trichostatin-a and alizarin

trichostatin-a has been researched along with alizarin* in 3 studies

Other Studies

3 other study(ies) available for trichostatin-a and alizarin

ArticleYear
[Effect of trichostatin A on the osteogenic differentiation potential of periodontal ligament stem cells in inflammatory microenvironment induced by tumor necrosis factor-α stimulation].
    Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology, 2016, Apr-09, Volume: 51, Issue:4

    To compare the expression of histone deacetylase(HDAC)1-11 of human periodontal ligament stem cells(PDLSC)in normal and inflammatory microenvironments, and to investigate the effect of histone deacetylase inhibitor trichostatin A(TSA)on the osteogenic differentiation potential of PDLSC in inflammatory microenvironment induced by tumor necrosis factor-α(TNF-α)stimulation.. PDLSC were isolated from periodontal ligament tissues obtained from the surgically extracted human teeth and cultured by single-colony selection. The expression of HDAC1-11 in cells with or without TNF-α(10 μg/L)stimulation was evaluated by quantitative real time-PCR(RT-PCR). The effect of TSA on cell proliferation was investigated by methyl thiazolyl tetrazolium(MTT)assay. The influence of TSA on osteogenic differentiation of PDLSC in inflammatory microenvironment with TNF-α stimulation was assessed by alizarin red staining, quantitative RT-PCR and Western blotting, respectively.. The expression of HDAC in PDLSC with TNF-α stimulation was significantly higher than that in normal PDLSC(P<0.05)(except HDAC7, P=0.243). TSA had no significant effect on PDLSC proliferation at the concentration of 50 nmol/L(P=0.232). The alizarin red staining showed that PDLSC in TNF-α group generated less mineralized nodule than the control group, while the cell matrix mineralization in TSA group was improved obviously. TNF-α had an inhibitory effect on the expression of osteogenesis related genes, runt-related transcription factor-2(RUNX2)and alkaline phosphatase(ALP), with relative gene expression ratio(experimental/control)decreased to 0.17 ± 0.02 and 0.32 ± 0.03, while TSA could significantly increase the genes' expression to 0.67±0.03 and 0.89±0.02(P<0.01). Western blotting test showed that in TNF-α group the expression of osteogenesis related proteins was obviously reduced, and compared with the TNF-α group, TSA could significantly promote the expression of proteinsin inflammatory microenvironment.. PDLSC in inflammatory microenvironment by TNF-α stimulation had a higher expression of HDAC than that in normal conditions. TSA, as a histone deacetylase inhibitor, could significantly promote the osteogenic differentiation potential of PDLSC in inflammatory microenvironment by suppressing HDAC.

    Topics: Alkaline Phosphatase; Anthraquinones; Cell Differentiation; Cell Proliferation; Core Binding Factor Alpha 1 Subunit; Gene Expression; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Hydroxamic Acids; Inflammation; Osteogenesis; Periodontal Ligament; Staining and Labeling; Stem Cell Niche; Stem Cells; Tumor Necrosis Factor-alpha

2016
Epigenetic mutagen as histone modulator can be detected by yeast flocculation.
    Mutagenesis, 2016, Volume: 31, Issue:6

    We have previously reported that flocculation of a yeast co-transformed with the human DNA methyltransferase 1 (DNMT1) and DNMT3B genes was inhibited by DNMT inhibitors. It is well known that epigenetic mutagens can disturb nucleosome positioning via DNA methylation and/or histone modification. In this study we first examined the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on the flocculation level of yeast. TSA dose-dependently promoted the flocculation exhibited by the yeast transformed with the DNMT genes or empty vectors. Furthermore, TSA induced the expression of the flocculin-encoding gene FLO1 The anthracene-derived alizarin, a natural madder root dye, has a potential for carcinogenesis promotion; however, the mode of action has not been elucidated. It is considered that epigenetic changes can promote cancer. Alizarin but not anthracene enhanced the flocculation level of the yeast. Similar to TSA, alizarin also upregulated FLO1 mRNA. Surprisingly, western blotting indicated that alizarin, but not anthracene, reduced the level of histone H3 in yeast, and alizarin-treated cells frequently displayed abnormally shaped nuclei. These findings suggest that alizarin uniquely influences nucleosome structure. Taken together with our previous findings, this study suggests that the DNMT gene-transformed yeast strains are a useful tool for screening various classes of epigenetic mutagens.

    Topics: Anthraquinones; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Methylation; Epigenesis, Genetic; Gene Expression Regulation, Fungal; Histones; Hydroxamic Acids; Mannose-Binding Lectins; Mutagenicity Tests; Mutagens; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Up-Regulation

2016
Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner.
    Stem cells and development, 2013, Jan-15, Volume: 22, Issue:2

    Adult stem cells reside in many types of tissues and adult stem cell-based regenerative medicine holds great promise for repair of diseased tissues. Recently, adipose-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for tissue-engineered bone regeneration. Compared with BMSCs, ADSCs can be easily and abundantly available from adipose tissue. However, our previous study has discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro. In this study, we aimed to explore its mechanism and improve the osteogenic potential of ADSCs for bone tissue regeneration. It has been reported that the epigenetic states could contribute to lineage-specific differentiation of adult stem cells. We observed that the epigenetic changes of BMSCs were much greater compared with ADSCs after a 3-day osteogenic induction. Runt-related transcription factor 2 (Runx2) is essential for osteoblast differentiation and bone formation. We found that BMSCs underwent more obvious epigenetic changes on the Runx2 promoter than ADSCs after osteogenic induction. These results suggest the epigenetic regulation involvement in Runx2 expression, and thus osteogenesis. We subsequently used a histone deacetylase inhibitor, trichostatin A (TSA), to promote the osteogenesis capacity of ADSCs. The results showed that TSA promoted rat ADSCs osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter in a bone morphogenetic protein signaling-dependent manner.

    Topics: Adipose Tissue; Animals; Anthraquinones; Apoptosis; Bone Marrow; Bone Morphogenetic Protein 2; Bone Morphogenetic Protein 4; Cell Differentiation; Cell Lineage; Cell Proliferation; Cells, Cultured; Chromatin Immunoprecipitation; Core Binding Factor Alpha 1 Subunit; Enzyme-Linked Immunosorbent Assay; Epigenesis, Genetic; Histone Deacetylase Inhibitors; Hydroxamic Acids; Osteogenesis; Promoter Regions, Genetic; Rats; Rats, Sprague-Dawley; RNA, Messenger; Stem Cells; Time Factors; Transcription, Genetic

2013