change in the protein levels of phosphorylated forms of ERK, JNK, p38, and Akt-Ser473 or Akt-Thr308. Besides, qRT-PCR assays corroborated the induction of the luciferase gene seen with the combinations in the reporter assay. Relative expression levels of transcripts of many other genes known to be either under the control of the AP-1 promoter or involved in cell cycle regulation or cellular influx-efflux such as cyclin D1, cMyc, ATF-2, Elk-1, SRF, CREB5, SLCO1B3, MRP1, MRP2 and MRP3 were also quantified by qRT-PCR in the presence and absence of SOD at both 6 and 10 h. In addition, pre-treatment with 100 ng/ml TSA, a potent HDAC inhibitor, potentiated (88-fold) the synergism seen with the low-dose combination on the AP-1 reporter transcriptional activation. Cytoplasmic and nuclear fractions of treated cells were tested for HDAC activity at 2 and 12 h both in the presence and absence of TSA, however, there was no significant change in their HDAC activity. In addition, the H2O2 produced in the cell system was about 2 microM for the low-dose combination which was scavenged to about 1 microM in the presence of SOD.. Taken together, the synergistic activation of AP-1 by the combination of SFN and EGCG that was potentiated by HDAC inhibitor TSA and attenuated by free radical scavenger SOD point to a possible multifactorial control of colon carcinoma that may involve a role for HDACs, inhibition of cellular senescence, and SOD signaling. Topics: Catechin; Cell Survival; Cellular Senescence; Colonic Neoplasms; Drug Synergism; HT29 Cells; Humans; Hydroxamic Acids; Isothiocyanates; Reactive Oxygen Species; Sulfoxides; Superoxide Dismutase; Thiocyanates; Transcription Factor AP-1; Transcriptional Activation | 2008 |
Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy.
We have previously shown the reactivation of some methylation-silenced genes in cancer cells by (-)-epigallocatechin-3-gallate, the major polyphenol from green tea. To determine whether other polyphenolic compounds have similar activities, we studied the effects of soy isoflavones on DNA methylation.. Enzyme assay was used to determine the inhibitory effect of genistein on DNA methyltransferase activity in nuclear extracts and purified recombinant enzyme. Methylation-specific PCR and quantitative real-time PCR were employed to examine the DNA methylation and gene expression status of retinoic acid receptor beta (RARbeta), p16INK4a, and O6-methylguanine methyltransferase (MGMT) in KYSE 510 esophageal squamous cell carcinoma cells treated with genistein alone or in combination with trichostatin, sulforaphane, or 2'-deoxy-5-aza-cytidine (5-aza-dCyd).. Genistein (2-20 micromol/L) reversed DNA hypermethylation and reactivated RARbeta, p16INK4a, and MGMT in KYSE 510 cells. Genistein also inhibited cell growth at these concentrations. Reversal of DNA hypermethylation and reactivation of RARbeta by genistein were also observed in KYSE 150 cells and prostate cancer LNCaP and PC3 cells. Genistein (20-50 micromol/L) dose-dependently inhibited DNA methyltransferase activity, showing substrate- and methyl donor-dependent inhibition. Biochanin A and daidzein were less effective in inhibiting DNA methyltransferase activity, in reactivating RARbeta, and in inhibiting cancer cell growth. In combination with trichostatin, sulforaphane, or 5-aza-dCyd, genistein enhanced reactivation of these genes and inhibition of cell growth.. These results indicate that genistein and related soy isoflavones reactivate methylation-silenced genes, partially through a direct inhibition of DNA methyltransferase, which may contribute to the chemopreventive activity of dietary isoflavones. Topics: Anticarcinogenic Agents; Antineoplastic Agents; Azacitidine; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cyclin-Dependent Kinase Inhibitor p16; Decitabine; DNA Methylation; Dose-Response Relationship, Drug; Esophageal Neoplasms; Genistein; Glycine max; Humans; Hydroxamic Acids; Isoflavones; Isothiocyanates; O(6)-Methylguanine-DNA Methyltransferase; Receptors, Retinoic Acid; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sulfites; Sulfoxides; Tea; Thiocyanates | 2005 |
A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase.
Sulforaphane (SFN), a compound found at high levels in broccoli and broccoli sprouts, is a potent inducer of phase 2 detoxification enzymes and inhibits tumorigenesis in animal models. SFN also has a marked effect on cell cycle checkpoint controls and cell survival and/or apoptosis in various cancer cells, through mechanisms that are poorly understood. We tested the hypothesis that SFN acts as an inhibitor of histone deacetylase (HDAC). In human embryonic kidney 293 cells, SFN dose-dependently increased the activity of a beta-catenin-responsive reporter (TOPflash), without altering beta-catenin or HDAC protein levels. Cytoplasmic and nuclear extracts from these cells had diminished HDAC activity, and both global and localized histone acetylation was increased, compared with untreated controls. Studies with SFN and with media from SFN-treated cells indicated that the parent compound was not responsible for the inhibition of HDAC, and this was confirmed using an inhibitor of glutathione S-transferase, which blocked the first step in the metabolism of SFN, via the mercapturic acid pathway. Whereas SFN and its glutathione conjugate (SFN-GSH) had little or no effect, the two major metabolites SFN-cysteine and SFN-N-acetylcysteine were effective HDAC inhibitors in vitro. Finally, several of these findings were recapitulated in HCT116 human colorectal cancer cells: SFN dose-dependently increased TOPflash reporter activity and inhibited HDAC activity, there was an increase in acetylated histones and in p21(Cip1/Waf1), and chromatin immunoprecipitation assays revealed an increase in acetylated histones bound to the P21 promoter. Collectively, these findings suggest that SFN may be effective as a tumor-suppressing agent and as a chemotherapeutic agent, alone or in combination with other HDAC inhibitors currently undergoing clinical trials. Topics: Acetylation; Anticarcinogenic Agents; beta Catenin; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Cytoskeletal Proteins; DNA-Binding Proteins; Enzyme Inhibitors; Ethacrynic Acid; Glutathione Transferase; HCT116 Cells; Histone Deacetylase 1; Histone Deacetylase Inhibitors; Histone Deacetylases; Histones; Humans; Hydroxamic Acids; Isothiocyanates; Kidney; Sulfoxides; TCF Transcription Factors; Thiocyanates; Trans-Activators; Transcription Factor 7-Like 2 Protein; Transcription Factors; Transfection | 2004 |