trichostatin-a and anacardic-acid

trichostatin-a has been researched along with anacardic-acid* in 7 studies

Other Studies

7 other study(ies) available for trichostatin-a and anacardic-acid

ArticleYear
Manganese chloride induces histone acetylation changes in neuronal cells: Its role in manganese-induced damage.
    Neurotoxicology, 2018, Volume: 65

    Manganese neurotoxicity presents with Parkinson-like symptoms, with degeneration of dopaminergic neurons in the basal ganglia as the principal pathological feature. Manganese neurotoxicity studies may contribute to a better understanding of the mechanism of Parkinson's disease. Here, we examined the effects of manganese on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodelling, cell cycle progression, DNA repair and apoptosis. In this study, we found that manganese chloride (MnCl

    Topics: Acetylation; Anacardic Acids; Animals; Apoptosis; Cell Survival; Chlorides; Drug Synergism; Histone Acetyltransferases; Histone Deacetylases; Histones; Hydroxamic Acids; Manganese Compounds; Protein Processing, Post-Translational; Rats

2018
Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride.
    Toxicology and applied pharmacology, 2017, 12-01, Volume: 336

    Topics: Acetylation; Active Transport, Cell Nucleus; Anacardic Acids; Animals; Chlorides; Glutathione; Heme Oxygenase (Decyclizing); Histone Deacetylase Inhibitors; Histones; Hydroxamic Acids; Manganese Compounds; Manganese Poisoning; Neurons; NF-E2-Related Factor 2; PC12 Cells; Rats; Reactive Oxygen Species; Signal Transduction

2017
Epigenetic Regulation of Cytosolic Phospholipase A2 in SH-SY5Y Human Neuroblastoma Cells.
    Molecular neurobiology, 2016, Volume: 53, Issue:6

    Group IVA cytosolic phospholipase A2 (cPLA2 or PLA2G4A) is a key enzyme that contributes to inflammation via the generation of arachidonic acid and eicosanoids. While much is known about regulation of cPLA2 by posttranslational modification such as phosphorylation, little is known about its epigenetic regulation. In this study, treatment with histone deacetylase (HDAC) inhibitors, trichostatin A (TSA), valproic acid, tubacin and the class I HDAC inhibitor, MS-275, were found to increase cPLA2α messenger RNA (mRNA) expression in SH-SY5Y human neuroblastoma cells. Co-treatment of the histone acetyltransferase (HAT) inhibitor, anacardic acid, modulated upregulation of cPLA2α induced by TSA. Specific involvement of class I HDACs and HAT in cPLA2α regulation was further shown, and a Tip60-specific HAT inhibitor, NU9056, modulated the upregulation of cPLA2α induced by MS-275. In addition, co-treatment of with histone methyltransferase (HMT) inhibitor, 5'-deoxy-5'-methylthioadenosine (MTA) suppressed TSA-induced cPLA2α upregulation. The above changes in cPLA2 mRNA expression were reflected at the protein level by Western blots and immunocytochemistry. Chromatin immunoprecipitation (ChIP) showed TSA increased binding of trimethylated H3K4 to the proximal promoter region of the cPLA2α gene. Cell injury after TSA treatment as indicated by lactate dehydrogenase (LDH) release was modulated by anacardic acid, and a role of cPLA2 in mediating TSA-induced injury shown, after co-incubation with the cPLA2 selective inhibitor, arachidonoyl trifluoromethyl ketone (AACOCF3). Together, results indicate epigenetic regulation of cPLA2 and the potential of such regulation for treatment of chronic inflammation.

    Topics: Anacardic Acids; Anilides; Benzamides; Cell Line, Tumor; Chromatin Immunoprecipitation; Deoxyadenosines; Epigenesis, Genetic; Fluorescent Antibody Technique; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Neoplastic; Group IV Phospholipases A2; Histone Deacetylase Inhibitors; Histones; Humans; Hydroxamic Acids; L-Lactate Dehydrogenase; Lysine; Neuroblastoma; Pyridines; Real-Time Polymerase Chain Reaction; RNA, Messenger; Thiazoles; Thionucleosides; Valproic Acid

2016
Association between histone hyperacetylation status in memory T lymphocytes and allergen-induced eosinophilic airway inflammation.
    Respirology (Carlton, Vic.), 2016, Volume: 21, Issue:5

    T lymphocytes, which are characterized by longevity and immune memory, play an important role in airway inflammation in asthma. Here, we assessed the association between immune memory and histone deacetylation and/or acetylation status.. CD4 + CD45RB(low) cells (memory T (Tm)) obtained from the spleens of asthma mice models were co-cultured with glucocorticoids (GCs), trichostatin A (TSA) or anacardic acid (AA) and adoptively transferred to naïve mice. Interleukin (IL)-4, 5 and 13 and IFN-γ concentrations were measured in culture supernatants and bronchoalveolar lavage fluid (BALF). Histone deacetylase (HDAC) and histone acetyltransferase (HAT) activities and the expression of T-bet, GATA-3, HDACs 1-11 and alveolar eosinophilic inflammation index (AEII) were determined in lung tissues.. Culture supernatants and the BALF showed similar cytokine profiles. AA and GCs significantly inhibited HAT activity (P = 0.002 and P = 0.018), whereas TSA inhibited and GCs promoted HDAC activity (P = 0.004 and P = 0.025). HDACs 7, 9 and 10 were upregulated by AA and GCs (all P < 0.032), while HDAC11 was upregulated by GCs (P = 0.028). GC-induced inhibition of Tm histone acetylation alleviated AEII by downregulating IL-4, 5 and 13, similar to the effect of AA.. Histone hyperacetylation status induced by low expression of HDACs 7, 9 and 10 in allergen-specific Tm cells contributes to eosinophilic airway inflammation. The mechanism by which GCs improve airway inflammation involves the upregulation of HDACs 7, 9, 10 and 11 and especially HDAC-10. The role of individual HDACs and AA as novel therapeutic agents for allergic asthma needs to be explored in the future.

    Topics: Acetylation; Allergens; Anacardic Acids; Animals; Asthma; Blotting, Western; Bronchoalveolar Lavage Fluid; Cell Culture Techniques; Cytokines; Disease Models, Animal; Eosinophils; Glucocorticoids; Histone Acetyltransferases; Histone Deacetylases; Histones; Hydroxamic Acids; Inflammation; Lung; Male; Mice; Mice, Inbred BALB C; T-Lymphocytes

2016
Effects of histone acetylation on superoxide dismutase 1 gene expression in the pathogenesis of senile cataract.
    Scientific reports, 2016, 10-05, Volume: 6

    Histone acetylation plays key roles in gene expression, but its effects on superoxide dismutase 1 (SOD1) expression in senile cataract remains unknown. To address this problem, the study was to investigate the influence of histone acetylation on SOD1 expression and its effects in the pathogenesis of senile cataract. Senile cataract was classified into three types-nuclear cataract (NC), cortical cataract (CC), and posterior subcapsular cataract (SC)-using the Lens Opacities Classification System III. In senile cataracts, SOD1 expression decreased significantly. Both H3 and H4 were deacetylated at -600 bp of the SOD1 promoter of cataract lenses, and hypoacetylated at -1500, -1200, and -900 bp. In hypoacetylated histones, the hypoacetylation pattern differed among the cataracts. In vitro, anacardic acid (AA) significantly reduced H3 and H4 acetylation at the SOD1 promoter, decreased protein expression, and induced cataract formation in rabbits. AA also inhibited HLEC viability and increased cell apoptosis. In contrast, trichostatin A (TSA) was able to efficaciously stop AA's effects on both rabbit lenses and HLECs. Decreased histone acetylation at the SOD1 promoter is associated with declined SOD1 expression in senile cataracts. Histone acetylation plays an essential role in the regulation of SOD1 expression and in the pathogenesis of senile cataracts.

    Topics: Acetylation; Adult; Aged; Aged, 80 and over; Anacardic Acids; Animals; Case-Control Studies; Cataract; Cell Survival; Cells, Cultured; Disease Models, Animal; Down-Regulation; Genetic Predisposition to Disease; Histones; Humans; Hydroxamic Acids; Promoter Regions, Genetic; Rabbits; Superoxide Dismutase-1

2016
Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster.
    Systems biology in reproductive medicine, 2010, Volume: 56, Issue:1

    In humans, other mammals, and also in Drosophila, the paternal genome in the sperm is highly condensed and organized mainly in a protamine-based chromatin structure. However, the timing and mechanism of the switch from a histone- to the protamine-based chromatin configuration is still poorly understood. We therefore established Drosophila in vitro cultures of cysts with 64 synchronously developing spermatids genetically marked with histone H2AvD-RFP and ProtamineB-eGFP. Live cell imaging showed that the switch from H2AvD-RFP to Protamine-eGFP chromatin takes approximately five hours, with a short but clear overlap of the presence of both histones and protamines. Moreover, cultured pupal testes showed H4 hyperacetylation at the canoe stage shortly before histone removal; a feature previously observed in the intact animal. We then used TSA to inhibit histone deacetylation and found that premature hyperacetylation was already induced at the round nuclei stage of spermatids. However, this premature hyperacetylation did not lead to a premature switch to the protamine-based chromatin structure, showing that histone hyperacetylation is not the sole inducer of the histone to protamine switch. Importantly, we observed that inactivation of histone acetyltransferases by anacardic acid blocks further differentiation and thus prevents the degradation of histones and the switch to a protamine-based chromatin. Thus, we conclude that H4 hyperacetylation is an essential feature but not the sole inducer of the histone to protamine switch during spermiogenesis.

    Topics: Acetylation; Anacardic Acids; Animals; Cell Nucleus; Chromatin; Chromatin Assembly and Disassembly; Drosophila melanogaster; Drosophila Proteins; Enzyme Inhibitors; Histone Acetyltransferases; Histones; Hydroxamic Acids; Male; Organ Culture Techniques; Protamines; Pupa; Spermatids; Spermatogenesis

2010
Histone acetylation and flagellin are essential for Legionella pneumophila-induced cytokine expression.
    Journal of immunology (Baltimore, Md. : 1950), 2008, Jul-15, Volume: 181, Issue:2

    Legionella pneumophila causes severe pneumonia. Acetylation of histones is thought to be an important regulator of gene transcription, but its impact on L. pneumophila-induced expression of proinflammatory cytokines is unknown. L. pneumophila strain 130b induced the expression of the important chemoattractant IL-8 and genome-wide histone modifications in human lung epithelial A549 cells. We analyzed the IL-8-promoter and found that histone H4 was acetylated and H3 was phosphorylated at Ser(10) and acetylated at Lys(14), followed by transcription factor NF-kappaB. Recruitment of RNA polymerase II to the IL-8 promoter corresponded with increases in gene transcription. Histone modification and IL-8 release were dependent on p38 kinase and NF-kappaB pathways. Legionella-induced IL-8 expression was decreased by histone acetylase (HAT) inhibitor anacardic acid and enhanced by histone deacetylase (HDAC) inhibitor trichostatin A. After Legionella infection, HATs p300 and CREB-binding protein were time-dependently recruited to the IL-8 promoter, whereas HDAC1 and HDAC5 first decreased and later reappeared at the promoter. Legionella specifically induced expression of HDAC5 but not of other HDACs in lung epithelial cells, but knockdown of HDAC1 or 5 did not alter IL-8 release. Furthermore, Legionella-induced cytokine release, promoter-specific histone modifications, and RNA polymerase II recruitment were reduced in infection with flagellin-deletion mutants. Legionella-induced histone modification as well as HAT-/HDAC-dependent IL-8 release could also be shown in primary lung epithelial cells. In summary, histone acetylation seems to be important for the regulation of proinflammatory gene expression in L. pneumophila infected lung epithelial cells. These pathways may contribute to the host response in Legionnaires' disease.

    Topics: Acetylation; Anacardic Acids; Cell Line, Tumor; Enzyme Inhibitors; Epithelial Cells; Flagellin; Histone Acetyltransferases; Histone Deacetylases; Histones; Humans; Hydroxamic Acids; Interleukin-8; Legionella pneumophila; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Promoter Regions, Genetic; Protein Synthesis Inhibitors; Pulmonary Alveoli; RNA Polymerase II

2008