trichostatin-a and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

trichostatin-a has been researched along with benzyloxycarbonylleucyl-leucyl-leucine-aldehyde* in 16 studies

Other Studies

16 other study(ies) available for trichostatin-a and benzyloxycarbonylleucyl-leucyl-leucine-aldehyde

ArticleYear
Rejection of adenovirus infection is independent of coxsackie and adenovirus receptor expression in cisplatin-resistant human lung cancer cells.
    Oncology reports, 2016, Volume: 36, Issue:2

    The adenovirus vector-based cancer gene therapy is controversial. Low transduction efficacy is believed to be one of the main barriers for the decreased expression of coxsackie and adenovirus receptor (CAR) on tumor cells. However, the expression of CAR on primary tumor tissue and tumor tissue survived from treatment has still been not extensively studied. The present study analyzed the adenovirus infection rates and CAR expression in human lung adenocarcinoma cell line A549 and its cisplatin-resistant subline A549/DDP. The results showed that although the CAR expression in A549 and A549/DDP was not different, compared with the A549, A549/DDP appeared obviously to reject adenovirus infection. Moreover, we modified CAR expression in the two cell lines with proteasome inhibitor MG-132 and histone deacetylase inhibitor trichostatin A (TSA), and analyzed the adenovirus infection rates after modifying agent treatments. Both TSA and MG-132 pretreatments could increase the CAR expression in the two cell lines, but the drug pretreatments could only make A549 cells more susceptible to adenovirus infectivity.

    Topics: A549 Cells; Adenocarcinoma; Adenocarcinoma of Lung; Adenoviridae; Adenoviridae Infections; Cell Line, Tumor; Cisplatin; Coxsackie and Adenovirus Receptor-Like Membrane Protein; Drug Resistance, Neoplasm; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Leupeptins; Lung Neoplasms; Proteasome Inhibitors

2016
Ku70 is essential for histone deacetylase inhibitor trichostatin A-induced apoptosis.
    Molecular medicine reports, 2015, Volume: 12, Issue:1

    It was previously reported that the histone deacetylase inhibitor (HDACI) trichostatin A (TSA) induced B cell lymphoma 2 (Bcl-2)-associated X protein (Bax)-dependent apoptosis in colorectal cancer (CRC) cells. In addition, Ku70 has been identified as a regulator of apoptosis, the mechanism of which proceeds via interacting with Bax. The aim of the present study was to investigate the role of Ku70 in TSA-induced apoptosis in the CRC cell lines HCT116 and HT29. The results showed that TSA induced the acetylation of Ku70, which was found to be associated with increased apoptosis. In addition, TSA treatment promoted the release of Bax from its complex with Ku70. Bax was then detected to have translocated from the cytoplasm into the mitochondria, while cytochrome c was detected to have translocated from the mitochondria into the cytoplasm. Furthermore, knockdown of Ku70 using small interfering RNA decreased TSA-induced apoptosis as well as downregulated the expression of Bax. These effects were rescued through pre-treatment of cells with the proteasome inhibitor MG132. In conclusion, the results of the present study suggested that Ku70 acetylation mediated TSA-induced apoptosis in CRC cells. In addition, Ku70 was found to be indispensable in TSA-induced apoptosis due to its role in protecting Bax from proteosomal degradation.

    Topics: Acetylation; Antigens, Nuclear; Apoptosis; bcl-2-Associated X Protein; Colorectal Neoplasms; DNA-Binding Proteins; Gene Expression Regulation, Neoplastic; HCT116 Cells; Histone Deacetylase Inhibitors; HT29 Cells; Humans; Hydroxamic Acids; Ku Autoantigen; Leupeptins

2015
Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases.
    Carcinogenesis, 2012, Volume: 33, Issue:2

    Green tea polyphenols (GTPs) reactivate epigenetically silenced genes in cancer cells and trigger cell cycle arrest and apoptosis; however, the mechanisms whereby these effects occur are not well understood. We investigated the molecular mechanisms underlying the antiproliferative effects of GTP, which may be similar to those of histone deacetylase (HDAC) inhibitors. Exposure of human prostate cancer LNCaP cells (harboring wild-type p53) and PC-3 cells (lacking p53) with 10-80 μg/ml of GTP for 24 h resulted in dose-dependent inhibition of class I HDAC enzyme activity and its protein expression. GTP treatment causes an accumulation of acetylated histone H3 in total cellular chromatin, resulting in increased accessibility to bind with the promoter sequences of p21/waf1 and Bax, consistent with the effects elicited by an HDAC inhibitor, trichostatin A. GTP treatment also resulted in increased expression of p21/waf1 and Bax at the protein and message levels in these cells. Furthermore, treatment of cells with proteasome inhibitor, MG132 together with GTP prevented degradation of class I HDACs, compared with cells treated with GTP alone, indicating increased proteasomal degradation of class I HDACs by GTP. These alterations were consistent with G(0)-G(1) phase cell cycle arrest and induction of apoptosis in both cell lines. Our findings provide new insight into the mechanisms of GTP action in human prostate cancer cells irrespective of their p53 status and suggest a novel approach to prevention and/or therapy of prostate cancer achieved via HDAC inhibition.

    Topics: Acetylation; Apoptosis; bcl-2-Associated X Protein; Cell Cycle Checkpoints; Cell Proliferation; Chromatin; Cyclin-Dependent Kinase Inhibitor p21; Down-Regulation; Histone Deacetylase Inhibitors; Histone Deacetylases; Histones; Humans; Hydroxamic Acids; Leupeptins; Male; Polyphenols; Promoter Regions, Genetic; Prostatic Neoplasms; Proteasome Endopeptidase Complex; Protein Binding; Proteolysis; Tea; Tumor Cells, Cultured; Tumor Suppressor Protein p53

2012
Influence of Hsp90 and HDAC inhibition and tubulin acetylation on perinuclear protein aggregation in human retinal pigment epithelial cells.
    Journal of biomedicine & biotechnology, 2011, Volume: 2011

    Retinal pigment epithelial (RPE) cells are continually exposed to oxidative stress that contributes to protein misfolding, aggregation and functional abnormalities during aging. The protein aggregates formed at the cell periphery are delivered along the microtubulus network by dynein-dependent retrograde trafficking to a juxtanuclear location. We demonstrate that Hsp90 inhibition by geldanamycin can effectively suppress proteasome inhibitor, MG-132-induced protein aggregation in a way that is independent of HDAC inhibition or the tubulin acetylation levels in ARPE-19 cells. However, the tubulin acetylation and polymerization state affects the localization of the proteasome-inhibitor-induced aggregation. These findings open new perspectives for understanding the pathogenesis of protein aggregation in retinal cells and can be useful for the development of therapeutic treatments to prevent retinal cell deterioration.

    Topics: Acetylation; Benzoquinones; Cell Extracts; Cell Line; Cell Nucleus; Epithelial Cells; Histone Deacetylase Inhibitors; Histone Deacetylases; HSP90 Heat-Shock Proteins; Humans; Hydroxamic Acids; Lactams, Macrocyclic; Leupeptins; Pigment Epithelium of Eye; Protein Structure, Quaternary; Tubulin; Ubiquitination

2011
HDAC2 deacetylates class II transactivator and suppresses its activity in macrophages and smooth muscle cells.
    Journal of molecular and cellular cardiology, 2009, Volume: 46, Issue:3

    Macrophage-triggered chronic inflammation and smooth muscle cell-initiated vascular remodeling are two major pathophysiologic events during atherogenesis. Major histocompatibility class II (MHC II) transactivator (CIITA) is a key mediator of these processes through transcriptional regulation of interferon gamma (IFN-gamma) induced MHC II activation and type I collagen repression. Transcriptional activity of CIITA is regulated by multiple post-translational modifications. Here we report that CIITA and histone deacetylase 2 (HDAC2) interact in smooth muscle cells and macrophages as assayed by co-immunoprecipitations. HDAC2 deacetylates CIITA whereas both the HDAC inhibitor trichostatin A (TSA) and over-expression of HDAC2 interfering RNA increase CIITA acetylation. HDAC2 down-regulates CIITA recruitment to target promoters as evidenced by chromatin immunoprecipitation assays, and suppresses MHC II activation and collagen repression mediated by CIITA in luciferase reporter assays. Quantitative PCR reveals that TSA enhances MHC II activation and collagen repression by IFN-gamma. Wild type but not enzyme-deficient HDAC2 promotes the degradation of CIITA protein, whereas TSA and the proteasome inhibitor MG132 restore CIITA activity by stabilizing CIITA protein and increasing its association with target promoters. Furthermore, TSA treatment enhances the association of CIITA with the transcription factor RFX5, which ameliorates the down-regulation of CIITA recruitment to target promoters by HDAC2. In conclusion, our data suggest that HDAC2 antagonizes CIITA activity by committing CIITA to protein degradation and decreasing the interaction of CIITA with RFX5 in a deacetylation-dependent manner. Therefore, modulating CIITA activity by targeting HDAC2 may provide potential anti-atherogenic strategies.

    Topics: Acetylation; Animals; Atherosclerosis; Cell Line; Collagen Type I; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Histocompatibility Antigens Class II; Histone Deacetylase 2; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Inflammation; Interferon-gamma; Leupeptins; Macrophages; Mice; Myocytes, Smooth Muscle; Nuclear Proteins; Promoter Regions, Genetic; Protein Processing, Post-Translational; Regulatory Factor X Transcription Factors; Repressor Proteins; Trans-Activators; Transcription Factors; Transcription, Genetic

2009
Stable protein, unstable plaque?
    Journal of molecular and cellular cardiology, 2009, Volume: 46, Issue:3

    Topics: Acetylation; Animals; Atherosclerosis; Cell Line; Collagen Type I; Cysteine Proteinase Inhibitors; DNA-Binding Proteins; Histocompatibility Antigens Class II; Histone Deacetylase 2; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Inflammation; Interferon-gamma; Leupeptins; Macrophages; Mice; Myocytes, Smooth Muscle; Nuclear Proteins; Promoter Regions, Genetic; Protein Processing, Post-Translational; Regulatory Factor X Transcription Factors; Repressor Proteins; Trans-Activators; Transcription Factors; Transcription, Genetic

2009
Evaluation of in vitro cultured rat oocytes, from different strains, by spindle morphology and maturation-promoting-factor activity combined with nuclear-transfer experiments.
    Cloning and stem cells, 2009, Volume: 11, Issue:3

    Although successful nuclear transfer (NT) has been reported in the rat 6 years ago, somatic cell nuclear transfer (SCNT) in the rat could not be repeated. Our experiments with rat SCNT reveal the difficulties related to rat cloning. We first focussed on the most appropriate rat strain that could be used as an oocyte donor. Then we describe how rat oocytes can be kept in a nonactivated state during in vitro culture, because the latter undergo spontaneous partial activation through rapid extrusion of the second polar body after isolation from the oviduct. In the SCNT experiments performed with the one-step manipulation technique it was possible to produce rat embryos, which developed in vivo up to the blastocyst stage. In addition, we identified the implantation sites of SCNT rat embryos reconstructed with Sprague-Dawley (SD) oocytes. Furthermore, different rat strains were used as oocyte donors and their oocytes were cultured under different conditions to establish a stable nonactivating oocyte culture system. The ratio of activated to nonactivated oocytes was measured by spindle-stability and maturation promoting factor (MPF) activity. These measurements indicated that a substrain of the SD rat strain, the so-called OFA-SD strain, is the one providing the most stable oocytes, when their oocytes are cultured in the presence of the proteasome inhibitor MG132. However, it was not possible to obtain any implantation sites with reconstructed oocytes derived from the OFA-SD strain transferred to foster mothers. This goal was not achieved, even when the trichostatin A (TSA) treatment was used, which is known to enhance the cloning efficiency of reconstructed mouse, porcine, bovine, and rabbit oocytes both in vitro and in vivo by enhancing the reprogramming efficiency of the recipient nucleus.

    Topics: Animals; Blastocyst; Cattle; Cloning, Organism; Cysteine Proteinase Inhibitors; Female; Histone Deacetylase Inhibitors; Hydroxamic Acids; Leupeptins; Maturation-Promoting Factor; Mesothelin; Mice; Nuclear Transfer Techniques; Oocytes; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rabbits; Rats; Rats, Sprague-Dawley; Species Specificity; Spindle Apparatus; Swine

2009
The developmental potential of parthenogenetic and somatic cell nuclear-transferred rat oocytes in vitro.
    Cloning and stem cells, 2008, Volume: 10, Issue:4

    We examined the optimal conditions for somatic cell nuclear transfer (SCNT) in rat oocytes. First, we compared the effects of two types of inhibitors of spontaneous activation, MG132 and demecolcine, on the developmental potential of parthenogenetic oocytes. The potential of activated oocytes to develop into blastocysts significantly decreased 2 h after oocyte recovery (77% vs. 7%). The developmental potential of oocytes preserved in MG132-supplemented medium for 1 to 4 h was high (62% to 77%), but the potential of those preserved in demecolcine-supplemented medium for 3 and 4 h was low (77% vs. 41% and 37%, respectively). Second, the effect of the duration of parthenogenetic activation on the developmental potential was examined. When oocytes preserved in MG132 for 4 h were treated with 10 mM strontium for 5 or 6 h, the potential of activated oocytes to develop into blastocysts was high (78% and 70%, respectively). Using the optimal conditions for parthenogenetic activation, we examined the potential of rat enucleated oocytes receiving cumulus cells to develop into blastocysts. In contrast to parthenogenotes, the potential of SCNT rat oocytes to develop into blastocysts was low (2%) even if then oocytes were treated with the histone deacetylation inhibitor trichostatin A. The reason for the low developmental potential of rat SCNT oocytes is discussed.

    Topics: Animals; Blastomeres; Cloning, Organism; Cysteine Proteinase Inhibitors; Demecolcine; Embryonic Development; Female; Hydroxamic Acids; Leupeptins; Nuclear Transfer Techniques; Oocytes; Parthenogenesis; Rats; Rats, Sprague-Dawley; Tubulin Modulators

2008
Inactivation of NF-kappaB by proteasome inhibition contributes to increased apoptosis induced by histone deacetylase inhibitors in human breast cancer cells.
    Breast cancer research and treatment, 2008, Volume: 112, Issue:1

    Histone deacetylase inhibitors (HDACi) are a new class of anticancer agents that cause growth arrest, differentiation and/or apoptosis in many tumor cells. As acetylation regulates the activity of the anti-apoptotic transcription factor NF-kappaB, we investigated whether the proteasome inhibitor MG-132 would inhibit NF-kappaB activation and as a consequence potentiate HDACi-dependent apoptosis in breast cancer cells. We observed that the HDACi suberoylanilide hydroxamic acid (SAHA) or trichostatin A (TSA) induced cell death but also enhanced NF-kappaB-activity. This increase of NF-kappaB activity was strongly reduced by the addition of MG-132. Moreover, MG-132 potentiates the HDACi-induced cell death that was associated with caspase-3 activation, and PARP cleavage. Induction of the stress related kinases JNK and p38 and the up-regulation of p21 and p27 were also observed after co-treatment of cells with HDACi and MG-132. Disruption of the NF-kappaB pathway by BAY 11-7085 or IkappaB-SR mimicked the action of MG-132 in promoting HDACi-induced cell death. Thus, the combined treatment with HDACi and proteasome inhibitors potentiates apoptosis in breast cancer cells representing a novel strategy for breast cancer therapy.

    Topics: Apoptosis; Blotting, Western; Breast Neoplasms; Caspases; Colony-Forming Units Assay; Electrophoretic Mobility Shift Assay; Enzyme Inhibitors; Female; Flow Cytometry; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; I-kappa B Proteins; Leupeptins; Luciferases; Membrane Potential, Mitochondrial; NF-kappa B; NF-KappaB Inhibitor alpha; Nitriles; Sulfones; Transfection; Tumor Cells, Cultured; Vorinostat

2008
The cyclin D1 proto-oncogene is sequestered in the cytoplasm of mammalian cancer cell lines.
    Molecular cancer, 2006, Feb-17, Volume: 5

    The cyclin D1 proto-oncogene is an important regulator of G1 to S-phase transition and an important cofactor for several transcription factors in numerous cell types. Studies on neonatal cardiomyocytes and postmitotic neurons indicate that the activity of cyclin D1 may be regulated through its cytoplasmic sequestration. We have demonstrated previously, that TSA induces the ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells. Additional studies were initiated in order to further investigate the effect of TSA on cyclin D1 regulation using sub-cellular fractionation techniques.. Our studies revealed cyclin D1 to be localized predominantly within the cytoplasmic fraction of all cell lines tested. These observations were confirmed by confocal microscopy. GSK3beta was found to be localized within both the nucleus and cytoplasm throughout the cell cycle. Inhibition of GSK3beta or CRM1-dependent nuclear export resulted in only modest nuclear accumulation, suggesting that the cytoplasmic localization of cyclin D1 results from the inhibition of its nuclear import.. We have shown by several different experimental approaches, that cyclin D1 is in fact a predominantly cytoplasmic protein in mammalian cancer cell lines. Recent studies have shown that the cytoplasmic sequestration of cyclin D1 prevents apoptosis in neuronal cells. Our results suggest that cytoplasmic sequestration may additionally serve to regulate cyclin D1 activity in mammalian cancer cells.

    Topics: Active Transport, Cell Nucleus; Animals; Cell Cycle; Cell Nucleus; Cyclin D1; Cycloheximide; Cytoplasm; Enzyme Inhibitors; Exportin 1 Protein; Fatty Acids, Unsaturated; HeLa Cells; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Karyopherins; Leupeptins; Proteasome Endopeptidase Complex; Protein Processing, Post-Translational; Protein Synthesis Inhibitors; Proto-Oncogene Mas; Receptors, Cytoplasmic and Nuclear; Transfection

2006
Histone deacetylase inhibitor, trichostatin A induces ubiquitin-dependent cyclin D1 degradation in MCF-7 breast cancer cells.
    Molecular cancer, 2006, Feb-20, Volume: 5

    Cyclin D1 is an important regulator of G1-S phase cell cycle transition and has been shown to be important for breast cancer development. GSK3beta phosphorylates cyclin D1 on Thr-286, resulting in enhanced ubiquitylation, nuclear export and degradation of the cyclin in the cytoplasm. Recent findings suggest that the development of small-molecule cyclin D1 ablative agents is of clinical relevance. We have previously shown that the histone deacetylase inhibitor trichostatin A (TSA) induces the rapid ubiquitin-dependent degradation of cyclin D1 in MCF-7 breast cancer cells prior to repression of cyclin D1 gene (CCND1) transcription. TSA treatment also resulted in accumulation of polyubiquitylated GFP-cyclin D1 species and reduced levels of the recombinant protein within the nucleus.. Here we provide further evidence for TSA-induced ubiquitin-dependent degradation of cyclin D1 and demonstrate that GSK3beta-mediated nuclear export facilitates this activity. Our observations suggest that TSA treatment results in enhanced cyclin D1 degradation via the GSK3beta/CRM1-dependent nuclear export/26S proteasomal degradation pathway in MCF-7 cells.. We have demonstrated that rapid TSA-induced cyclin D1 degradation in MCF-7 cells requires GSK3beta-mediated Thr-286 phosphorylation and the ubiquitin-dependent 26S proteasome pathway. Drug induced cyclin D1 repression contributes to the inhibition of breast cancer cell proliferation and can sensitize cells to CDK and Akt inhibitors. In addition, anti-cyclin D1 therapy may be highly specific for treating human breast cancer. The development of potent and effective cyclin D1 ablative agents is therefore of clinical relevance. Our findings suggest that HDAC inhibitors may have therapeutic potential as small-molecule cyclin D1 ablative agents.

    Topics: Acetylcysteine; Breast Neoplasms; Cell Line, Tumor; Cell Nucleus; Cyclin D1; Cytoplasm; Enzyme Inhibitors; Exportin 1 Protein; Fatty Acids, Unsaturated; Female; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Karyopherins; Leupeptins; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Receptors, Cytoplasmic and Nuclear; Recombinant Fusion Proteins; RNA Interference; Transfection; Ubiquitin

2006
Mechanisms of cell death induced by histone deacetylase inhibitors in androgen receptor-positive prostate cancer cells.
    Molecular cancer research : MCR, 2006, Volume: 4, Issue:2

    Histone deacetylase inhibitors (HDACI) are potential therapeutic agents that inhibit tumor cell growth and survival. Although there are several publications regarding the effects of HDACIs on prostate cancer cell growth, their mechanism(s) of action remains undefined. We treated several human prostate cancer cell lines with the HDACI trichostatin A and found that trichostatin A induced cell death in androgen receptor (AR)-positive cell lines to higher extent compared with AR-negative cell lines. We then discovered that trichostatin A and other HDACIs suppressed AR gene expression in prostate cancer cell lines as well as in AR-positive breast carcinoma cells and in mouse prostate. Trichostatin A also induced caspase activation, but trichostatin A-induced AR suppression and cell death were caspase independent. In addition, we found that doxorubicin inhibited AR expression, and p21 protein completely disappeared after simultaneous treatment with trichostatin A and doxorubicin. This effect may be attributed to the induction of protease activity under simultaneous treatment with these two agents. Further, simultaneous treatment with trichostatin A and doxorubicin increased cell death in AR-positive cells even after culturing in steroid-free conditions. The protease/proteasome inhibitor MG132 protected AR and p21 from the effects of trichostatin A and doxorubicin and inhibited trichostatin A-induced cell death in AR-positive prostate cells. Taken together, our data suggest that the main mechanism of trichostatin A-induced cell death in AR-positive prostate cancer is inhibition of AR gene expression. The synergistic effect of simultaneous treatment with trichostatin A and doxorubicin is mediated via inhibition of AR expression, induction of protease activity, increased expression of p53, and proteolysis of p21.

    Topics: Animals; Antibiotics, Antineoplastic; Apoptosis; Blotting, Western; Breast Neoplasms; Caspases; Cyclin-Dependent Kinase Inhibitor p21; Cysteine Proteinase Inhibitors; Doxorubicin; Drug Synergism; Drug Therapy, Combination; Enzyme Activation; Enzyme Inhibitors; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Leupeptins; Luciferases; Male; Mice; Promoter Regions, Genetic; Prostate; Prostatic Neoplasms; Receptors, Androgen; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Cells, Cultured; Tumor Suppressor Protein p53

2006
Histone deacetylase inhibitor reduces monocyte adhesion to endothelium through the suppression of vascular cell adhesion molecule-1 expression.
    Arteriosclerosis, thrombosis, and vascular biology, 2006, Volume: 26, Issue:12

    Tumor necrosis factor (TNF)-alpha initiates numerous changes in endothelial cell (EC) gene expression that contributes to the pathology of various diseases including inflammation. We hypothesized that TNF-alpha-mediated gene induction involves multiple signaling pathways, and that inhibition of one or more of these pathways may selectively target subsets of TNF-alpha-responsive genes and functions.. Human umbilical vein endothelial cells (ECs) were preincubated with inhibitors of PI3 kinase (LY294002), histone deacetylases (HDAC) (trichostatin A [TSA]), de novo protein synthesis (CHX), proteasome (MG-132), and GATA factors (K-11430) before exposure to TNF-alpha at 4 hours and analyzed by microarray. TNF-alpha-mediated induction of vascular cell adhesion molecule-1 (VCAM-1) was attenuated by all of these inhibitors, whereas in contrast, stimulation of intercellular adhesion molecule-1 (ICAM-1) was blocked by MG-132 alone. Moreover TSA blocked TNF-alpha-mediated induction of monocyte adhesion both in vitro and in vivo through the suppression of VCAM-1. Further analysis demonstrated that HDAC3 plays a significant role in the regulation of TNF-alpha-mediated VCAM-1 expression.. TNF-alpha activates ECs via multiple signaling pathways, and these pathways may be selectively targeted to modulate EC function. Moreover, TSA treatment reduced monocyte adhesion via VCAM-1 suppression in vitro and in vivo, suggesting that TSA might be useful for the attenuation of the inflammatory response in EC.

    Topics: Animals; Azepines; Cell Adhesion; Chromones; E-Selectin; Endothelium, Vascular; Enzyme Inhibitors; Gene Expression Regulation; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Intercellular Adhesion Molecule-1; Leupeptins; Mice; Mice, Transgenic; Monocytes; Morpholines; RNA, Messenger; Signal Transduction; Transcriptional Activation; Tumor Necrosis Factor-alpha; Vascular Cell Adhesion Molecule-1

2006
Histone deacetylase inhibitor trichostatin A represses estrogen receptor alpha-dependent transcription and promotes proteasomal degradation of cyclin D1 in human breast carcinoma cell lines.
    Clinical cancer research : an official journal of the American Association for Cancer Research, 2004, Dec-01, Volume: 10, Issue:23

    Estrogen receptor alpha (ERalpha)-positive breast cancer cell lines are up to 10 times more sensitive than ERalpha-negative cell lines to the antiproliferative activity of the histone deacetylase inhibitor trichostatin A (TSA). The purpose of the study was to investigate the mechanisms underlying this differential response.. In the ERalpha-positive MCF-7 cell line, TSA repressed ERalpha and cyclin D1 transcription and induced ubiquitin dependent proteasomal degradation of cyclin D1, leading primarily to G(1)-S-phase cell cycle arrest. By contrast, cyclin D1 degradation was enhanced but its transcription unaffected by TSA in the ERalpha-negative MDA-MB-231 cell line, which arrested in G(2)-M phase. Cyclin D1 degradation involved Skp2/p45, a regulatory component of the Skp1/Cullin/F-box complex; silencing SKP2 gene expression by RNA interference stabilized cyclin D1 and abrogated the cyclin D1 down-regulation response to TSA.. Tamoxifen has been shown to inhibit ERalpha-mediated cyclin D1 transcription, and acquired resistance to tamoxifen is associated with a shift to ERalpha-independent cyclin D1 up-regulation. Taken together, our data show that TSA effectively induces cyclin D1 down-regulation through both ERalpha-dependent and ERalpha-independent mechanisms, providing an important new strategy for combating resistance to antiestrogens.

    Topics: Antineoplastic Agents, Hormonal; Breast Neoplasms; Cell Cycle; Cell Proliferation; Cyclin D1; Cysteine Proteinase Inhibitors; Drug Resistance, Neoplasm; Endopeptidases; Estrogen Receptor alpha; Female; Gene Expression Regulation, Neoplastic; Histone Deacetylase Inhibitors; Humans; Hydroxamic Acids; Leupeptins; RNA Interference; S-Phase Kinase-Associated Proteins; Tamoxifen; Transcription, Genetic; Tumor Cells, Cultured; Uterine Neoplasms

2004
Potentiation of tumor necrosis factor-induced NF-kappa B activation by deacetylase inhibitors is associated with a delayed cytoplasmic reappearance of I kappa B alpha.
    Molecular and cellular biology, 2003, Volume: 23, Issue:17

    Previous studies have implicated acetylases and deacetylases in regulating the transcriptional activity of NF-kappa B. Here, we show that inhibitors of deacetylases such as trichostatin A (TSA) and sodium butyrate (NaBut) potentiated TNF-induced expression of several natural NF-kappa B-driven promoters. This transcriptional synergism observed between TNF and TSA (or NaBut) required intact kappa B sites in all promoters tested and was biologically relevant as demonstrated by RNase protection on two instances of endogenous NF-kappa B-regulated gene transcription. Importantly, TSA prolonged both TNF-induced DNA-binding activity and the presence of NF-kappa B in the nucleus. We showed that the p65 subunit of NF-kappa B was acetylated in vivo. However, this acetylation was weak, suggesting that other mechanisms could be implicated in the potentiated binding and transactivation activities of NF-kappa B after TNF plus TSA versus TNF treatment. Western blot and immunofluorescence confocal microscopy experiments revealed a delay in the cytoplasmic reappearance of the I kappa B alpha inhibitor that correlated temporally with the prolonged intranuclear binding and presence of NF-kappa B. This delay was due neither to a defect in I kappa B alpha mRNA production nor to a nuclear retention of I kappa B alpha but was rather due to a persistent proteasome-mediated degradation of I kappa B alpha. A prolongation of I kappa B kinase activity could explain, at least partially, the delayed I kappa B alpha cytoplasmic reappearance observed in presence of TNF plus TSA.

    Topics: Animals; Butyric Acid; Cysteine Endopeptidases; Cytoplasm; Enzyme Inhibitors; HeLa Cells; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; I-kappa B Kinase; I-kappa B Proteins; Leupeptins; Mitogen-Activated Protein Kinases; Multienzyme Complexes; NF-kappa B; NF-KappaB Inhibitor alpha; Proteasome Endopeptidase Complex; Protein Serine-Threonine Kinases; Protein Transport; Transcription Factor RelA; Tumor Necrosis Factor-alpha

2003
Rapid induction of histone hyperacetylation and cellular differentiation in human breast tumor cell lines following degradation of histone deacetylase-1.
    The Journal of biological chemistry, 2000, Nov-10, Volume: 275, Issue:45

    Quinidine inhibits proliferation and promotes cellular differentiation in human breast tumor epithelial cells. Previously we showed quinidine arrested MCF-7 cells in G(1) phase of the cell cycle and led to a G(1) to G(0) transition followed by apoptotic cell death. The present experiments demonstrated that MCF-7, MCF-7ras, T47D, MDA-MB-231, and MDA-MB-435 cells transiently differentiate before undergoing apoptosis in response to quinidine. The cells accumulated lipid droplets, and the cytokeratin 18 cytoskeleton was reorganized. Hyperacetylated histone H4 appeared within 2 h of the addition of quinidine to the medium, and levels were maximal by 24 h. Quinidine-treated MCF-7 cells showed elevated p21(WAF1), hypophosphorylation and suppression of retinoblastoma protein, and down-regulation of cyclin D1, similar to the cell cycle response observed with cells induced to differentiate by histone deacetylase inhibitors, trichostatin A, and trapoxin. Quinidine did not show evidence for direct inhibition of histone deacetylase enzymatic activity in vitro. HDAC1 was undetectable in MCF-7 cells 30 min after addition of quinidine to the growth medium. The proteasome inhibitors MG-132 and lactacystin completely protected HDAC1 from the action of quinidine. We conclude that quinidine is a breast tumor cell differentiating agent that causes the loss of HDAC1 via a proteasomal sensitive mechanism.

    Topics: Acetylation; Acetylcysteine; Animals; Anti-Bacterial Agents; Breast Neoplasms; Cell Cycle; Cell Differentiation; Cell Division; Chickens; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; Cysteine Endopeptidases; Cysteine Proteinase Inhibitors; Cytoskeleton; Down-Regulation; Enzyme Inhibitors; Female; G1 Phase; Histone Deacetylase 1; Histone Deacetylase Inhibitors; Histone Deacetylases; Histones; Humans; Hydroxamic Acids; Immunoblotting; Keratins; Leupeptins; Multienzyme Complexes; Peptides; Phosphorylation; Proteasome Endopeptidase Complex; Quinidine; Retinoblastoma Protein; Time Factors; Tumor Cells, Cultured

2000